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ABSTRACT
We present a novel method for estimating the number of de-
fects contained in a document using the results of an inspec-
tion of the document. The method is empirical, being based
on observations made during past inspections of comparable
documents. The method yields an interval estimate, that is,
a whole range of values which is likely to contain the true
value of the number of defects in the document. We also de-
rive point estimates from the interval estimate. The method
is validated using a known empirical inspection dataset and
clearly outperforms existing approaches for estimating the
defect content after inspections.

1. INTRODUCTION

Inspections are a successful technique to detect defects in
software documents. In an inspection run, several reviewers
inspect the same document to find defects. The outcome
of an inspection run is a matrix having entries zero and one
showing which reviewer detected which defect. Some defects
will be detected by more than one reviewer, but usually
not all the defects contained in a document are detected in
an inspection. Thus, after an inspection management must
decide whether to re-inspect the document to find additional
defects or to pass the document on to the next development
step. Since it is unknown how many defects actually are
contained in a document, management must have a reliable
estimate for the number of remaining defects as a basis for
the decision.

Currently, defect content estimation methods for software
inspections fall into two categories : capture-recapture meth-
ods and curve-fitting methods. Both approaches have at-
tracted considerable attention over the past years, and we
shall briefly describe the approaches here.

Capture-recapture methods have been applied to software
inspections for the first time in [6] . Recent extensions are
[5, 9] . Capture-recapture methods as a first step compute
certain summarized data from the the 0/1 matrix of the in-
spection run to be estimated. For example, one particular
method computes for each reviewer the number of defects
which were detected by that reviewer. As a second step,
each capture-recapture method defines a particular stochas-
tic process to describe the inspection run. The stochastic
process is parameterized by the (unknown) number N of
actual defects contained in the document. Finally, some
statistical technique is applied to the stochastic model to
estimate the value of N taking into account the observed
summarized data. For example, some methods use maxi-
mum likelihood estimation as the statistical technique. The
various capture-recapture methods differ in the summarized
data computed from the results of the inspection run, the
assumptions underlying the stochastic model , and the statis-
tical estimation technique which is used. For a comparison
of different capture-recapture methods see [4] .

Two curve-fitting methods have been developed for software
inspections in [11] . The methods as a first step compute cer-
tain summarized data from the 0/1 matrix of the inspection
run to be estimated. For example, the ”detection profile
method” computes for each defect the number of reviewers
who have detected that particular defect. As a second step,
the summarized data is sorted and a curve is fitted through
the sorted datapoints. For example, in the detection profile
method the datapoints are sorted in decreasing order ac-
cording to their size and an exponentially decreasing curve
is fitted through the sorted datapoints using linear regression
on the log values. Finally, the number of defects contained
in the document is estimated as the x-value of the crossing
point of the fitted curve with a suitably defined horizontal
line. The detection profile method has been combined with
a capture-recapture method in [3] .

Several studies indicate that the capture-recapture meth-
ods and the curve-fitting methods yield estimates which are
too unreliable to be used in practice [2, 3, 4, 9, 10] . The
capture-recapture methods show a tendency to underesti-
mate the true number of defects. They also show outliers
and a high variation in the relative error of the estimates.
The curve-fitting methods show outliers and a high variation
in the relative error of the estimates, too. Neither approach



provides an indicator for how reliable a particular estimate
is. In particular, a user of the methods can’t tell in advance
whether an estimate is an outlier or not.

Both the capture-recapture methods and the curve-fitting
methods use only the results of the inspection run to be
estimated as input. They do not take into account the ex-
perience made in past inspections. In this paper, we present
an estimation method which is much different from existing
approaches : besides data about the run to be estimated we
also use data from past inspections. The new method has
several steps :

• pre-processing the empirical data from past inspections;

• constructing a probabilistic model for the outcome of
inspection runs from the empirical database;

• computing an interval estimate for the inspection run to
be estimated;

• computing several point estimates from the interval es-
timate.

Pre-processing the empirical database means to compute
summarized data for each inspection run in the database.
For each run in the database, its signature is computed.
The signature of a run combines a measure for the varia-
tion among the inspection results of the individual review-
ers with a measure for the overall efficiency of the run, see
subsection 2.3. The signature of a run depends on the true
number N of defects contained in the document, which is
an additional required input to the new method for each run
in the empirical database. In many cases the number N of
defects contained in an inspected document is known some
time after an inspection, at least approximately; see sub-
section 2.1 for a discussion. For practical purposes, adding
the defects detected in a document during later development
phases (including maintenance) to the defects found during
the inspection run yields a reasonable approximate value for
the true number of defects in the document. The empirical
database in an organization grows with each inspection car-
ried out in the organization.

The probabilistic model is constructed directly from the em-
pirical database, see subsection 2.4. The probability mea-
sure tells for each possible signature how likely it is in view
of past experience that this signature is the outcome of an
inspection run. Combining the probabilistic model with a
maximum likelihood approach, the new method yields an
interval estimate for the number of defects in the document
to be estimated. The interval estimate is a range of numbers
which is likely to contain the true value for the number of
defects in the document (subsections 2.6 and 2.7). This is in
contrast to other estimation methods which yield point esti-
mates. The new estimation method yields a whole range of
estimates because the signature introduces an equivalence
relation on runs which maps different pairs of inspection
results and values of N to the same signature, see subsec-
tions 2.3 and 2.7 (recall that the signature depends on N ).
Introducing an equivalence relation is necessary to bundle
up the datapoints. Otherwise, one would end up with a
probability distribution which has many isolated bars.

In the new method, each interval estimate comes with a

confidence level which indicates how reliable the interval es-
timate is in view of past experience (subsection 2.9). Finally,
in subsection 2.8 several different point estimates are derived
from the interval estimate.

The new method is validated using a known empirical in-
spection dataset in section 3. Step by step, a run from the
database is left out and then estimated using the runs re-
maining in the database (”jackknife”). The confidence levels
for the resulting interval estimates show that this dataset
must be subdivided into two subsets according to the appli-
cation domain of the document, see subsection 3.3. After
splitting the dataset the estimates get re-computed. On one
half of the dataset, using a particular point estimate derived
from the interval estimate the new method achieves a mean
of absolute relative errors of only 6.6 percent. In particu-
lar, the new method shows no outliers for this half of the
dataset. On the other half of the dataset, however, the new
method indicates a low confidence level for the interval es-
timates which therefore are discarded. Although one would
like to have an estimate in each case, we consider it to be
much better to have the method indicate that a particular
estimate is likely to be invalid than to base a management
decision on an invalid estimate without knowing.

In section 4, the new estimation method is compared with
a particular capture-recapture method [6] and the detection
profile method [11] using the dataset from section 3. The
new method clearly outperforms the other approaches on the
half of the dataset where the interval estimates get a high
confidence level. On the other half of the dataset where the
new method doesn’t provide estimates, both the capture-
recapture method and the detection profile method show
outliers and a high variation in the relative error of their es-
timates and thus are unreliable. As opposed to the capture-
recapture method, the interval estimates computed with the
new method show a tendency to overestimate the number
of defects in the document. Overestimation is preferable to
underestimation because it is better to re-inspect a good
quality document than to pass a low quality document on
to the next development step.

2. ESTIMATION MODEL

2.1 Input Data
The new estimation method requires a database contain-
ing empirical data about past inspection runs as input. For
each inspection run in the database as well as for the in-
spection run to be estimated the following empirical data
are required :

• the number of defects found by each reviewer;

• the total number of different defects found in the run.

The empirical data about an inspection run can be com-
puted directly from the 0/1 matrix of the run. For a partic-
ular run, entry ( k, j ) of its matrix is equal to 1 if reviewer
k detected defect j and equal to 0 if he did not. There is a
separate 0/1 matrix for each run in the empirical database
and a 0/1 matrix for the run to be estimated.

In addition to the empirical data just described, for each run
in the database the true number N of defects contained in



the inspected document is required (but not for the run to
be estimated, of course). In many cases, the total number
N of defects contained in an inspected document is known
some time after the inspection, at least approximately. If
the document was used in a controlled experiment where
the defects have been seeded into the document, the total
number of defects in the document is known exactly. On the
other hand, if the document was inspected during a devel-
opment project, usually not all the defects in the document
are known right after the inspection, but later development
phases (including maintenance) will reveal additional defects
in the document besides those which were found during the
inspection. For practical purposes, adding the defects de-
tected during later development phases to the defects found
during the inspection run yields a reasonable approximate
value for the true number of defects in a document. One
might also argue that defects which were not detected dur-
ing deployment of the product obviously are not relevant
for the operational profile of the product and can thus be
neglected.

2.2 Empirical Dataset
To validate the new method, we shall apply it in later sub-
sections to a known inspection dataset. The dataset consists
of 16 inspection runs which were conducted during two con-
trolled experiments in 1994 and 1995 [1] .

The inspected documents were specifications. There were
four documents : two from NASA (NASA-A and NASA-B,
27 pages each) and two generic ones (the specification for a
parking garage system PG, 16 pages, and for an automatic
teller machine ATM, 17 pages). All defects contained in the
documents were known since the defects had been seeded
into the documents. The NASA documents contained 18,
respectively, 15 defects, while the generic documents con-
tained 30, respectively, 28 defects.

For each run and document, the reviewers had about two
hours to complete their review. The number of reviewers
for each run varies between 6 and 8 reviewers; in most cases,
there were 6 reviewers. The inspections were conducted us-
ing two different reading techniques, namely, perspective-
based reading and ad-hoc reading. In both experiments,
the reviewers were software professionals from the NASA
Software Engineering Laboratory SEL. For later use, the
inspection runs are labelled as follows :

run document year technique defects detected

A1 ATM 1994 perspective 30 23
A2 ATM 1994 ad-hoc 30 20
A3 ATM 1995 perspective 30 24
A4 ATM 1995 ad-hoc 30 22

B1 PG 1994 perspective 28 20
B2 PG 1994 ad-hoc 28 17
B3 PG 1995 perspective 28 24
B4 PG 1995 ad-hoc 28 21

C1 NASA-A 1994 perspective 18 10
C2 NASA-A 1994 ad-hoc 18 6
C3 NASA-A 1995 perspective 15 15
C4 NASA-A 1995 ad-hoc 15 15

D1 NASA-B 1994 perspective 15 6
D2 NASA-B 1994 ad-hoc 15 9
D3 NASA-B 1995 perspective 15 14
D4 NASA-B 1995 ad-hoc 15 13

Except for the 1994 inspection runs on the NASA docu-
ments, a large fraction of the defects detected in a run were
detected by more than one reviewer. For more details on
the inspection experiments see [1] .

2.3 Preprocessing the Dataset
The empirical database must be pre-processed by computing
the signature for each run in the database. The signature
of a run has two parts :

• the ”span”, which is a measure for the variation among
the inspection results of the individual reviewers;

• the ”efficiency class”, which is a measure for the overall
efficiency of the inspection run.

For a given inspection run, denote by wk the number of
defects found by reviewer k . Denote by d the total number
of different defects detected in the run. The wk and d
get computed directly from the 0/1 matrix of the run. The
results of a run with m reviewers are then described as a
vector

(w1, . . . wm; d ).

For example, the inspection results of run A1 with six re-
viewers (m = 6 ) are

( 9, 7, 6, 13, 9, 6; 23 ).

To compute the first part of the signature of a run, its
”span”, compute for each reviewer k the individual detec-
tion ratio

rk =
wk

N
.

Recall that N denotes the number of defects contained in
the document and is assumed to be known for each run in
the database. Subdivide the range of 0 to 100 percent of pos-
sible detection ratios into intervals and number the intervals
in ascending order. The subdivision may be arbitrary, but
usually the range will be subdivided into intervals of equal
length. For example, the range might be subdivided into
the intervals

[ 0, 10 ], ( 10, 20 ], . . . ( 90, 100 ]

which are then numbered from 1 to 10. After having sub-
divided the range, compute for each reviewer the detection
ratio class, that is, the number ck of that interval to which
the reviewer’s detection ratio rk belongs. For example, re-
viewer 2 of run A1 detected 7 out of 30 defects contained
in the document. Therefore, the second reviewer’s detection
ratio is

r2 =
7

30
,

or 23.4 percent. This detection ratio falls into the third
interval of the given subdivision, whence

c2 = 3.

Finally, compute from the individual detection ratio classes
ck the span of the run as

s = max
k

ck − min
k

ck + 1.



The span of a run is a measure for the variation among the
individual reviewers’ detection ratios. For run A1, the de-
tection ratios range between 20.0 and 43.4 percent. Thus,

s = 4

is the span for run A1.

In the current version of the method, only the span is used
in the computation of the estimates, not the full vector of
individual detection ratios. Thus, computing the largest
and the smallest individual detection ratio would suffice to
compute the span.

The second part of a run’s signature, its ”efficiency class”,
is computed similarly. Compute the overall detection ratio

r =
d

N
.

In run A1, 23 out of 30 defects in the document were detected
by the reviewers, whence the overall detection ratio is

r =
23

30
,

or 76.7 percent. Subdivide the range of 0 to 100 percent of
possible overall detection ratios into intervals and number
the intervals in ascending order. The subdivision need not
be the same as the one chosen for the individual detection
ratios. For example, the range might be subdivided into the
intervals

[ 0, 20 ], ( 20, 40 ], . . . ( 80, 100 ]

which are then numbered from 1 to 5. The efficiency class
of a run is the number c of that interval to which the run’s
detection ratio r belongs. The efficiency class of a run is a
measure for the overall efficiency of the inspection run. For
example,

c = 4

is the efficiency class of run A1 for the given subdivision.

To sum up, the signature of an inspection run is defined as

σ = ( c, s ).

For example, the signature of run A1 equals ( 4, 4 ). The
following table shows the signatures of all runs in the em-
pirical dataset from subsection 2.2, using the subdivisions
chosen above :

run c s

A1 4 4
A2 4 4
A3 4 3
A4 4 4

B1 4 3
B2 4 3
B3 5 4
B4 4 5

run c s

C1 3 3
C2 2 2
C3 5 8
C4 5 6

D1 2 3
D2 3 4
D3 5 10
D4 5 8

The subdivision of the range of possible individual detection
ratios should be chosen as finegrained as possible, subject to

the constraint that the resulting probability distribution for
the span doesn’t have many holes, see the next subsection.
From that point of view, the choice of the appropriate sub-
division depends on the dataset at hand. The same holds
for the subdivision of the range of possible overall detection
ratios.

2.4 Probabilistic Model
The signature classifies the runs in an empirical dataset
according to two criteria, namely, the span of the runs and
the efficiency class of the runs. Here is a visualization of the
classification of the 16 runs in the empirical dataset from
subsection 2.2 :
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........................
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..............
A3, B1, B2 C3, D4

A1, A2, A4

The rows correspond to the efficiency class, the columns to
the span. One can see that different runs may map to the
same signature.

Using the classification of the runs in an empirical dataset,
an empirical probability measure on the set of all possible
signatures can be constructed as follows :

• compute for each run in the dataset its signature;

• compute the relative frequency of each signature in the
dataset ;

• assign to each signature its relative frequency as its prob-
ability.

The probability measure embodies a probabilistic model for
the outcome of inspection runs which is based on the expe-
rience made in past inspections. For the empirical dataset
from subsection 2.2, the probability measure is given by the
following table :

signature probability

( 2, 2 ) 6.25%
( 2, 3 ) 6.25%

( 3, 3 ) 6.25%
( 3, 4 ) 6.25%

( 4, 3 ) 18.75 %
( 4, 4 ) 18.75 %
( 4, 5 ) 6.25%

( 5, 4 ) 6.25%
( 5, 6 ) 6.25%
( 5, 8 ) 12.5%
( 5, 10 ) 6.25%



The probabilities are multiples of 1
16 . The signatures not

listed in the table have probability zero for that dataset.
The probability measure for the 16 runs can be visualized
like this :
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The two subdivisions of the range of possible detection ra-
tios introduce an equivalence relation on inspection runs.
The equivalence relation bundles up the datapoints in the
database and thus avoids ending up with a probability mea-
sure which has many isolated bars. The difficulty is to
choose the equivalence relation in such a way that it keeps
enough information about the inspection results to be useful
for estimating the defect content. The probability measure
for the running example still has a few isolated bars, but
this is natural for empirical data.

2.5 Estimation Procedure

In the preceding subsection, we have constructed a probabil-
ity measure from an empirical database of inspection runs.
The probability measure can be used to estimate the un-
known number N of defects contained in some document
given the observed result ( w1, . . . wm ; d ) of a recent in-
spection of the document. The estimation procedure con-
sists of three steps :

1. compute the likelihood function corresponding to the
observed result of the inspection;

2. compute the maximum likelihood interval estimate from
the likelihood function;

3. compute various point estimates from the interval esti-
mate.

In the next three subsections, we shall explain each step
in the estimation procedure using the following running ex-
ample. Assume that the true number of defects in some
document were unknown. Also assume that the document
gets inspected with the results ( 9, 7, 6, 13, 9, 6; 23 ) (the
results correspond to run A1) . We then estimate the num-
ber of defects in the document using the observed results
of the run and the probability measure constructed from an
empirical database of runs, where – in this example – the
database consists of the 15 runs A2, A3 . . . D4 . Since run A1
is left out in the database, the probability measure changes
slightly as compared to the preceding subsection :

1
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4
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1 2 3 4 5 6 7 8 9 10

20.0%

6.65% 0

13.4%

The probabilities are now multiples of 1
15

. Since the new
database has one run less than before, field ( 4, 4 ) is shaded
lighter than before.

2.6 Likelihood Function
Suppose for a moment that n were the true number of de-
fects in the document under consideration. Then, the ob-
served inspection result ( 9, 7, 6, 13, 9, 6; 23 ) corresponds
to a particular signature

σ = ( c (n ), s ( n )).

The steps to compute the signature are the same as when
pre-processing an inspection run from the empirical data-
base, see subsection 2.3, where N is substituted by n . We
write c (n ) and s (n ) to clearly indicate that the signature
depends on the value for n . For example, for the result
of run A1 we have c ( 25 ) = 5 and s ( 25 ) = 4, whereas
c ( 35 ) = 4 and s ( 35 ) = 3. When computing the span
and efficiency class of the run to be estimated the same
subdivisions of the 0 to 100 percent range must be used as
were used when pre-processing the empirical database.

By the probability measure constructed from the database,
the signature ( c (n ), s ( n )) occurs with the probability

P ( c (n ), s ( n ) ).

For example, for the run A1 we have P ( c ( 25 ), s ( 25 ) ) =
P ( 5, 4 ) = 6.7 %.

The probabilities P ( c (n ), s ( n ) ) are used to construct the
likelihood function

L : n �→ P ( c ( n ), s (n ) ).

The likelihood function associates with each n the probabil-
ity to observe the given inspection result (w1, . . . wm ; d )
when assuming that n defects are contained in the docu-
ment. The inspection result is assumed to be fixed. Note
that the likelihood function is just a function and not a
probability distribution.

Here are the values and the graph of the likelihood function
for our running example :



n c s likelihood

23 – 25 5 4 6.65%
26 – 28 5 3 0

29 4 3 20.0%
30 – 32 4 4 13.4%
33 – 38 4 3 20.0%
39 – 43 3 3 6.65%
44 – 57 3 2 0
58 – 59 2 2 6.65%
60 – 64 2 3 6.65%

65 – 114 2 2 6.65%
115 – 129 1 2 0
130 – . . . 1 1 0

...........
1/15

2/15
3/15

0

23 29 33 38 5844

The likelihood function for run A1 hits the dark shaded field
( 4, 3 ) twice and the medium shaded field ( 4, 4 ) once.
Some fields are not hit, such as ( 5, 8 ) . The efficiency class
c decreases as the number n increases, but this does not
always hold for the span s .

2.7 Interval Estimates
From the likelihood function corresponding to a particular
observed inspection result one can compute estimates for
the number of defects contained in the document in a stan-
dard way. The number n̂ is called a maximum likelihood
estimate if it satisfies for all n the inequality

L ( n̂ ) ≥ L ( n ).

In other words, n̂ is a maximum likelihood estimate if the
likelihood function assumes a global maximum for n̂ . The
value of a maximum likelihood estimate depends on the re-
sults of the inspection run, of course. For our running exam-
ple, the likelihood function takes its maximum value of 3

15
for the numbers 29 and 33 to 38. Therefore, each number
n̂ in the range

ep = { 29 } ∪ [ 33, 38 ]

is a maximum likelihood estimate for the running example.
The range ep is called the interval estimate for the inspec-
tion run. The interval estimate is the range of numbers
which most likely contains the true number N of defects in
the document.

The example shows that different values of n often result
in the same value of the likelihood function. The reason is
that we map different overall detection ratios to the same
efficiency class, respectively, different sets of individual de-
tection ratios to the same span by using the range subdivi-
sions. Therefore, one often gets a whole interval of numbers
n where the likelihood function takes on its maximum value;
in some cases, one even gets a union of non-adjacent inter-
vals. This way, the maximum likelihood approach yields an
interval estimate for the number of defects in the document
instead of a point estimate.

2.8 Point Estimates
One might think of several ways to get a point estimate
for the number of defects in a document from the interval
estimate constructed in the preceding subsection. We study
three obvious candidates here :

• the upper boundary b of the interval estimate;

• the lower boundary a of the interval estimate;

• the median 1
2

(a + b ) of the interval estimate.

Here are the results for the running example, including the
relative error for each point estimate. The true number of
defects is 30 :

estimate value error

b 38 +26.7 %
a 29 – 3.4%

1
2 (a + b ) 34 +13.4 %

The lower boundary a of the interval estimate ep gives
a good point estimate for this example.

2.9 Confidence Levels
The dataset under study is too small and we know too little
yet about the shape of the empirical probability distribu-
tions occuring in software inspections to assume that the
distributions come from a particular family of distributions.
In particular, there is not much use in computing the usual
confidence intervals, because such computations are based
on normal distributions. As a result, we don’t give confi-
dence intervals in this paper. Yet, the values of the likeli-
hood function provide a simple sort of confidence level for
the interval estimates. For the running example, the maxi-
mum value of 20.0% of the likelihood function is three times
as high as its lowest non-zero value of 6.7%. Thus, the in-
terval estimate ep is given a high confidence level for the
running example.

In the next section, we provide examples where the interval
estimate gets only a low confidence level. In such a case it
is preferable to re-inspect the document or do some other
testing of the document than to assume that the estimate is
valid.

3. VALIDATION
To validate the method, we apply it to the empirical inspec-
tion dataset from subsection 2.2. For the validation, we step
by step

• leave out a run from the database,

• compute the probability measure for the remaining 15
runs,

• compute the interval and point estimates for the run
which was left out,

• and compare the estimates with the true value of the
number of defects in the document.

For each of the 16 examples generated this way, we perform
the same estimation procedure as for the running example in



the preceding section. In fact, last section’s running example
corresponds to the first validation example.

Since the dataset is small, we use all of the remaining 15
inspection runs in the empirical dataset when computing
the probability measure. In particular, for the time being
we do not distinguish between different document domains
or reading techniques, but see subsection 3.3.

3.1 Results

The following table shows for each of the 16 validation ex-
amples the interval estimate ep and the corresponding max-
imum value L ( ep ) of the likelihood function :

run N interval estimate ep L ( ep )

A1 30 { 29 } ∪ [ 33, 38 ] 20.0%

A2 30 [ 28, 33 ] 13.4%

A3 30 [ 30, 36 ] 13.4%

A4 30 [ 34, 36 ] 20.0%

B1 28 [ 27, 29 ] 13.4%

B2 28 [ 27, 34 ] 13.4%

B3 28 [ 30, 39 ] 20.0%

B4 28 [ 32, 34 ] 20.0%

C1 18 [ 13, 16 ] 20.0%

C2 18 [ 8, 9 ] 20.0%

C3 15 [ 15, 16 ] ∪ [ 22, 24 ] ∪ [ 26, 29 ] ∪
[ 33, 37 ] ∪ [ 44, 74 ] 6.65%

C4 15 [ 19, 74 ] 6.65%

D1 18 [ 7, 14 ] ∪ [ 20, 29 ] 6.65%

D2 18 [ 10, 14 ] ∪ [ 20, 44 ] 6.65%

D3 15 [ 47, 69 ] 6.65%

D4 15 [ 13, 16 ] ∪ [ 26, 29 ] ∪ [ 44, 64 ] 6.65%

Only the first 10 runs (A1 to C2) show a high or medium
confidence level. Therefore, the interval estimates computed
for the last 6 runs are not considered valid and are to be
discarded. Here is a picture showing for each of the 16 runs
the true number of defects in the document as a black dot
and the interval estimates for the 10 runs with a high or
medium confidence level as bars :
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For the first 8 runs the interval estimates contain the true
value for the number of defects, or, overestimate that num-
ber. The situation is different for the runs C1 and C2 which
are studied in detail in subsection 3.3. In the remainder of
this subsection, we study how the various point estimates
perform which are derived from the interval estimate as
shown in subsection 2.8. For reasons that will become ap-
parent in subsection 3.3, we focus on the first 8 runs in the
discussion.

The upper boundary b of the interval estimate ep over-
estimates the number of defects in a document by 3.6 to
39.3 percent for the runs A1 to B4 :

run N b error

A1 30 38 +26.7 %
A2 30 33 +10.0 %
A3 30 36 +20.0 %
A4 30 36 +20.0 %

B1 28 29 + 3.6%
B2 28 34 +21.5 %
B3 28 39 +39.3 %
B4 28 34 +21.5 %

The mean of the absolute relative errors for the upper bound-
ary estimate b equals 20.3 percent for the runs A1 to B4.

The lower boundary a of the interval estimate ep results in
an error of − 6.7 to +14.3 percent for the runs A1 to B4 :

run N a error

A1 30 29 – 3.4%
A2 30 28 – 6.7%
A3 30 30 0%
A4 30 34 +13.4 %

B1 28 27 – 3.6%
B2 28 27 – 3.6%
B3 28 30 + 7.2%
B4 28 32 +14.3 %

The corresponding mean of the absolute relative errors is
only 6.6 percent for the runs A1 to B4. Clearly, the lower
boundary a of the interval estimate ep is a good estimator
for the number N of defects in a document for the dataset
studied here.

The median 1
2 ( a + b ) of the interval estimate ep results

in an error of 0 to +25.0 percent for the runs A1 to B4 :

run N 1
2

( a + b ) error

A1 30 34 + 13.4%
A2 30 31 +3.4%
A3 30 33 + 10.0%
A4 30 35 + 16.7%

B1 28 28 0%
B2 28 31 + 10.8%
B3 28 35 + 25.0%
B4 28 33 + 17.9%



The median shows a tendency to overestimate. The mean of
the absolute relative errors for the median estimate is 12.2
percent for the runs A1 to B4.

3.2 Typical Cases
In this subsection, we take a closer look at the runs B3, C3,
and C4 to illustrate typical examples of possible estimation
results. The meaning of the grey colors in the pictures for
the probability measures is fixed for this subsection :

20.0%

6.65% 0

13.4%

The probability measure for the dataset with run B3 left
out looks like this :
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4

5

1 2 3 4 5 6 7 8 9 10

For run B3, the values of the likelihood function for different
values of n and the corresponding graph are :

n c s likelihood

24 5 4 0
25 5 5 0

26 – 29 5 4 0
30 – 32 4 4 20.0%
33 – 39 4 3 20.0%
40 – 43 3 3 6.65%
44 – 49 3 2 0
50 – 59 3 3 6.65%
60 – 64 2 3 6.65%

65 – 119 2 2 6.65%
120 – 129 1 2 0
130 – . . . 1 1 0

...........
1/15
2/15

3/15

0

24 30 39 43 50

As opposed to run A1, the likelihood function for run B3 has
only a single interval where it takes on its maximum value.
Since the maximum value is 3

15
, the interval estimate has

a high confidence level. The upper boundary estimate b
overestimates the true number of defects in the document
by 39.3 percent, the lower boundary estimate a by only
7.2 percent.

The probability measure for the dataset with run C3 left
out looks like this :
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For run C3, the values of the likelihood function for different
values of n and the corresponding graph are :

n c s likelihood

15 – 16 5 8 6.65%
17 – 18 5 7 0
19 – 21 4 6 0
22 – 24 4 5 6.65%

25 3 5 0
26 – 29 3 4 6.65%
30 – 32 3 5 0
33 – 37 3 4 6.65%
38 – 43 2 4 0
44 – 64 2 3 6.65%
65 – 74 2 2 6.65%

75 – 129 1 2 0
130 – . . . 1 1 0

...........
1/15
2/15
3/15

0

15 4425 29 3322 37

The likelihood function does not hit the dark shaded fields
( 4, 3 ) and ( 4, 4 ). Therefore, the likelihood function takes
on the values zero and 1

15
only. There are several non-

adjacent intervals where the likelihood function takes on
its maximum value : from the likelihood function alone one
can’t tell which interval contains the true value for the num-
ber of defects in the document. Since the confidence level is
low, the interval estimate is to be discarded.

The probability measure for the dataset with run C4 left
out looks like this :
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For run C4, the values of the likelihood function for different
values of n and the corresponding graph are :

n c s likelihood

15 – 16 5 6 0
17 – 18 5 5 0
19 – 24 4 5 1/15
25 – 33 3 4 1/15
34 – 37 3 3 1/15
38 – 49 2 3 1/15
50 – 74 2 2 1/15
75 – 99 1 2 0

100 – . . . 1 1 0

19

...........

15

1/15
2/15

3/15

0

Again, the likelihood function does not hit the dark shaded
fields ( 4, 3 ) and ( 4, 4 ). As opposed to run C3, there is a
large contiguous range where the likelihood function takes
on its maximum value of 1

15 . Again, the interval estimate
is to be discarded.

3.3 Domain Dependence
The interval estimates for the runs C1 and C2 have a high
confidence level, similar to the runs A1 to B4. Also, the
estimation procedure outputs a single, fairly small interval
for runs C1 and C2 as interval estimate. Despite this, the
upper boundary b of the interval estimate [ 8, 9 ] for run
C2 is 50 percent below the true number of 18 defects in
the document; the situation is similar for run C1. What
has happened ? There are several observations pointing to
a possible explanation for the outliers :

• Using a different reading technique (perspective-based
reading instead of ad-hoc reading) yields a better defect
detection ratio of 10

18
and a better interval estimate of

[ 13, 16 ] for run C1 as compared to run C2. This might
point to the reading technique as being an important
factor for the estimation.

• The total number of 6 defects detected by the reviewers
in run C2 is the lowest among all inspection runs. This
is a warning sign that run C2 might be special and that
its interval estimate should be taken with caution. The
two next smallest numbers of detected defects are 6 (out
of 15) in run D1 and 9 (out of 15) in run D2. In those
two cases, the estimation procedure indicates only a low
level of confidence for the interval estimates.

• Runs C1 and C2 come from a different application do-
main (NASA domain) than the runs A1 to B4 (generic
domain). Only the eight runs from the generic domain
contribute to the high value of 20.0 percent for the sig-
natures ( 4, 3 ) and ( 4, 4 ) in the probability measure.

The last observation indicates a possible domain dependence
of the estimation procedure. To study this hypothesis, we

split the dataset into two subsets : one subset contains the
8 runs A1 to B4 from the generic domain, the other subset
contains the 8 runs C1 to D4 from the NASA domain. After
splitting the database according to the domain, we repeat
the validation for each domain separately. Here is the full
probability measure (all 8 runs) for the generic domain :
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1 2 3 4 5 6 7 8 9 10

37.5%

0

12.5%

The values of the likelihood functions for the runs in the
generic domain change after splitting the database, but all
interval estimates for the runs in the generic domain remain
unchanged. The confidence levels also don’t change. There-
fore, all results about the various estimates for the runs A1
to B4 that we have described in the preceding subsections
still hold after splitting the database. In particular, the
lower boundary estimate remains to be a good estimator for
the number of defects in the generic documents. Note that
the picture might be quite different for other examples.

The full probability measure (all 8 runs) looks differently in
the NASA domain :
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4
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1 2 3 4 5 6 7 8 9 10

25.0%

0

12.5%

In the NASA domain, recomputing the likelihood function
for runs C1 to D4 using the NASA half of the database shows
that the likelihood functions take on only two different val-
ues, namely, zero and 1

7
. Again, not every shaded field is hit

by the likelihood function. Since the value of the likelihood
function is small compared to the values in the generic do-
main, there is only low confidence in the interval estimates
computed for the runs in the NASA domain. Therefore, the
interval estimates are all discarded. In particular, no outliers
occur for the runs C1 and C2 after splitting the database.



Clearly, for this particular dataset one must distinguish be-
tween different domains for the documents. If the dataset
were larger, one should also distinguish between different
reading techniques. The NASA domain subset is too small
and inhomogeneous to derive valid estimates with the new
method. Although the subset for the generic domain is
small, too, the results still have some validity because the
runs correspond to different documents, groups of inspec-
tors, inspection dates, and reading techniques.

4. COMPARISON

4.1 Capture-Recapture Methods
For the comparison, we use the capture-recapture method
described in [6] ; the other capture-recapture methods show
similar performance [4] . The capture-recapture method re-
quires as input the total number d of different defects de-
tected in the run, and, for each reviewer k the number
wk of defects which were detected by that reviewer. The
probabilistic model underlying the method assumes that
the defects are probabilistically identical, but different re-
viewers may have different probabilities of detecting defects.
By construction, the probabilistic model is parameterized
by the (unknown) true number N of defects in the docu-
ment. Based on the observed inspection data, a maximum
likelihood estimation for N is performed. This capture-
recapture method is frequently referred to as Mt (MLE ) .
Here are the estimates m̂ computed using this capture-
recapture method and the corresponding estimation error
for each of the runs in the database :

run N m̂ error

A1 30 24 – 20.0%
A2 30 22 – 26.7%
A3 30 25 – 16.7%
A4 30 23 – 23.4%

B1 28 22 – 21.5%
B2 28 21 – 25.0%
B3 28 24 – 14.3%
B4 28 21 – 25.0%

run N m̂ error

C1 18 11 – 38.9%
C2 18 6 – 66.7%
C3 15 15 0 %
C4 15 15 0 %

D1 15 8 – 46.7%
D2 15 10 – 33.4%
D3 15 14 – 6.7%
D4 15 13 – 13.4%

The capture-recapture estimates show a strong tendency to
underestimate the true number of defects in the document.
For the runs A1 to B4 in the generic domain, the estimation
error ranges between − 26.7 % and − 14.3 %. The mean of
the absolute relative errors is 21.6 % for the runs in the
generic domain. Therefore, the capture-recapture method
is clearly outperformed by the lower boundary estimate a
given in subsection 3.1 which has a mean of absolute relative
errors of only 6.6% for the runs in the generic domain.

For the runs C1 to D4 in the NASA domain, the estima-
tion error of the capture-recature method ranges between
− 66.7 % and 0 %. The mean of the absolute relative errors
is 25.8 % for the runs in the NASA domain. Recall that the
interval estimates ep for the runs in the NASA domain had
low confidence levels and were discarded in subsection 3.3.
Thus, no lower boundary estimates are given for the NASA
domain.

Here is a picture showing the true number of defects in the
documents as black dots, the capture-recapture estimates as

small crosses, and the lower boundary estimates as hollow
dots :
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Interestingly, the capture-recapture method yields good es-
timates for the four runs C3, C4, D3 and D4 in the NASA
domain. The reason is that in all four cases the total num-
ber of defects detected during the inspection run is close
to the true number of defects contained in the document,
and capture-recapture methods in general tend to produce
estimates which are not much larger than the number of de-
fects detected in the run; see [7] where we have studied the
behavior of maximum likelihood estimates for the hyperge-
ometric capture-recapture model. From that point of view,
the four good estimates of the capture-recapture method are
coincidental.

4.2 Detection Profile Method
The detection profile method is a curve-fitting method and
has been described in [11] . The method requires as input for
each defect j the number nj of reviewers who have detected
that defect. The numbers nj are sorted in descending or-
der according to their size and an exponential curve is fitted
through the sorted datapoints using linear regression on the
log values. The estimate is computed as the x-value of the
crossing point of the exponential curve with the horizontal
line y = 0.5. Here are the estimates m̃ computed using
the detection profile method and the corresponding estima-
tion error for each of the runs in the database :

run N m̃ error

A1 30 28 – 6.7%
A2 30 24 – 20.0%
A3 30 29 – 3.4%
A4 30 25 – 16.7%

B1 28 25 – 10.8%
B2 28 20 – 28.6%
B3 28 33 +17.9%
B4 28 26 – 7.2%

run N m̃ error

C1 18 12 – 33.4%
C2 18 7 – 61.2%
C3 15 26 +73.4%
C4 15 19 +26.7%

D1 15 9 – 40.0%
D2 15 11 – 26.7%
D3 15 32 + 113.4%
D4 15 28 +86.7%

For the runs in the generic domain, the estimation error
ranges between − 28.6% and + 17.9%. The mean of the
absolute relative errors is 13.9 % for the runs in the generic
domain. For all runs except B4 in the generic domain,



the detection profile method is outperformed by the lower
boundary estimate a given in subsection 3.1. For run B4,
the detection profile method underestimates the number of
defects in the document whereas the new method overesti-
mates, which is preferable.

Here is a picture showing the true number of defects in
the documents as black dots, the estimates computed with
the detection profile method as small crosses, and the lower
boundary estimates as hollow dots :
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For the runs in the NASA domain, the detection profile
method estimates show a high variation in their relative er-
rors of − 61.2 % to +113.4 %. The mean of the absolute
relative errors is 57.7 % for the runs in the NASA domain.
Therefore, the detection profile method estimates are highly
unreliable for the runs in the NASA domain.

5. CONCLUSIONS
The new estimation method presented in the paper uses as
input not only the observed results of the inspection of the
document to be estimated, but also empirical data collected
in past inspections. Before applying the new method to
estimate the defect content of a document, one should per-
form a jackknife validation on the empirical dataset, as we
have done in section 3. The results will show which values
of the likelihood function correspond to valid interval esti-
mates and which do not. The results will also show which
one of the three point estimates derived from the interval
estimate in subsection 2.8 should be used and what relative
error to expect. For the dataset that we used in the paper,
the lower boundary estimate performed best.

It might be necessary to subdivide the empirical dataset
according to, for example,

• different document types and sizes;

• the reading techniques used in the inspections;

• the number of reviewers.

For a study of the impact of different such factors on the
quality of an inspection see [8] . For the dataset used in the
paper, the new method indicates through outlier estimates
that one must subdivide the dataset according to the domain

of the documents. After subdividing the dataset into two
subsets and applying the new method to each subset sepa-
rately, no more outliers occur. On one subset (generic do-
main), the new estimation method provides highly accurate
estimates and clearly outperforms existing approaches. On
the other subset (NASA domain), the new method indicates
through low confidence levels that the estimates should be
discarded. The estimates provided by existing approaches
on the NASA domain subset are highly unreliable. Thus,
we consider it to be a clear advantage that the new method
indicates whether an estimate should be used or not.

The dataset used in the paper is small and the results might
be biased by the fact that the inspections were performed
on only a few different documents. The next step will be to
validate the new method using other empirical datasets.
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