
Two controlled Experiments concerning
the Usefulness of Assertions as a Means for Programming

Matthias M. Müller
�

, Rainer Typke
�

, Oliver Hagner
�

Fakultät für Informatik
Universität Karlsruhe, Germany

�

muellerm@ipd.uka.de,
�

rainer@typke.com,
�

oliver.hagner@bigfoot.de

Abstract

Assertions, or more generally “Programming by contract”,
have gained widespread acceptance in the computer sci-
ence community as a means for correct program develop-
ment. However, the literature lacks an empirical evalua-
tion of the benefits a programmer gains by using assertions
in his software development. This paper reports two con-
trolled experiments that close this gap. Both experiments
compare “Programming by contract” to the traditional pro-
gramming style without assertions.
The evaluation of the first experiment suggests that asser-
tions decrease the programming effort for the extension of
existing software, measured as time needed to finish the
task, while the programming effort slightly increases dur-
ing the development of new code. The second experiment
shows that the programming effort tended to be larger with
assertions than without. In addition, it shows that the re-
liability of the written programs slightly increases with the
usage of assertions compared to the programs written with-
out assertions.

1 Introduction

Assertions have gained widespread acceptance in the com-
puter science community as a method for correct program
development. They are used in numerous different appli-
cation domains where program quality is of major concern.
The literature concerning assertions, or the more common
principle of “Programming by Contract”, describes a never
ending story of success. For example, Voas [12] states that
“assertions can be a means of boosting testing’s value where
masking errors are most likely”. And according to McKim
[6], “Programming by contract is a way to provide rigorous
specifications in a way that is accessible to a good technical
programmer.”
We do not disagree with these statements, but so far, most

of the literature about assertions emphasizes their advan-
tages without empirically evaluating the benefit a program-
mer gains by using assertions in his software development.
This question is particularly important from an economical
point of view as every manager confronted with a new tech-
nique must weigh costs versus potential benefits. So far, the
literature has no answer to this question. We conducted the
experiments in the hope to provide some answer.
Meyer’s four hypotheses about the advantages of assertions
[7] formed the starting point for the study.

Meyer’s Hypothesis 1 Software is correct as it is devel-
oped along with its specification.

Meyer’s Hypothesis 2 Usage of assertions leads to a better
understanding of the solution and the program.

Meyer’s Hypothesis 3 The development of documentation
is easier with assertions.

Meyer’s Hypothesis 4 Assertions form a base for struc-
tured testing and correction.

These hypotheses cover four areas that might be influenced
by the use of assertions: program correctness, program un-
derstanding, documentation, and testing. Since it is almost
impossible to consider all these issues in one experiment,
we concentrated only on the first two topics, program cor-
rectness and program understanding. Thus, Meyer’s last
two hypotheses were not within the scope of our study. The
first two hypotheses were considered in differing situations,
i.e., during the development of new software and during the
extension of existing software. We compared software de-
velopment with the use of assertions to development with-
out assertions.
Both experiments were conducted as part of a practical
training course introducing the PSP (personal software pro-
cess) [5] held during the winters of 1999 and 2000 at the
University of Karlsruhe. Participants were computer sci-
ence graduate students. The subjects in the first experiment

EXP1 used C and APP [10], while those in the second ex-
periment EXP2 used Java with jContract [11]. Since we
were interested in both the effects of assertions when writ-
ing new software and the effects on maintainability, one task
of EXP1 was to write new functions that did not interact
with the rest of the program, while the remaining task of
EXP1 and the only task of EXP2 required a deeper under-
standing of the program.
The evaluation of EXP1 suggests that assertions decrease
the programming effort for the extension of existing soft-
ware, measured as time needed to finish the task, while the
programming effort slightly increases during the develop-
ment of new code. Assuming that the programming ef-
fort depends on program understanding, Meyer’s second
hypothesis for program maintenance has to be accepted,
but it cannot be accepted for the development of new code.
Evaluation of EXP2 also suggests to reject Meyer’s second
hypothesis, because the programming effort tended to be
larger with assertions than without.
EXP2 also evaluated the reliability of the resulting pro-
grams. The finding is that programs developed with asser-
tions had a slightly better reliability than those programs
developed without assertions. However, this advantage is
only marginal. And at first glance, Meyer’s first hypothesis
concerning better program correctness cannot be accepted
either. However, looking at the programs before the qual-
ity assurance stage, i.e., the program versions the subjects
considered completed, the programs developed with asser-
tions had a higher reliability, though not significant, than
the other programs. So, for these intermediate programs,
Meyer’s first hypotheses holds.
A detailed description of the two experiments and their re-
sults can be found in [8].
The next section of this paper gives an overview of the as-
sertions tools used, APP and jContract. Section 3 shows the
experimental settings. Finally, section 4 contains a discus-
sion of the results.

2 APP and jContract

2.1 APP

APP (“Annotation Preprocessor for C Programs”) allows
the programmer to add preconditions and postconditions
to functions in C programs. This tool was developed by
Rosenblum [10]. A detailed description of all aspects of
this tool can be found on its “man” page [9]. With APP, as-
sertions can be included at any place within the functions.
The programmer can control whether these conditions and
assertions are checked during runtime and what should hap-
pen if the checks fail. Assertions are written between the
special comment delimiters /*@ . . .@*/.

The following listing shows the embedding of pre- and post-
conditions into the program code. Pre- and postconditions
are indicated by the keywords “assume” and “return”, re-
spectively.
i n t s q u a r e r o o t (i n t x)
/ � @

assume x
�

= 0 ;
r e t u r n y where y

�
= 0 ;

r e t u r n y where y � y � = x
&& x � (y +1) � (y + 1) ;

@ � /�
. . . �

Listing. APP example.

2.2 jContract

jContract allows the specification of pre- and postcon-
ditions for methods as well as class invariants. The exam-
ple listing below illustrates the syntax of jContract as-
sertions. Pre- and postconditions start with “require” and
“ensure”, respectively.
/ ���
� @requ i r e t ime ! = n u l l
� @ensure r e t u r n . e q u a l s (” H e l l o ”)
� ��� r e t u r n . e q u a l s (” Good n i g h t ”)
� /

S t r i n g welcome (S t r i n g t ime)�
. . . �

Listing. jContract example.

All assertions are part of a JavaDoc comment. The jCon-
tract preprocessor transforms these special assertion tags to
Java source code and inserts them into the original code.
This pre-processed code can then be compiled with a nor-
mal Java compiler. Assertions can be disabled if the prepro-
cessing step is skipped. If an assertion is violated, the pro-
gram is stopped indicating the violated assertion (method
name, pre- or postcondition).
The jContract preprocessor can also be used for checking
the assertions at runtime without stopping program execu-
tion if an assertion is violated. In this case, the violated as-
sertion is reported on the standard error output. These kind
of assertions are called “silent assertions”.

3 Experimental settings

EXP1 used a counterbalanced design, while EXP2 used a
single-factor, post-test-only, inter-subject design [2].

3.1 Subjects

Overall, 22 students participated in the experiments, 9 in
EXP1 and 13 in EXP2. While in EXP1, all subjects solved
a task with and without assertions, the subjects in EXP2
were divided into an experimental group (7 subjects) and

a control group (6 subjects). All participants were Com-
puter Science graduate students who had just participated
in a one-semester graduate lab course introducing the PSP
(personal software process) [5].
During the PSP course, the participants were introduced to
assertions. After this introduction, they were told to use
them during their remaining program assignments of the
PSP. Also, the experiment started with a web-based training
about how to use assertions (see section 3.3.2). The partici-
pants had to take part in the experiment in order to get their
course credits.

3.2 Hypotheses

Based on Meyer’s first two hypotheses, we investigated the
following hypotheses in the experiments.

HReliability Using assertions results in more reliable pro-
grams.

HEffort Using assertions reduces the programming effort of
development or maintenance tasks.

3.3 First Experiment EXP1

3.3.1 Task

Since the number of participants for the first experiment was
rather small, we needed tasks that allow the use of each
participant as a member of a group that uses assertions as
well as a member of a control group that doesn’t. Also, the
problems to be solved by the subjects had to be sufficiently
complex for any effects to be visible, while at the same time
still being solvable within the limited amount of time par-
ticipants were willing to spend on the experiment.
In order to fulfill these constraints, the participants were as-
signed two tasks that were based on the same C program.
These tasks were unrelated so that people could be used
both as a member of the control group and as a member
of the group using assertions. Since they had to get to know
only one program, the tasks could be more complex than
tasks dealing with two different programs could have been.
The program chosen as a basis for the tasks of EXP1 sym-
bolically derives functions and lists intermediate steps. This
program was initially written for a purpose unrelated to this
experiment.
Since we were interested in both the effects of assertions
when writing new software and the effects on the extension
of existing software, one of the two tasks was to write new
functions that did not interact with the rest of the program,
while the other task required a deeper understanding of the
program.
The first task “String” was to write equivalents for the in-
sert and delete string library functions of Pascal. Since

the symbolic derivation program had been ported from Pas-
cal to C, it made use of these string functions, which are not
part of the standard C library. Therefore, these library func-
tions did not need to call functions in the given program,
and no knowledge about the program was required or even
useful for writing the new functions.
Assertions can be useful here because they make it easy
for the programmer to check whether the preconditions he
builds on when writing the new functions are met, and
whether the new functions always do what they are sup-
posed to do. If the program fails, it should therefore be easy
to determine if the cause lies in a new function or the rest of
the program.
This task had the character of writing new software since
these string functions have nothing to do with deriving func-
tions, therefore it was not necessary to look at the rest of the
program for solving the problem.
The second task, “Chain”, was to extend the program so that
it could apply the chain rule, i. e. �����������
	�	�	�
����

��������
	�	��
�
 ����	 .
Assertions can be useful here because the programmer can
save effort by reusing existing functions. This also enhances
the quality of the resulting software. Both the documenta-
tion character of assertions, which makes it easier to find
reusable functions, and the fact that assertions can help one
quickly detect erroneous ways of reusing existing functions
can help here.

3.3.2 Procedure

Every participant completed one of the two tasks described
above as a member of one group and the other task as a
member of the other group.
Table 1 shows group sizes, group tasks, and the order of the
tasks. Originally, there were two subjects in group 3, but
the data of the second member had to be discarded because
he did not finish.

Group Size 1. Task 2. Task
1 2 Str, APP Ch, nAPP
2 3 Ch, nAPP Str, APP
3 1 Str, nAPP Ch, APP
4 3 Ch, APP Str, nAPP

Table 1. Group sizes and tasks during EXP1.
Str = String function task. Ch = Chain rule
task. APP = with APP. nAPP = without APP.

Every participant was given syntax training before working
on the tasks. This training was a web-based introduction to
APP. The web-based script presented the APP syntax, asked
the participant to write APP assertions for given functions,

and commented on the correctness of the participant’s input.
Only when at least half of the training assignments were
solved correctly was the participant allowed to start working
on his first task. Because the syntax training was completely
automated, it was identical for every participant.
Even though the string functions were necessary for extend-
ing the program by adding the chain rule, the string function
task could be done after the chain rule task. The participants
were simply given the string functions in the form of object
files so that the program could be compiled and tested even
though the participants did not have access to the source
code of the string functions.
The sequence of participants’ tasks was as follows:

� The participant is handed a paper-based form for an
experiment protocol. This form contains a question-
naire, the assignments, and space for keeping track of
the time spent on its different parts, as well as a de-
scription of APP.

� The participant fills in the questionnaire.

� The participant reads about APP.

� The participant goes through the web-based APP train-
ing.

� Solving of first task.

� Solving of second task.

3.4 Second Experiment EXP2

The second experiment was a repetition of the first one but
with a different task and a different design. It was a single-
factor, post-test-only, inter-subject design. The controlled
independent variable was whether the subjects used jCon-
tract with program code annotated with assertions or not.
The subjects of the experiment group were allowed to write
new assertions with jContract and they got program code to
reuse that was annotated with assertions. The subjects of the
control group got the same program code without assertions
but the information of the assertions was provided for them
in the form of JavaDoc comments in natural language. Each
subject of either group solved the same task and worked un-
der the same conditions. The observed dependent variables
for each subject were a variety of measurements of the de-
velopment process (in particular working time), and various
measurements of the delivered product (program reliability,
number of reused methods, and quality of reuse).

3.4.1 Task

The task given in EXP2 was called ”GraphBase”. It con-
sisted of implementing the main class of a given graph
library [4] containing only the method declarations and

method comments but not the method bodies. There are
methods for adding vertices and edges and for deleting and
cloning a whole graph. Other methods include accessor
methods, e.g. for showing the number of vertices or edges,
methods for finding an edge between two given vertices, or
methods for testing if the graph is empty, weighted, or di-
rected.
Each subject was told that the original code of GraphBase
was lost and, because there was no backup, that it should be
reimplemented by using the rest of the given graph library.
The requirements for this task were thoroughly described in
natural language. The subjects were asked to work and to
test on their own until they felt they had finished the task.

3.4.2 Procedure

The experiment took place between February 2000 and
April 2000, mostly during the semester breaks. Most sub-
jects started at about 9:30 in the morning. The experiment
materials were printed on paper and consisted of three parts.
The first part described a web course that only the subjects
of the experiment group had to pass. The second part con-
tained a task description. The third part consisted of a ques-
tionnaire that was handed out to every subject at the end
of the experiment. It contained questions about the under-
standability of the documentation and asked for personal
ratings concerning program understanding and the reliabil-
ity of the resulting program.
The subjects worked on the task using their own specific
Unix account that provided the automatic monitoring in-
frastructure. It transparently protocoled login/logout times,
all compiled source versions and all outputs from each pro-
gram run. The subject could modify the setup of the ac-
count as necessary. The source code of the graph library
except for the GraphBase method bodies was provided to
the subjects.
The subjects’ work was divided into three phases.

Web course phase (WC), during which the subjects in the
experiment group were introduced to the syntax of
jContract. The control group skipped this step.

Implementation phase (IP), during which the subjects
solved their assignment until they thought that their
program would run correctly. This phase ended when
they claimed to have finished the task.

Correction phase (CP), during which the subjects were
given more details about the expected implementation.
The experiment group was given a list of postcondi-
tions for every method that had to be implemented.
They got this list on paper and in electronic form. The
control group was given a description for every method
in natural language. All subjects were asked to check

their implementation with this additional information
and correct it if necessary.

3.5 Power analysis

Cohen [3] stresses the importance of power analysis to get
a closer look at the quality of a statistical hypotheses test.
EXP1 and EXP2 have a power of

��� ���
and

��� ���
, respec-

tively [8].
According to Cohen, both experiments have a very poor
power. He argues that only experiments with a power of
more than

��� 	
have a real chance to reveal any effect. There-

fore, it is quite reasonable that neither experiment has the
chance to show an effect, even if a difference exists. But,
as we could not acquire any more subjects for these experi-
ments, we had to abide by this drawback.

3.6 Threats to internal validity

The control of the independent variable is threatened by the
possibility of an imbalanced group assignment – one might
compare one group with faster programmers to one group
with slower programmers. To avoid this effect, the group
assignment was based on the subject’s PSP course produc-
tivity. This productivity was measured as number of lines of
codes programmed per hour in the PSP course. For both ex-
periments, the division resulted in groups with similar pro-
ductivity.

3.7 Threats to external validity

There are two important threats to the external validity (gen-
eralizability) of the experiment. First, professional software
engineers may have different levels of skill and experience
than the participants, which might make the results too opti-
mistic or too pessimistic. Both higher and lower levels will
occur, because the students are more skilled than most of
the non-computer-scientists that frequently start working as
programmers. A higher skill level than the subjects’ might
leave less room for improvement which might reduce the
group differences, but higher experience may also sharpen
the eye as to where improvements are most desirable or
most easy to achieve. Conversely, lower skill may leave
more room for improvement but may also impede applying
assertions correctly at all. Second, the subjects used asser-
tions a very short time after being introduced to them. It
is conceivable that the assertion usage of these persons had
not yet stabilized and the mid-term benefits would be higher
than observed in the experiment. Furthermore, work con-
ditions different from the experiment conditions may posi-
tively or negatively influence the effectiveness of assertions.

4 Results

Box plots are used to show the results of the measure-
ments. The filled boxes within a plot contain 50% of the
data points. The lower (upper) border of the box marks
the 25% (75%) quantile. The left (right) t-bar shows the
10% (90%) quantile. The median is marked with a thick
dot (�). The
 marks the mean, and the dashed line shows
the range of one standard error on each side. The variance
of a data-distribution is measured as fraction of the 75%- to
the 25%-quantile.
Significance was calculated with the two-sample Wilcoxon,
Mann, Whitney Test (referred to as Wilcoxon test), where
the significance � denotes the probability that the observed
difference is due to chance.

4.1 Results of EXP1

4.1.1 Working time

Figures 1 and 2 show the working times in minutes for
Chain and String, respectively. That the distribution of du-
rations was more dense for the group using assertions (in-
dicated “with APP” in the figures) was an unexpected phe-
nomenon. The use of assertions therefore might make soft-
ware development more predictable.

M

o o oo o

M

o oo owithout APP

with APP

200 300 400 500 600 700 800

Figure 1. Duration for the chain rule task,
measured in minutes. Group variances are��
���� � ��� 	��

and ������
���� � �������
.

M

o ooo

M

o
oo o owithout APP

with APP

50 100 150 200

Figure 2. Duration for the string task, mea-
sured in minutes. Group variances are��
���� � ��� ���

and ������
���� � ��� ���
.

Figures 1 and 2 do not show significant differences that
would be caused by the use of assertions. Because the
groups were quite small, differences in the individual pro-
gramming speeds of participants had a large influence on
the results of the Wilcoxon tests. It is possible to lower
the influence of individual programming speeds by measur-
ing the time spent on the programming tasks in multiples
of the time spent on the APP training instead of in minutes.
This is legitimate because there is a correlation between the
participants’ programming speeds and the time they spent
on the APP training. The correlation coefficient is 0.84.
This means that subjects who are good at quickly solving
the APP training assignments are also good at quickly fin-
ishing the programming tasks. If the time spent on the pro-
gramming assignment is measured relative to the training
time, the influence of the participants’ differing qualifica-
tions is eliminated. Figures 3 and 4 compare the durations
measured in multiples of the time spent on the APP train-
ing instead of in minutes, so the influence of programming
speed differences is lowered and the influence of the use of
assertions becomes more visible.

M

o
o o

o
o

M

ooo owithout APP

with APP

4 6 8 10

Figure 3. Relative durations for the chain rule
task (� � ��� ���

).

M

o o oo

M

oo o o
owithout APP

with APP

1 2 3 4 5 6 7

Figure 4. Relative durations for the string
function task (� � ��� ��	

).

The difference visible in figure 3 is significant. The
Wilcoxon test shows that the probability for an acciden-
tal difference is � � ��� ���

. Therefore, assertions seem to
save time when software is extended, while they tend to in-
crease the effort needed for writing new software, see fig-
ure 4. But the difference visible in figure 4 is not significant
(� � ������	

).

4.1.2 Code reuse

We are interested solely in the number of reused functions
as opposed to the number of function reuses, as only the
former can indicate how the use of assertions contributed
to reusing many different functions. Function reuse was
counted in the following way: for each participant, the fi-
nal version of the extended program was compared to the
version with which he started using the UNIX tool diff,
thereby isolating the code written by the participant. A Perl
program was then used to count the number of different
functions that were already defined in the original program
and called in the new code. The result for the maintenance
task, the chain rule assignment, is shown in figure 5. The
difference is significant: the probability for an accidental
difference is

��� ���
.

M

o o ooo

M

o o o
owithout APP

with APP

5 6 7 8 9 10

Figure 5. Number of reused functions for the
chain rule task (� � ��� ���

).

The described counting method for function reuse included
functions that were reused only within assertions. Figure 5
shows the results if only functions that were reused outside
assertions are counted. The observed difference is still visi-
ble but no longer significant.

M

o oo oo

M

o o
o

o
without APP

with APP

5 6 7 8 9

Figure 6. Number of reused functions outside
assertions for the chain rule task (� � ��� ���

).

4.2 Results of EXP2

4.2.1 Working time

We now present the working time needed for the IP. As only
the experiment group worked on the web course, the time

spent for the web course cannot be part of the working time.
There is also a large difference in the duration of the CP:
the experiment group got a list of postconditions for every
method which they had to implement. All subjects in this
group copied these postconditions into their implementation
which took a long time for the subjects of this group. The
control group couldn’t do this because its subjects got the
same information only in natural language, so they looked
directly for defects in their program code after reading this
information. Comparing the minimum and the maximum of
both groups, it can be seen that the control group needed be-
tween 24 and 55 minutes and the experiment group between
68 and 199 minutes for the CP.

M

ooo oo
o o

M

ooo o
oowithout jContract

with jContract

200 400 600 800

Figure 7. Working time in minutes for the IP
(� � ��� ���

).

Figure 7 shows that the experiment group (“with jContract”
in the figures) tended to need more time for the implemen-
tation than the control group, but the difference is not sig-
nificant with � � ��� ���

.
The data point at 1269 minutes in the experiment group can
be viewed as a outlier with a factor of 2.9 higher than the
median. This is reasonable because of the programming ex-
perience of the subject: the largest program this person had
written before the PSP course was about 300 lines of code,
and in the PSP course, the person was one of the slowest
measured in lines of code per hour. In other compared mea-
sures, there was not such an outlier effect.
In contrast to EXP1 where the usage of APP with assertions
decreased the programming effort of the maintenance task,
the subjects of the experiment group tended to spend more
time for the task when programming with assertions than
without.

4.2.2 Code reuse

Examining code reuse might lead to some results about pro-
gram understanding. Four measures were collected to get a
perception of it. These are (1) the number of reused meth-
ods, (2) the number of reused methods outside assertions,
(3) the number of failed method calls, and (4) the number
of method calls that failed at least twice. The last two mea-
sures were obtained with silent assertions inserted into the

existing graph library (see section 2.2). Their output was
written to a log file, without notice of the subjects.
Figure 8 shows the results for the number of reused meth-
ods with and without assertions. It shows with � � �������
no significant difference in the number of reused methods.
However, there is a tendency that with assertions the sub-
jects reused more different methods. This tendency disa-
pears if the maximum point at 32 in the experiment group
is ignored.
The number of methods reused outside assertions was also
examined. The result was that the experiment group reused
significantly less methods than the control group. But the
observed difference is due to the characteristics of the im-
plementation. For example, the method add(Edge) has
to test for four different properties in order to properly per-
form its task to add the edge: are the graph and the edge
weighted, are both directed, does the graph already contain
the edge, or is the graph empty and thus does this edge de-
fine the type of the graph? All programs of the control group
perform these queries with if-statements, while the experi-
ment group used assertions instead. Therefore, not counting
the code reuse within assertions ignores an important aspect
of the implementation. And in this case, this comparison is
meaningless.

M
o ooo

o o o

M

ooo
oo o

without jContract

with jContract

22 24 26 28 30 32

Figure 8. Number of reused methods (� ��������
).

We now examine proper reuse of existing methods. Figure 9
shows the number of assertions that failed at least once. The
experiment group tends to use existing methods more erro-
neously for the first time than the control group.

M

ooooooo

M

o oo o oowithout jContract

with jContract

0 2 4 6 8 10 12

Figure 9. Number of assertions that failed at
least once (� � ��� ���

).

This effect decreases when the methods are reused more
often. Figure 10 shows the number of assertions that failed
at least twice.

M

ooo oooo

M

o oo o
oowithout jContract

with jContract

0 2 4 6 8

Figure 10. Number of assertions that failed at
least twice (� � ��� ���

).

Finally, using assertions slightly increases the reuse of ex-
isting code. But assertions do not aid in the proper reuse of
existing methods.

4.2.3 Reliability

EXP2 also evaluated the reliability of the written programs.
Reliability was measured by determining the percentage of
the passed assertions among all possible executable asser-
tions in the test. A random test with 727,190 method invo-
cations and about 7.5 million assertions were used. The ref-
erence implementation runs for about 150 seconds for this
test. It calls the methods of the implementation randomly,
but with different probabilities, and compares the resulting
data structure with the one built by the reference implemen-
tation. Deviations in the structure are caught by assertions.
This random test was written using jUnit [1].
To count all failed assertions the initial behavior of jUnit
had to be adjusted. That is, jUnit was modified in such a
way that it did not abort a test after a failed assertion. In-
stead, it continued the test case so that all assertions were
executed. The failed assertions were counted and printed
out at the end of the test run.
First, the reliability of the final programs after the CP is
examined, see figure 11. Almost no difference can be seen
between both groups.
We now turn our attention to the programs right after the
IP. What would have happened if the CP had been omitted?
This question is interesting in as much as these programs
represent the output of the subject’s process without further
modifications or enhancement by any external quality con-
trol. These programs represent the versions of whose accu-
racy the subjects are most confident. The reliability of the
intermediate program versions is shown by figure 12.
Though the reliability of the experiment group is higher,
the difference is with � � ��� ���

not significant. Except
for two programs, two thirds of the programs in the experi-

M

o ooo o
o

o

M

o oo oo owithout jContract

with jContract

0 20 40 60 80 100

Figure 11. Reliability of the final programs in
percent (� � �������

).

M

o ooo
ooo

M

o oo oo owithout jContract

with jContract

0 20 40 60 80

Figure 12. Reliability of programs after the IP
in percent (� � ��� ���

).

ment group are more reliable than the median in the control
group, which is only at 3%.
Concerning reliability, it can be said that the usage of asser-
tions is an advantage compared to informal information like
the natural language documentation. Meyer’s first hypothe-
ses holds for the intermediate programs after the IP.

5 Conclusions

This paper presented two controlled experiments about the
usefulness of assertions as a means of programming. Par-
ticipants were computer science graduate students who took
part in a practical training course introducing the PSP. Both
experiments compared programming with assertions to the
development without assertions. The study investigated the
influence of assertions on programming effort and program
reliability. The experiment data led to the following obser-
vations.

� The first experiment suggests that assertions reduce
maintenance programming effort if the maintenance
task is defined as a program assignment that requires
a deep understanding of the program. In contrast, the
second experiment shows a quite different picture be-
cause there, assertions tended to increase the program-
ming effort.

� Assertions slightly increase the programming effort for
the implementation of new functions that do not inter-
act with the rest of the program.

� When looking at the final programs of the second ex-
periment, the usage of assertions slightly increased the
reliability of the written code compared to the code
written without assertions. The effect is only marginal.
However, when looking at the reliability of the pro-
grams right after the implementation phase, the pro-
grams of the experimental group, i.e., the group that
used assertions, were more reliable, though not statis-
tically significantly more so than those of the control
group.

� The usage of assertions also led to a higher number of
reused methods that were not written by the subjects
themselves.

Despite the observed results, this study is far from being a
complete evaluation of programming with assertions. There
are several circumstances that weaken the discussed results.
First, the number of subjects was very small, which led to a
small power of finding an existing effect. This small power
could been a hindrance in seeing sharper results. But, this is
also a result from power analysis, some effects that weren’t
detected with this experimental setting could still be there
and wait for their discovery. Second, the subjects have only
limited experience with assertions, and it is quite possible
that more experienced programmers would show quite dif-
ferent results. Overall, using assertions slightly increases
programming effort in the worst case, but this increased ef-
fort pays off in a higher reliability of the written software,
even for novice assertion-users.

Acknowledgements

We thank our students who participated in the experiments,
and also especially Agatha Walczak-Typke for commenting
on drafts on this article.

References

[1] K. Beck and E. Gamma. junit. http://www.junit.org/.
[2] L. B. Christensen. Experimental Methodology. Allyn and

Bacon, 1994.
[3] J. Cohen. Statistical Power Analysis for the Behavioral Sci-

ences. Academic Press, 1977.
[4] D. Goldschmidt. Design and implementation of a generic

graph container in java. Master’s thesis, Rensselaer Poly-
technic Institute in Tray, New York, Apr. 1998.

[5] W. Humphrey. A discipline for software engineering.
Addison-Wesley, 1997.

[6] J. McKim. Programming by contrac: Designing for correct-
ness. Journal of object oriented programming, 9(2):70–74,
May 1996.

[7] B. Meyer. Object-oriented software construction. Prentice-
Hall, 1988.

[8] M. Müller, R. Typke, and O. Hagner. A detailed description
of two controlled experiments concerning the usefulness of
assertions as a means for programming. Technical Report
2002-2, Computer Science Department, University of Karl-
sruhe, Feb. 2002.

[9] D. Rosenblum. APP. http://www.research.att.com/sw/
tools/reuse/.

[10] D. Rosenblum. Towards a method of programming with as-
sertions. In International Conference on Software Engineer-
ing, pages 92–104, Melbourne, 1992.

[11] J. Störk. Erzeugung effizienter Laufzeitüberprüfungen
von Zusicherungen. Master’s thesis, Department of
Computer Science, University of Karlsruhe, May 1999.
http://www-is.informatik.uni-oldenburg.de/ � stoerk/da/
diplomarbeit.html. Only available in German.

[12] J. Voas. How assertions can increase test effectiveness. IEEE
Software, pages 118–122, Mar./Apr. 1997.

