
A detailed Des
ription of two
ontrolled Experiments
on
erning the Usefulness of Assertions as a Means forProgrammingMatthias M. M�uller1, Rainer Typke2, Oliver Hagner3Computer S
ien
e DepartmentUniversity of Karlsruhe, Germany1muellerm�ipd.uka.de, 2rainer�typke.
om, 3oliver.hagner�bigfoot.deTe
hni
al Report no. 2002-2Abstra
tAssertions or more generally \Programming by
ontra
t" have gained widespreada

eptan
e in the
omputer s
ien
e
ommunity as a means for
orre
t program de-velopment. However, the literature la
ks an empiri
ally evaluation of the bene�ts aprogrammer gains by using assertions in his software development. This paper re-ports about two
ontrolled experiments to
lose this gap. Both experiments
ompared\Programming by
ontra
t" to the traditional programming style without assertions.The evaluation suggests that assertions tend to de
rease the programming e�ort andthat assertions lead to more reliable programs
ompared to those programs writtenwithout using them.1 Introdu
tionAssertions have gained widespread a

eptan
e in the
omputer s
ien
e
ommunity as amethod for
orre
t program development. They are used in numerous di�erent appli
ationdomains where program quality is of major
on
ern. The literature about assertions orthe more
ommon prin
iple of \Programming by Contra
t" des
ribes a never ending storyof su

ess. For example, Voas [Voa97℄ states that \assertions
an be a means of boostingtesting's value where masking errors are most likely". And a

ording to M
Kim [M
K96℄,\Programming by
ontra
t is a way to provide rigorous spe
i�
ations in a way that isa

essible to a good te
hni
al programmer." He
on
ludes: \Therefore programming by
ontra
t is a good thing!"We do not disagree with these statements, but so far, most of the literature about asser-tions emphasizes their advantages without empiri
ally evaluating the main question: Whatbene�t does a programmer gain by using assertions in his software development? From an1

2 1 INTRODUCTIONe
onomi
al point of view, that would be the most important question for every managerwho is
onfronted with a new te
hnique. What do I get from it and at what pri
e? So far,literature has no answer to this question. This is where our experiments
ome into play.Meyer's four hypotheses about the advantages of assertions formed the starting point forour study [Mey88℄.Meyer's Hypotheses 1 Software is
orre
t as it is developed along with its spe
i�
ation.Meyer's Hypotheses 2 Usage of assertions leads to a better understanding of the solu-tion and the program.Meyer's Hypotheses 3 The development of do
umentation is easier with assertions.Meyer's Hypotheses 4 Assertions form a base for stru
tured testing and
orre
tion.These hypotheses
over four areas that might be in
uen
ed by the use of assertions: pro-gram
orre
tness, program understanding, do
umentation, and testing. Sin
e it is almostimpossible to
onsider all these issues in one experiment, we
on
entrated on the �rst twotopi
s, program
orre
tness and program understanding. Both issues were
onsidered indi�erent situations, i.e., during the development of new software and during maintenan
e.We
ompared software development with the use of assertions to development withoutassertions. Meyer's last two hypotheses were not within the s
ope of our study.Both experiments were
ondu
ted as part of a pra
ti
al training
ourse introdu
ing thePSP (personal software pro
ess) [Hum97℄ held during the winters of 1999 and 2000 atthe University of Karlsruhe. Parti
ipants were
omputer s
ien
e graduate students. Thesubje
ts in the �rst experiment EXP1 used C and APP [Ros92℄, while those in the se
ondexperiment EXP2 used Java with jContra
t [St�o99℄. Sin
e we were interested in boththe e�e
ts of assertions when writing new software and the e�e
ts on maintainability, onetask of EXP1 was to write new fun
tions that did not intera
t mu
h with the rest of theprogram, while the other task of EXP1 required a deeper understanding of the program.EXP2 involved solving one programming task whi
h had the
hara
ter of developing newsoftware.The evaluation of both experiments suggests that assertions de
rease the programminge�ort for maintenan
e, measured as time needed to �nish the task, while the program-ming e�ort slightly in
reases during the development of new
ode. If we assume that theprogramming e�ort depends on program understanding, we have to a

ept Meyer's se
ondhypothesis for maintenan
e, but we
annot a

ept it for the development of new
ode.EXP2 also evaluated the reliability of the resulting programs. The result is that programsdeveloped with assertions had a slightly better reliability than those programs developedwithout assertions. But this advantage is only marginal. And at �rst glan
e, we also
annot a

ept Meyer's �rst hypothesis
on
erning better program
orre
tness. But, if welook at the programs before the quality assuran
e stage, i.e., the program versions thesubje
ts
onsidered �nished, the programs developed with assertions had a mu
h higher

3reliability, though not signi�
ant, than the other programs. And for these intermediateprograms, Meyer's �rst hypotheses holds.This paper is organized as follows: the next se
tion presents related work about evaluationof assertions. Se
tion 3 des
ribes the used assertions tools APP and jContra
t. Se
tion 4shows the experimental settings. In se
tion 5, the results are dis
ussed.2 Related WorkMeyer's integration of assertions into Ei�el as native language
onstru
ts [Mey88℄ is notthe only example of assertions being added to programming languages. Other examplesare the assert keyword in Java 1.4 [jav℄, ANNA (ANNotated Ada) [LST91℄, T
l [Coo97℄,iContra
t [Sys℄, jContra
t [St�o99℄, APP [Ros92℄, xUnit [xun℄, and the assert-library in C.In an empiri
al study, Leveson et al. [LCKS90℄
ompared software error dete
tion self
he
ks with N-version voting. They noted that there are great di�eren
es in the ability ofindividual programmers to design and pla
e e�e
tive
he
ks. And generally, spe
i�
ation-based
he
ks alone were not as e�e
tive as
ombining them with
ode-based
he
ks. The
omparison of self
he
ks and N-version voting revealed that both te
hniques identi�ed thesame number of defe
ts, although the observed defe
ts were not the same. In fa
t, self
he
ks dete
ted errors
aused by faults that had not been dete
ted by N-version voting inone million of randomly generated input
ases. The authors
on
lude that self
he
kingmay have important advantages over voting.Rosenblum developed the \Annotation PrePro
esser" (APP) for C, see 3.1 for a des
ription,and presented a
lassi�
ation of faults found with and without APP [Ros95℄. He showedthat almost 75% of all observed faults
ould be found with assertions written with APP.Other work
on
erning assertions mention their bene�ts but la
k empiri
al eviden
e aboutthe assumptions made. The following list is an ex
erpt and does not
laim to be
omplete.Lu
kham, Shankar, and Takahashi [LST91℄ propose a method
alled \two-dimensionalpinpointing". They insert annotations into the
ode whi
h
he
k
onforman
e with spe
i-�
ations during runtime. When violations are found, they try to pinpoint the subunit that
aused the in
onsisten
y. Their sear
h varies with the stru
ture level of the software andthe test sequen
e length.M
Kim [M
K96℄ emphasizes the bene�t of using assertions. He does not rely on a spe
ialtool, instead, he developed rules that guide the insertion of assertions to get the mostvaluable bene�t.S
hneider [S
h98℄ argues in the same manner as M
Kim when he dis
usses how assertionalreasoning
an be used in the analysis and development of
on
urrent programs.3 APP and jContra
tBefore we des
ribe the experiment settings in se
tion 4, we shall des
ribe the assertiontools that were used for the experiments, APP and jContra
t.

4 3 APP AND JCONTRACT3.1 APPAPP (\Annotation Prepro
essor for C Programs") allows the programmer to add pre
on-ditions and post
onditions to fun
tions in C programs. Also, assertions
an be in
ludedat any pla
e within the fun
tions. The programmer
an
ontrol whether these
onditionsand assertions are
he
ked during runtime and what should happen if the
he
ks fail.The APP tool was developed by David S. Rosenblum [Ros92℄. A detailed des
ription of allaspe
ts of this tool
an be found in its man page (see [Ros℄). Our des
ription will mainlyfo
us on the syntax and semanti
s, whi
h should be enough for an overview of how it
anbe used.APP assertions are written between the spe
ial
omment delimiters /*� . . . �*/. WithinAPP assertion regions,
omments
an be pla
ed between \// " and the end of the line.For APP assertions, C expressions are used with the
onvention that zero is interpreted as\false", while non-null pointers and numbers are interpreted as \true". In addition to thestandard C keywords, the following keywords
an be used for writing APP assertions:� assume <
ondition>;This keyword denotes a pre
ondition. The programmer
an pla
e an arbitrary num-ber of assume
onditions between the head and body of a fun
tion. Whenever thefun
tion is
alled, all these
onditions are
he
ked before the �rst line of the fun
tionis rea
hed. If a
he
k fails, the user-de�ned a
tion takes pla
e. The default a
tion isto print a message to stderr whi
h in
ludes the type of the violated assertion andthe line number.� promise <
ondition>;Post
onditions are spe
i�ed with this keyword. Like pre
onditions, they are pla
edbetween the head and body of a fun
tion. The only di�eren
e between the assumeand promise keywords is the point of time when these assertions are
he
ked. Post-
onditions are
he
ked after the fun
tion has been
ompletely exe
uted, but before
ontrol is returned to the
aller.� return <identifier> where <
ondition>;The return keyword
an be used to spe
ify a property of the return value. Therefore,this kind of assertion is impli
itly a post
ondition. Like the promise and assumekeywords, it is pla
ed between the head and body of a fun
tion. Multiple return
onditions are
he
ked sequentially.� assert <
ondition>;This keyword
an be used to
he
k a
ondition anywhere within the body of a fun
-tion.� in <expression>Expressions that are pre
eded with \in" are evaluated with the value they had whenthe
urrent fun
tion was
alled, even if the expression is somewhere inside the
urrentfun
tion or part of a post
ondition. In Ei�el, the same e�e
t is a
hieved with the

3.1 APP 5\old" keyword. The APP \in" should not be
onfused with the \in" keyword injContra
t.Examples for the keywords that were mentioned so far:int square_root(int x)/*�assume x >= 0;return y where y >= 0;return y where y*y <= x&& x < (y+1)*(y+1);�*/{ ...}The pre
ondition is: x � 0.Post
ondition: The return value is � 0, its square is � x, but x < (return value +1)2.void swap(int *x, int *y)/*�assume x && y && x != y;promise *x == in *y;promise *y == in *x;�*/{ *x = *x + *y;*y = *x - *y;/*�assert *y == in *x;�*/*x = *x - *y;}Here the pre
ondition is that neither x nor y are null pointers and that they do not pointto the same lo
ation.Post
onditions: the values that x and y point to have swit
hed pla
es.The assertion within the fun
tion body marks the line where one of the post
onditionsshould already hold, provided that there was no over
ow.In addition to the keywords shown above, there are the quantors� all (Initialisation; loop
ondition; iteration) <expression>;and� some (Initialisation; loop
ondition; iteration) <expression>;whi
h are
onvenient for spe
ifying properties of many array elements in a single statement.

6 4 EXPERIMENTAL SETTINGS3.2 jContra
tWith jContra
t,
lass invariants
an be de�ned as well as pre- and post
onditions formethods. The example below illustrate the syntax of jContra
t assertions. All assertionsare part of a JavaDo

omment. The jContra
t prepro
essor transforms these spe
ialassertion tags into Java sour
e
ode. The result of the prepro
essing is then the originalsour
e
ode merged with the Java
ode resulting from assertions. The pre-pro
essed
ode
an then be
ompiled with a normal Java
ompiler. It is easy to disable the assertions byjust skipping the prepro
essing step before
ompiling the sour
e
ode.The example shows a greeting depending on the
urrent time. The parameter of the methodmust be a valid obje
t referen
e (pre
ondition) and the returned greeting string is either"hello" or "good night" (post
ondition)./��� �require Time != nu l l� �ensure return . equa l s (" He l lo ")� j j return . equa l s ("Good night ")�/St r ing Wel
ome (St r ing Time) f . . . gListing: jContra
tExample.javaIf an assertion is violated, the program is normally stopped with a runtime ex
eptionsaying whi
h assertion (method name, pre- or post
ondition) is violated. The jContra
tprepro
essor
an also be used for
he
king the assertions without stopping the programwhen an assertion is violated. The violation will then only be reported on the standarderror output. We
all these kind of assertions "silent assertions".4 Experimental settingsEXP1 used a
ounterbalan
ed design, while EXP2 used a single-fa
tor, posttest-only, inter-subje
t design [Chr94℄.4.1 Subje
tsOverall, 22 students parti
ipated in the experiments, 9 in EXP1 and 13 in EXP2. Whilein EXP1, all subje
ts solved a task with and without assertions, the subje
ts in EXP2were divided into an experimental group (7 subje
ts) and a
ontrol group (6 subje
ts).All parti
ipants were male Computer S
ien
e graduate students who had just parti
ipatedin a one-semester graduate lab
ourse introdu
ing the PSP (personal software pro
ess)[Hum97℄.During the PSP-
ourse, the parti
ipants were introdu
ed to assertions. After this introdu
-tion, they were told to use them during their remaining program assignments of the PSP.The parti
ipants had to take part in the experiment in order to get their
ourse
redits.

4.2 Hypotheses 74.2 HypothesesBased on Meyer's �rst two hypotheses, we investigated the following hypotheses in theexperiments.HReliability Using assertions results in more reliable programs.HE�ort Using assertions redu
es the programming e�ort of development or maintenan
etasks.Thus, we obtained the following null-hypotheses.H0;Reliability The programs developed with assertions are at most as reliable as programsthat aren't developed with assertions.H0;E�ort The programming e�ort does not de
rease when using assertions.4.3 First Experiment4.3.1 TaskSin
e the number of parti
ipants for the �rst experiment was rather small, we needed tasksthat allow the use of ea
h parti
ipant as a member of a group that uses assertions as wellas a member of a
ontrol group that doesn't. Also, the problems to be solved by thesubje
ts had to be suÆ
iently
omplex for any e�e
ts to be visible, while at the same timestill being solvable within the limited amount of time people were willing to spend on theexperiment.In order to ful�ll these
onstraints, the parti
ipants were assigned two tasks that werebased on the same C program. These tasks were unrelated so that people
ould be usedboth as a member of the
ontrol group and as a member of the group using assertions.Sin
e they had to get to know only one program, the tasks
ould be more
omplex thantasks dealing with two di�erent programs
ould have been.While we were looking for suitable tasks, it be
ame obvious that not all programs areequally suitable for the use of assertions:� Programs that are split into very small fun
tions are in danger of requiring morespa
e and e�ort for the assertions than for the program itself. This does not seemto make mu
h sense sin
e the probability of mistakes within the assertions wouldbe unreasonably high, and the e�ort of writing the program would be in
reased
onsiderably.� On the other hand, programs that are split into very large and
omplex fun
tionsdo not seem to be good
andidates for the use of assertions either. Su
h fun
tionswould require
omplex assertions using auxiliary fun
tions that are about as
omplexas the main fun
tion itself. When a
omplex assertion fails, the high probability ofmistakes within
omplex assertions would raise the question whether the assertion

8 4 EXPERIMENTAL SETTINGSwith its auxiliary fun
tions or the program is
orre
t. If this question
annot beanswered qui
kly and with little e�ort, assertions do not seem to be too useful.� Programs whose behaviour is diÆ
ult to des
ribe with assertions, e. g. graphi
al userinterfa
es that have to ful�ll
onditions like \the new window has a green border and is
ompletely visible", do not seem to be promising
andidates for the use of assertions.The program we
hose as a basis for the tasks symboli
ally derives fun
tions and listsintermediate steps. This program was not written for the purpose of this experiment.Sin
e we were interested in both the e�e
ts of assertions when writing new software andthe e�e
ts on maintainability, one of the two tasks was to write new fun
tions that didnot intera
t mu
h with the rest of the program, while the other task required a deeperunderstanding of the program.The �rst task was to write equivalents for the insert and delete string fun
tions of Pas
al.Sin
e the symboli
 derivation program had been ported from Pas
al to C, it made use ofthese string fun
tions, whi
h are not part of the standard C library.Assertions
an be useful here be
ause they make it easy for the programmer to
he
kwhether the pre
onditions he builds on when writing the new fun
tions are met, andwhether the new fun
tions always do what they are supposed to do. If the program fails,it should therefore be easy to determine if the
ause lies in a new fun
tion or the rest ofthe program.This task had the
hara
ter of writing new software sin
e these string fun
tions havenothing to do with deriving fun
tions, therefore it was not ne
essary to look at the rest ofthe program for solving the problem.The se
ond task was to extend the program so that it
ould apply the
hain rule, i. e.(f('(x)))0 = f 0('(x)) � '0(x). Assertions
an be useful here be
ause the programmer
ansave e�ort by reusing existing fun
tions. This also enhan
es the quality of the resultingsoftware. Both the do
umentation
hara
ter of assertions, whi
h makes it easier to �ndreusable fun
tions, and the fa
t that assertions
an help to qui
kly dete
t wrong ways ofreusing existing fun
tions
an help here.4.3.2 Pro
edureSin
e the number of parti
ipants was small, every parti
ipant was used as a member of twogroups, a
ontrol group and a group using assertions. Every parti
ipant
ompleted one ofthe two tasks des
ribed above as a member of one group and the other task as a memberof the other group.It is to be expe
ted that the order of the two tasks matters. After
ompleting one task, aprogrammer already knows the program, has gotten used to the programming environment,and is probably more tired than he was at the beginning. These and other reasons
anlead to unwanted sequen
e e�e
ts. In order to
ounterbalan
e these e�e
ts, the parti
ipantswere split into four groups of similar size that went through the experiment on four di�erentpaths:

4.3 First Experiment 9
-
--
- -

--
-

syntaxtraining string fun
tionswith assertionsnew deriving rulewithout assertionsstring fun
tionswithout assertionsnew deriving rulewith assertions
new deriving rulewithout assertionsstring fun
tionswith assertionsnew deriving rulewith assertionsstring fun
tionswithout assertionsThe group sizes were as follows: three people �rst worked on the
hain rule task usingassertions, followed by the string fun
tion task without assertions. Three other people didthe tasks in the same order, but used assertions only for the string fun
tion task. Oneperson �rst solved the string fun
tion assignment without using assertions before workingon the
hain rule using assertions (we had to dis
ard the data of the se
ond member of thisgroup be
ause he did not �nish the tasks), and two people started working on the stringfun
tions using assertions before working on the
hain rule without using assertions.Every parti
ipant was given a syntax training before working on the tasks. This trainingwas a web-based introdu
tion to APP. The web-based s
ript presented the APP syntax,asked the parti
ipant to write APP assertions for given fun
tions, and
ommented on the
orre
tness of the parti
ipant's input. Only when at least half of the training assignmentswere solved
orre
tly, the parti
ipant was allowed to start working on his �rst task. Be
ausethe syntax training was
ompletely automated, it was identi
al for every parti
ipant.Even though the string fun
tions were ne
essary for extending the program by adding the
hain rule, the string fun
tion task
ould be done after the
hain rule task. The parti
ipantswere simply given the string fun
tions in the form of obje
t �les so that the program
ouldbe
ompiled and tested even though the parti
ipants did not have a

ess to the sour
e
odeof the string fun
tions.The sequen
e of parti
ipants' tasks was as follows:� The parti
ipant is handed a paper-based form for an experiment proto
ol. This form
ontains a questionnaire, the assignments, and spa
e for keeping tra
k of the timespent on its di�erent parts, as well as a des
ription of APP.� The parti
ipant �lls in the questionnaire.� The parti
ipant reads about APP.� The parti
ipant goes through the web-based APP training.� First task:
hain rule or string fun
tions.� Se
ond task: string fun
tions or
hain rule. If the �rst task was done using assertions,the se
ond task is done without and vi
e versa.

10 4 EXPERIMENTAL SETTINGS4.4 Se
ond ExperimentThe se
ond experiment is a repetition of the �rst one. The di�eren
es were that we useda di�erent task and that it was only an inter-subje
t design. The rest of the design wasthe same: single-fa
tor and posttest-only. The
ontrolled independent variable was wetherthe experimental subje
ts were given
ode to reuse that already
ontained assertions andwere allowed to write new assertions with jContra
t (experiment group) or the
ode toreuse
ontained the information of the assertions only in the form of JavaDo

ommentsin natural language (
ontrol group). Ea
h subje
t of either group solved the same taskand worked under the same
onditions. The observed dependent variables for ea
h subje
twere a variety of measurements of the development pro
ess (in parti
ular working time),and various measurements of the delivered produ
t (in parti
ular program lines, programreliability, number of reused methods and quality of reuse).4.4.1 TaskThe task to be solved in this experiment is
alled "GraphBase". It
onsists of implementingthe main
lass of a given graph library [Gol98℄
ontaining only the method de
larationsand method
omments but not the method bodies. There are methods for adding verti
esand edges and for deleting and
loning a whole graph. Other methods are only a

essormethods, e.g. for showing the number of verti
es or edges, for �nding an edge between twogiven verti
es or for testing if the graph is empty, a weighted or a dire
ted graph.Ea
h subje
t is told that the original
ode of GraphBase was lost and, be
ause there is noba
kup, that it should be reimplemented by using the rest of the given graph library. Therequirements for this task were des
riped thoroughly in natural language. The subje
tswere asked to work and to test on their own until they thought they had �nished the task.4.4.2 Pro
edureThe experiment took pla
e between February 2000 and April 2000, mostly during thesemester breaks. Most subje
ts started at about 9:30 in the morning. The experimentmaterials were printed an paper and
onsisted of four parts. The experiment group startedwith a web
ourse to learn the syntax of jContra
t. The
ontrol group did not go throughthe
ourse be
ause they did not need jContra
t knowledge. Then, in part two, membersof both groups were handed a task des
ription and allowed to work on the task. The thirdpart started when the experimental subje
t thought it had �nished. At the end of theexperiment, a questionnaire was handed out to every subje
t. It
ontained questions aboutthe understandability of the do
umentation and asked for personal ratings
on
erningprogram understanding and the reliability of the resulting program.The subje
ts worked on the task using their spe
i�
 Unix a

ount that provided the au-tomati
 monitoring infrastru
ture. It nonintrusively proto
oled login/logout times, all
ompiled sour
e versions and all output from ea
h program run. The subje
t
ould modifythe setup of the a

ount as ne
essary. The sour
e
ode of the graph library ex
ept for theGraphBase method bodies was provided to the subje
ts.

4.5 Power analysis 11The subje
ts' work was divided into three phases.Web
ourse phase (WC), during whi
h the subje
t in the experiment group were in-trodu
ed to the syntax of jContra
t. The
ontrol group skipped this step.Implementation phase (IP), during whi
h the subje
ts solved their assignment untilthey thought that their program would run
orre
tly. This phase ended when they
laimed to be done.Corre
tion phase (CP), during whi
h the subje
ts were given more details about theexpe
ted implementation. The experiment group was given a list of post
onditionsfor every method that was to be implemented on paper and in ele
troni
 form. The
ontrol group was given a des
ription for every method in natural language. Thesubje
ts were asked to
he
k their implementation with this additional informationand
orre
t it if ne
essary.4.5 Power analysisCohen [Coh77℄ stresses the importan
e of power analysis to get a
loser look at the qualityof a statisti
al hypotheses test.The power of a statisti
al test of a null hypothesis is the probability that it will yieldstatisti
ally signi�
ant results. It is de�ned as the probability that it will lead to thereje
tion of the null hypothesis, i.e., the probability that it will result in the
on
lusionthat the phenomenon exists under the premise that the phenomenon is really existent.Statisti
ally speaking, 1� power is the probability for an error of the se
ond kind.EXP1 uses groups with n = 4 and n = 5 subje
ts. Due to this small number of datapoints, we restri
t our analysis to large e�e
ts. In this
ase, Cohen suggests an e�e
t ofthe size ES = 0:8. We set the signi�
an
e level of the one sided test to � = 0:1. Thus, thepower analysis with a t-distribution yields a power of 0:410 [IG96℄. The power analysis forEXP2 with n = 6 yields a power of 0:518. That is, we have only a 41% and 51%
han
e,respe
tively, to �nd a di�eren
e between the groups!A

ording to Cohen, both experiments have a very poor power. He argues that only ex-periments with a power of more than 0:8 have a real
han
e to reveal any e�e
t. Therefore,it is quite reasonable to assume that neither experiment has the
han
e to show an ef-fe
t, even if a di�eren
e exists. But, as we
ould not a
quire any more subje
ts for theseexperiments, we had to live with this drawba
k.4.6 Threats to internal validityThe
ontrol of the independent variable is threatened by the possibility of an imbalan
edgroup assignment { we might
ompare one group with faster programmers to one groupwith slower programmers. To avoid this e�e
t, the group assignment was based on thePSP
ourse produ
tivity (the number of lines of
odes programmed per hour in the PSP

12 5 RESULTS
ourse) of ea
h subje
t. For both experiments, the division resulted in groups with similarprodu
tivity.4.7 Threats to external validityThere are two important threats to the external validity (generalizability) of the experi-ment. First, professional software engineers may have di�erent levels of skill and experien
ethan the parti
ipants, whi
h might make our results too optimisti
 or too pessimisti
: bothhigher and lower levels will o

ur, be
ause the students are more skilled than most of thenon-
omputer-s
ientists that frequently start working as programmers. A higher skill levelthan the subje
ts' might leave less room for improvement whi
h might redu
e the groupdi�eren
es, but higher experien
e may also sharpen the eye as to where improvements aremost desirable or most easy to a
hieve. Conversely, lower skill may leave more room forimprovement but may also impede applying assertions
orre
tly at all. Se
ond, the sub-je
ts used assertions a very short time after being introdu
ed to them. It is
on
eivablethat the assertion usage of these persons had not yet stabilized and the mid-term bene�tswould be higher than observed in the experiment. Furthermore, work
onditions di�erentfrom the experiment
onditions may positively or negatively in
uen
e the e�e
tiveness ofassertions.5 ResultsBox plots are used to show the results of the measurements. The �lled boxes within a plot
ontain 50% of the data points. The lower (upper) border of the box marks the 25% (75%)quantile. The left (right) t-bar shows the 10% (90%) quantile. The median is marked witha thi
k dot (�). The M asso
iated with the dashed line points to the mean within a rangeof one standard error on ea
h side.Signi�
an
e was
al
ulated with the Wil
oxon-Test where the signi�
an
e p denotes theprobability that the observed di�eren
e is due to
han
e.5.1 Results of �rst experiment5.1.1 Number of assertionsBefore reading about the e�e
ts of assertions, it might be interesting to look at how willingthe parti
ipants of the �rst experiment were to use assertions, and how often the
he
ks ofthese assertions failed. See table 1 for these data.5.1.2 Durations of the workWe �rst present the amounts of time needed for the tasks separately for the groups usingAPP and those not using APP. In order to eliminate the e�e
t of di�erent programming

5.1 Results of �rst experiment 13
Parti
ipant Num

ber
Number of pre

onditions
Number of post

onditions
Number of asse

rt
onditions
Failed
he
ks fo

r
hain rule task
Failed
he
ks fo

r string task
23 1 3 3 504 024 2 5 0 0 025 5 3 13 0 026 2 3 0 27 027 4 3 0 33 028 3 1 0 0 2030 1 3 0 0 031 1 2 0 15 032 0 0 0 0 0Table 1: Assertions and failed
he
ksspeeds, we then present the amounts of time measured in multiples of the time needed for
ompleting the APP training instead of in minutes.For
al
ulating how long the parti
ipants worked on their tasks, the beginning and endtimes were re
orded automati
ally by the same s
ripts that provided the parti
ipants withthe required �les and de
ided whether their solutions were
orre
t. Only for the timethat had to be subtra
ted for interruptions in the work, the handwritten notes of theparti
ipants were used.An unexpe
ted phenomenon when using assertions was that for the group using assertions,the distribution of durations was more dense. The use of assertions therefore might makesoftware development more predi
table. See table 2 for details.upper quartilelower quartile upper quartilelower quartilewith assertions without assertions
hain rule 1,82 2,24string fun
tions 1,43 5,44Table 2: Quartile ratios for durationsHere the quotients of the 75 % quantile and the 25 % quantile are list ed. A quotient
lose to 1is desirable be
ause then the duration of the software development is quite predi
table.Figures 1 and 2 do not show signi�
ant di�eren
es that would be
aused by the use of

14 5 RESULTS
M

o
o oo o

M
o oo

o
without APP

with APP

200 300 400 500 600 700 800

 Figure 1: Duration for the
hain rule task with and without assertions, measured in min-utes.The Wil
oxon test shows that the di�eren
e of medians is not signi�
ant (probability for ana

idental di�eren
e: 0.55). The means are di�erent, though: With APP, 271 minutes are neededon average, while without assertions, 398 minutes are needed.

M

ooo o
o

M

o o
oo

without APP

with APP

50 100 150 200

 Figure 2: Duration for the string task with and without assertions, measured in minutes.Result of the Wil
oxon test: with a probability of 0.9, the di�eren
e of medians is only a

idental.

5.1 Results of �rst experiment 15assertions. Be
ause the groups were quite small, di�eren
es in the individual programmingspeeds of parti
ipants had a large in
uen
e on the results of the Wil
oxon tests. It ispossible to lower the in
uen
e of individual programming speeds by measuring the timespent on the programming tasks in multiples of the time spent on the APP training insteadof in minutes. This is legitimate be
ause there is a
orrelation between the parti
ipants'programming speeds and the time they spent on the APP training. The
orrelation
o-eÆ
ient is 0.84, therefore the time spent on the APP training is a good measure for theprogramming speed. Figures 3 and 4
ompare the durations measured in multiples of thetime spent on the APP training instead of in minutes, so the in
uen
e of di�eren
es inprogramming speeds is lowered and the in
uen
e of the use of assertions be
omes morevisible.
M

o o ooo

M
o

oo owithout APP

with APP

4 6 8 10

 Figure 3: Relative durations for the
hain rule task with and without assertionsFor example, among those who did not use APP, the fastest parti
ipant needed 6 times longerfor
ompleting the
hain rule task than for
ompleting the APP training. His data point is theleftmost one in the lower half.
M

oo o oo

M

o o o
o

without APP

with APP

1 2 3 4 5 6 7

 Figure 4: Relative durations for the string fun
tion task with and without assertionsThe di�eren
e visible in �gure 3 is signi�
ant. The Wil
oxon test shows that the probabilityfor an a

idental di�eren
e is 0.063. Therefore, assertions seem to save time when software

16 5 RESULTSis maintained, while they tend to in
rease the e�ort needed for writing new software. Thedi�eren
e visible in �gure 4 is not signi�
ant (Wil
oxon test result: 0.556).5.1.3 Reuse of fun
tionsSin
e we were interested in the number of reused fun
tions as opposed to the number offun
tion reuses { the resear
h question is how the use of assertions
ontributed to reusingmany di�erent fun
tions, not how reuseable the reused fun
tions were { they were
ountedin the following way: For ea
h parti
ipant, the �nal version of the extended program was
ompared to the version they started with using the UNIX tool diff, thereby isolating the
ode written by the parti
ipant. A Perl program was then used to
ount the number ofdi�erent fun
tions that were already de�ned in the original program and
alled in the new
ode. The result for the task with maintenan
e
hara
ter, the
hain rule assignment, isshown in �gure 5. The di�eren
e is signi�
ant: the probability for an a

idental di�eren
eis 0.0688. Users of APP reused 8.6 fun
tions on average, while programmers who did notuse assertions found only an average of 6.75 fun
tions that seemed worth reusing. With aprobability of 0.8, the use of assertions in
reases reuse of existing fun
tions by 15 %.The des
ribed
ounting method for fun
tion reuse in
luded fun
tions that were reused onlywithin assertions. If only fun
tions that were reused outside assertions are
ounted, usersof APP reused 7.6 fun
tions on average.
M

o o ooo

M

o o o
owithout APP

with APP

5 6 7 8 9 10Figure 5: Number of reused fun
tions for the
hain rule task (p = 0:07).
5.2 Results of se
ond experiment5.2.1 Number of assertionsTable 3 shows the number of assertions ea
h of the subje
ts wrote during the experiment.

5.2 Results of se
ond experiment 17
M

o oo oo

M

o o
o

o
without APP

with APP

5 6 7 8 9Figure 6: Number of reused fun
tions outside assertions for the
hain rule task (p = 0:19).
Parti
ipant Num

ber
Number of pre-

onditions
Number of post

-
onditions
Number of inva

riants
Number of asse

rt-
onditions
Total101 43 21 0 0 64102 3 41 0 0 44103 17 3 0 0 20104 0 0 0 0 0105 30 39 5 0 74106 0 43 0 0 43108 17 0 0 0 17201 0 0 0 0 0202 0 0 0 18 18203 0 0 0 0 0204 0 0 0 0 0205 0 0 0 0 0206 0 0 0 0 0Table 3: Number of assertions

18 5 RESULTSThe upper part of the table shows the number of the parti
ipants of the experimentalgroup. Two rows are remarkable. Parti
ipant 104 ought to use jContra
t but he did not,and parti
ipant 202 of the
ontrol group used his own assertion environment.5.2.2 ReliabilityIn this experiment, reliability was measured by determining the per
entage of the passedassertions among all possible exe
utable assertions in the test. The initial behavior of jUnithad to be adjusted to
ount all failed assertions. That is, jUnit was modi�ed in su
h a waythat it did not abort a test after a failed assertion. Instead, it
ontinued the test
ase sothat all assertions were exe
uted. The failed assertions were
ounted and printed out atthe end of the test run.Reliability was measured for a syntheti
 test with 727,190 method invo
ations and about7.5 million assertions. The referen
e implementation runs for about 150 se
onds for thisbig test. It
alls the methods of the implementation randomly, but with di�erent prob-abilities, and
ompares the resulting data stru
ture with the one built by the referen
eimplementation. Deivations in the stru
ture are
aught by subsequent assertions.First, we look at the reliability of the syntheti
 test for the �nal programs, see �gure 7.
M

o ooo o
o

o

M

o oo oo owithout jContract

with jContract

0 20 40 60 80 100Figure 7: Reliability of the �nal programs for the syntheti
al-test in per
ent.Here we
annot see any di�eren
es between the groups.Now, the programs right after the IP are examined and the question is asked, what wouldhave happened if the CP had been omitted? This question is interesting in as mu
h asthese programs represent the output of the subje
t's pro
ess without further modi�
ationsor enhan
ement by any external quality
ontrol. These programs represent the versions thesubje
ts are most
on�dent with
on
erning a

urateness. The reliability of the programversions at the point when the subje
ts
laimed to be done is shown in �gure 8.The reliability of the experiment group is higher p = 0:112. Ex
ept for two programs, twothirds of the programs in the experiment group are more reliable than the median in the
ontrol group, whi
h is only at 3%.We
an say that the use of assertions is an advantage
ompared to informal informationlike the natural language do
umentation.

5.2 Results of se
ond experiment 19
M

o ooo
ooo

M

o oo oo owithout jContract

with jContract

0 20 40 60 80Figure 8: Reliability of programs after IP for the syntheti
al-test in per
ent.5.2.3 Working timeWe now present the working time needed for the IP. Be
ause only the experiment groupworked on the web
ourse, this time
annot be part of the working time. There is also alarge di�eren
e in the duration of the CP: the experiment group got a list of post
onditionsfor every method whi
h they had to implement. All subje
ts in this group
opied thesepost
onditions into their implementation whi
h took a long time for this group. The
ontrolgroup
ouldn't do this be
ause they got the same information but in natural language, sothey looked dire
tly for defe
ts in their program
ode after reading this information. If we
ompare only the minimum and the maximum of both groups, we
an see that the
ontrolgroup needed between 24 and 55 minutes and the experiment group between 68 and 199minutes for the CP.
M

ooo ooo
o

M
o

o
o o oo

without jContract

with jContract

200 400 600 800Figure 9: Working time in minutes.In �gure 9, we
an see that the experiment group tends to need longer for the implemen-tation than the
ontrol group. But the di�eren
e is not signi�
ant with p = 0:31.The data point at 1269 minutes in the experiment group
an be viewed as a outlier witha fa
tor of 2.9 higher than the median. This is reasonable be
ause of the programmingexperien
e of the subje
t: the largest program this person had written before the PSP
ourse was about 300 lines of
ode, and in the PSP
ourse, the person was one of theslowest measured in lines of
ode per hour. But it worked only very slowly. With all othermeasures we
ompared, we
ould not see su
h an outlier e�e
t.

20 5 RESULTS5.2.4 Code reuseExamining
ode reuse might lead to some results about program understanding. Fourmeasures were
olle
ted to get a per
eption of it. There are (1) the number of reusedmethods, (2) the number of reused methods without the written assertions, (3) the numberof failed method
alls, and (4) the number of method
alls that failed at least twi
e. Thelast two measures were obtained with silent assertions inserted into the existing graphlibrary (see se
tion 3.2). Their output was written to a log �le, whi
h the subje
ts did notnoti
e.Figure 10 and 11 show the results for the number of reused methods. In the �gure 11you
an see the number of reused methods without the written assertion
ode. The �rst�gure shows with p = 0; 23 no di�eren
e in the number of reused methods. But there is atenden
y that with assertions the subje
ts reused more methods. This tenden
y disapearsif you ignore the maximum point at 32 in the experiment group. Figure 11 shows thegroups if you ignore the assertion
ode. Now, there is a signi�
ant di�eren
e between thetwo groups: the experiment group reused less methods. An explanation of the di�eren
e
ould be that the validation tests for the method parameters are done either by assertions(experiment group) or by if-statements (
ontrol group). If you generally don't
ount thereuse within assertions, you ignore a signi�
ant aspe
t of the implementation. Sin
e theoverall reliability of the implementations is not
omparable, as we have seen before, this
ould result in a di�eren
e for both �gures, too.
M

o ooo
o o o

M

ooo
oo o

without jContract

with jContract

22 24 26 28 30 32Figure 10: Number of reused methods.
M

o o o ooo o

M

ooo
oo owithout jContract

with jContract

10 15 20 25Figure 11: Number of reused methods outside assertions.

21Finally, for the number of reused methods, we
an not see a di�eren
e between the twogroups.Both groups made quite similar errors while reusing a method more than on
e. If we lookat the �gure 12 and 13 we
an say that wrong reuse does not happen again that often inthe experiment group.
M

ooooooo

M

o oo o oowithout jContract

with jContract

0 2 4 6 8 10 12Figure 12: Number of assertions that failed at least on
e.
M

ooo oooo

M

o oo o
oowithout jContract

with jContract

0 2 4 6 8Figure 13: Number of assertions that failed at least twi
e.6 Con
lusionsThis paper presented two
ontrolled experiments about the usefulness of assertions as ameans of programming. Parti
ipants were
omputer s
ien
e graduate students who tookpart in a pra
ti
al training
ourse introdu
ing the PSP. Both experiments
ompared pro-gramming with assertions to the development without assertions. The study investigatedthe in
uen
e of assertions on programming e�ort and program reliability. The experimentdata led to the following observations.� Assertions redu
e programming e�ort in maintenan
e if the maintenan
e task is de-�ned as a program assignment that requires a deep understanding of the program tomaintain.

22 REFERENCES� Assertions slightly in
rease the programming e�ort for the implementation of newfun
tions that do not intera
t mu
h with the rest of the program.� When we look at the �nal programs of the se
ond experiment, the usage of assertionsslightly in
reased the reliability of the written
ode
ompared to the
ode writtenwithout assertions. The e�e
t is only marginal. But when we look at the programsafter the implementation phase, the programs of the experimental group, i.e., thegroup that used assertions, were more reliable, though not statisti
al signi�
ant,than those of the
ontrol group.� The Usage of assertions also led to a higher number of reused methods that weren'twritten by the subje
ts themselves.Despite the observed results, this study is far from being a
omplete evaluation of program-ming with assertions. There are several
ir
umstan
es that weaken the dis
ussed results.First, the number of subje
ts was very small, whi
h led to a small power of �nding anexisting e�e
t. This small power
ould be a hindran
e not to see any sharper results.But, this is also a result from power analysis, some e�e
ts that weren't dete
ted with thisexperimental setting
ould still be there and wait for their dis
overy. Se
ond, the subje
tshave only limited experien
e with assertions, and it is quite possible, that more experi-en
ed programmers show quite di�erent results. But overall, and this is a result applies toprogrammers who are new to assertions, using assertions de
reases the programming e�ortin maintenan
e and in
reases the reliability of newly developed
ode with only a smallamount of extra e�ort.Referen
es[Chr94℄ L. B. Christensen. Experimental Methodology. Allyn and Ba
on, 1994.[Coh77℄ J. Cohen. Statisti
al Power Analysis for the Behavioral S
ien
es. A
ademi
Press, 1977.[Coo97℄ J. Cook. Assertions for the t
l language. In 5th T
l Workshop, Boston, Mas-sa
husetts, July 1997.[Gol98℄ D. Golds
hmidt. Design and implementation of a generi
 graph
ontainer injava. Master's thesis, Rensselaer Polyte
hni
 Institute in Tray, New York, April1998.[Hum97℄ W. Humphrey. A dis
ipline for software engineering. Addison-Wesley, 1997.[IG96℄ R. Ihaka and R. Gentleman. R: A language for data analysis and graphi
s.Journal of Computational and Graphi
al Statisti
s, 5(3):299{314, 1996.

REFERENCES 23[jav℄ JavaTM 2 SDK, standard edition, do
umentation, version 1.4.0.http://java.sun.
om/j2se/1.4/do
s/.[LCKS90℄ N. Leveson, S. Cha, J. Knight, and T. Shimeall. The use of self
he
ks andvoting in software error dete
tion: An empiri
al study. IEEE Transa
tions onSoftware Engineering, 16(4):432{443, April 1990.[LST91℄ D. Lu
kham, S. Sankar, and S. Takahashi. Two-dimensional pinpointing: De-bugging with formal spe
i�
ations. IEEE Software, 2(2):9{23, January 1991.[M
K96℄ J. M
Kim. Programming by
ontra
: Designing for
orre
tness. Journal ofobje
t oriented programming, 9(2):70{74, May 1996.[Mey88℄ B. Meyer. Obje
t-oriented software
onstru
tion. Prenti
e-Hall, 1988.[Ros℄ D. Rosenblum. APP. http://www.resear
h.att.
om/sw/tools/reuse/.[Ros92℄ D. Rosenblum. Towards a method of programming with assertions. In Interna-tional Conferen
e on Software Engineering, pages 92{104, Melbourne, 1992.[Ros95℄ D. Rosenblum. A pra
ti
al approa
h to programming with assertions. IEEETransa
tions on Software Engineering, 21(1):19{31, January 1995.[S
h98℄ F. S
hneider. On
on
urrent programming. Communi
ations of the ACM,40(4):128{128, April 1998.[St�o99℄ J. St�ork. Erzeugung eÆzienter laufzeit�uberpr�ufungen von zusi
herungen. Mas-ter's thesis, Department of Computer S
ien
e, University of Karlsruhe, 1999.http://www-is.informatik.uni-oldenburg.de/�stoerk/da/diplomarbeit.html.Only available in german.[Sys℄ Reliable Systems. iContra
t. http://www.reliable-systems.
om/tools/iContra
t/iContra
t.htm.[Voa97℄ J. Voas. How assertions
an in
rease test e�e
tiveness. IEEE Software, pages118{122, Mar
hApril 1997.[xun℄ Xprogramming, software downloads. http://www.xprogramming.
om/software.htm.

24 A EXPERIMENTAL DATA OF EXP1 AND EXP2A Experimental Data of EXP1 and EXP2Group A
apital C stands for \
hain rule with assertions", a lower
ase
 for\
hain rule without assertions", a
apital S for \string fun
tions withassertions", and a lower
ase s for \string fun
tions without asser-tions". The order of the two letters re
e
ts the order of the tasks. Forexample, parti
ipant 23 belongs to group Cs, i. e. he �rst
ompletedthe
hain rule assignment with assertions and then the string fun
tionassignment without assertions.#pre Number of pre
onditions#post Number of post
onditions#assert Number of \assert"
onditionsFail Number of failed assertionsDurC Working time for the
hain rule task in minutesDurS Working time for the string fun
tion task in minutesRDurC Relative duration for the
hain rule task (DurC divided by the timespent on the web-based syntax
ourse)RDurS Relative duration for the string fun
tion task (DurS divided by thetime spent on the web-based syntax
ourse)Reused total Number of reused fun
tionsReused outside Number of reused fun
tions outside assertionsTable 4: Data lines in Table 6Rel1 Reliability of the programs after the IP in per
entRel2 Reliability of the �nal programs in per
entDur Working time in minutesReuse1 Number of reused methodsReuse2 Number of reused methods outside assertionsFail1 Number of assertions that failed at least on
eFail2 Number of assertions that failed at least twi
eTable 5: Data lines in Tables 7 and 8

25subje
t no. 23 24 25 26 27 28 30 31 32Group Cs
S S
 sC Cs
S Cs sC
S#pre 1 2 5 2 4 3 1 1 0#post 3 5 3 3 3 1 3 2 0#assert 3 0 13 0 0 0 0 0 0Fail 504 0 0 27 33 20 0 15 0DurC 154 233 395 265 334 178 183 420 786DurS 230 58 209 34 36 188 181 196 160RDurC 2.7 11.1 10.4 5.8 9.5 5.9 7.0 4.6 7.6RDurS 4.0 2.8 5.5 0.7 1.0 6.3 7.0 2.2 1.5Reused total 6 5 7 9 10 8 10 8 7Reused outside 6 5 7 8 8 8 9 7 7Table 6: Data of EXP1
subje
t no. 101 102 103 104 105 106 108Rel1 51.53 79.24 0.79 0.96 83.70 83.70 22.85Rel2 51.53 79.24 0.87 0.96 100.00 73.17 0.43Dur 702 471 399 1148 375 223 282Reuse1 24 32 24 22 23 25 26Reuse2 13 17 20 22 12 9 22Fail1 5 4 3 3 1 0 0Fail2 3 2 1 3 0 0 0Table 7: Data for experimental group of EXP2

subje
t no. 201 202 203 204 205 206Rel1 0.83 72.58 0.59 44.84 0.96 4.49Rel2 0.83 85.25 0.60 51.85 5.16 99.12Dur 270 291 276 469 729 392Reuse1 26 24 22 24 22 24Reuse2 26 24 22 24 22 24Fail1 0 2 0 1 12 0Fail2 0 2 0 1 8 0Table 8: Data for
ontrol group of EXP2

