
Exploiting Object Locality in JavaParty, a

Distributed Computing Environment for

Workstation Clusters

Bernhard Haumacher and Michael Philippsen

University of Karlsruhe, Germany
hauma@ira.uka.de and phlipp@ira.uka.de

http://wwwipd.ira.uka.de/JavaParty/

Abstract. In a distributed programming environment with location
transparency, fast access to remote resources is absolutely critical for
eÆcient program execution - but it is not suÆcient. Locality optimiza-
tion will try to group objects according to their communication patterns
and replace remote access by local access whenever possible. Locality op-
timization is based on the assumption that local access always is much
faster than remote access.
Using conventional communication packages like RMI, this assumption
is void. A remote object always needs an access layer around it to allow
access to the object by means other than direct reference. Transparent
access to a remote object also needs to overcome this access layer, even
in a local access. Direct reference access can not be used, because of
di�erent parameter passing semantics.
In this paper we present techniques to provide transparent local access to
potentially remote objects in the same magnitude as direct Java access.

1 Introduction

JavaParty provides a distributed Java virtual machine on top of regular Java vir-
tual machines that execute on the nodes of a workstation cluster. The distributed
nature of the environment is mostly hidden from the application by providing a
shared object space across all participating virtual machines. To make objects
accessible from other nodes, Java's remote method invocation (RMI) is used [7].

Instead of asking the programmer to insert many verbose RMI commands
manually into his multi-threaded Java application to port is from a single work-
station to a cluster, JavaParty allows him to declare classes to be remote. Java-
Party then generates all the necessary RMI commands automatically [6].

1.1 Location transparency

In JavaParty remote objects are location transparent in a way that the remote
access to an object is syntactically and semantically identical to a local access to
that object. The meaning of a JavaParty program therefore does not depend on

2

the relative location of its objects. Location transparency enables the separation
of application design from object allocation and distribution decisions. In partic-
ular this opens up the possibility to decide about the location of created objects
automatically with compile time or runtime support. JavaParty also supports
migration of already allocated objects to di�erent nodes without the need for
application interaction.

Classes not explicitly declared remote are regular Java classes, called local

classes below. Local objects are bound to the virtual machine they are created
in, and can not be accessed from outside that virtual machine. If local objects
are passed in method invocations to remote objects, the RMI method invocation
semantics apply. In an RMI call local objects as arguments are shipped to the
remote side and instantiated there as copies identical of the original argument.
Transparent access to a remote object requires that this duplication occurs even
if the caller is local to the invoked remote object, because the application may
rely on that behavior.

Transparent access to a remote object therefore requires some intermediate
layer between the caller and the target object to guaranty the same semantics no
matter where the object is located. Using regular RMI transparency also can be
achieved by always accessing the remote object through its RMI proxy object.
But this incurs an huge overhead for a local access that is comparable to a remote
access in performance, because RMI does not exploit object locality. This paper
presents techniques that can be used to make a communication package location
aware in a sense that local access can be performed transparently with similar
performance as a regular Java method invocation.

1.2 Frequency of local accesses to remote objects in JavaParty

applications

Remote objects are the building blocks of a parallel distributed JavaParty appli-
cation. Normally a JavaParty application will create many more remote objects
than nodes are actually available for execution, because the application becomes
more
exible when adjusting it to di�erent target platforms. Especially when
porting an existing multi-threaded Java application to JavaParty, many more
remote classes are likely to be declared, because objects of remote classes have
more Java-like semantics referring to the distributed virtual machine: They are
always passed by reference in method invocations and are visible from the whole
application.

An application that uses many more remote objects than nodes are actually
available for execution relies on locality optimization to ensure that most of the
accesses are local. In such a well optimized application the majority of accesses to
remote objects will be local. Therefore the resulting application is only expected
to execute eÆciently if local access is quasi as fast as a regular Java method
invocation.

3

1.3 Related work

To execute a program eÆciently in a distributed environment, a fast network and
slim protocol layers are necessary prerequisites. We have already show how to
achieve this in pure Java [5, 3] on a Myrinet network. There are other e�orts to
improve the performance of Java remote method invocation. Henri Bal's group
at Amsterdam has published results on the compiler project Manta [8]. Manta
has an eÆcient remote method invocation (35�s) on a cluster of workstations
connected by Myrinet by compiling Java to native code. Krishnaswamy et al. [4]
improve RMI performance by using object caching and using UDP instead of
TCP.

These approaches concentrate on fast remote access to objects in Java. While
location transparency in not the main issue in this area, no performance num-
bers for transparent local access to remote objects are available. In this paper
we study the behavior of the KaRMI, our optimized implementation of remote
method invocation [5], and describe strategies how to add eÆcient transparent
local access to a system that already is optimized for fast remote access over a
high-performance network.

There are other communication packages other than RMI available for Java.
An alternative approach for parallel programming in Java is the usage of MPI.
There exist several MPI bindings for Java [1, 2]. While message passing is well-
suited for statically distributed numerical applications, it does not �t the object-
oriented nature of Java very well. For location transparent environments like
JavaParty the remote method invocation approach is preferable because con-
structing messages is only worth wile when the target is known to be remote.
The work described in this paper aims at fast transparent access to objects
especially if they are local.

1.4 Structure of the paper

Section 2 describes improvements to KaRMI for early locality detection of method
calls. It also describes further optimizations that can only be performed at the
highest protocol layer and are essential for an eÆcient local method invocation.
Section 3 describes optimizations to JavaParty for removing additional overhead
introduced by the JavaParty layer. Section 4 proves the e�ectiveness of the opti-
mizations presented in this paper with benchmark results. Section 5 concludes.

2 Optimizations at the remote method invocation level

2.1 Structure of KaRMI

Figure 1 shows the standard access path from JavaParty application code through
the three KaRMI layers to the remote server implementation object. The steps
are labeled (c1). . . (c4) on the client side and (s1). . . (s3), on the server side with
the network communication (n) in between. To understand the possible opti-
mizations for local access (l1). . . (l3) we describe brie
y the responsibilities of

4

access layer

reference layer

transport layer

Stub

ClientReference

SocketTechnology

ParaStationTechnology

LocalTechnology

Skeleton

ServerReference

SocketServer

ParaStationServer

ServerImplementationHandle

Ja
va

P
ar

ty

Application (c1)

(c2)

(c3)

(c4)

(n)

(s1)

(s2)

(s3)

(l1)

(l2)

K
aR

M
I

(d)

(l3)

handle layer

Fig. 1. KaRMI's Structure

the layers. Direct access to the server implementation (d) can not be used for
transparent remote object access, because of di�erent argument passing seman-
tics as described in the introduction. For the moment we look at the system
from the view of a regular KaRMI application by ignoring the section labeled
"JavaParty" in the �gure. Both regular RMI and KaRMI share the same high-
level design, so most of the descriptions in the next paragraphs are valid for both
implementations of remote method invocation.

The access layer of KaRMI provides the application with high level access
to a remote object through a generated proxy object that has methods with
the same signature as the server object. KaRMI is responsible for forwarding a
method invocation performed on the proxy object to the server implementation
and transmitting the result back to the caller. The proxy object, called "stub",
is responsible for converting arguments passed to each of its methods into a rep-
resentation that can be handled by the deeper generic layers of the package. On
the server side the skeleton object performs the inverse transformation of the
parameter list and result value by restoring the correct types of the parameters,
invoking the requested method on the server implementation object, and con-
verting the result back to a generic representation that is returned back to the
caller.

The reference layer is responsible for uniquely addressing remote objects
and dispatching incoming requests to the correct server side object. Remote
objects are identi�ed by so called object numbers that are assigned to a remote
object at the time it is exported. The object number in combination with the
Internet address of the machine and the port the object was exported on identi�es
the object in the distributed environment.

The transport layer is responsible for establishing and caching network
connections to a remote machine using the appropriate network technology. The

5

transport technology also de�nes the wire protocol that is used for the commu-
nication. At the moment there are two transport technologies implemented for
KaRMI, one for regular TCP/IP sockets called SocketTechnology and one for
the ParaStation [9] network layer over Myrinet communication hardware.

2.2 Detection of a local call in the access layer

Figure 1 shows the basic optimization (l1) for local calls. If the target of the
call is detected to be local to the caller, the local transport technology is used.
The technology for local transport is responsible for duplicating the parameter
and result values to simulate the behavior that is expected form a standard
remote method invocation. These call-by-copy semantics must be adhered to
even if the call does not leave the local address space and therefore is not a
real remote method invocation. The program may rely on the fact that remote
calls have call-by-copy semantics and does not expect that modi�cations made
to the argument of a remote method invocation get visible to the caller. In a
location transparent environment based on KaRMI it is obvious that all calls to
a remote object must have the same call semantics, because due to automatic
object distribution, locality is not necessarily known to the programmer.

Locality detection of a remote call's target in the transport layer is too late:
All layers of the packages are crossed back and forth unnecessarily. The access
layer converts the argument list to a generic representation but the typed argu-
ments are required for �nally invoking the server method. The reference layer
identi�es the target of the call by object number, where a direct Java refer-
ence to the local server implementation object exists and would suÆce. Finally
the local transport technology performs costly object duplication on the generic
method argument representation, where customized processing for most frequent
parameter types would be faster.

Therefore the appropriate layer for detecting locality of a call is the access
layer (l2) as far as a regular KaRMI application is concerned. Because the types
of the method arguments are known at the access layer, there is the possibility
of a specially optimization of argument duplication:

Basic types. Arguments of basic Java type need no explicit duplication, be-
cause they are always passed by copy even in a regular Java method invo-
cation. These parameters can be passed directly in a local call to the server
implementation without any additionall e�ort.

Remote references. Remote objects are represented at the client side by proxy
objects called stubs. Stubs are remote references to server objects in the
KaRMI framework. Such references can also be passed in a remote method
invocation as method argument. While these stub objects can not be modi-
�ed directly by the application, but only forward method invocations to the
object they reference, the application does not care whether such a reference
object is copied in a local invocation or not.

Remote servers. If a direct Java-reference to a remote server object is passed
in a remote method invocation, it is replaced by a stub object referencing the

6

original server object during the marshaling process of the call. Even if the
remote method invocation is local, this conversion must be performed. But
directly converting a remote server object to a stub referencing it is much
less time consuming than doing the same operation during general purpose
object duplication.

Immutable objects. Like remote stubs there is another category of objects
that don't need duplication during a local call. All objects that are created
once and that can no longer be modi�ed are candidates for passing them di-
rectly in a local call to a remote method. Because the remote method cannot
modify the state of the passed object, the application is unlikely to perceive
the di�erence of a call-by-copy or a call-by-reference. Such immutable classes
in the core Java library are strings and all object equivalents for basic types
like java.lang.Integer.

Classes declared immutable. Since object duplication is expensive, it makes
sense to enable the application designer to declare classes immutable and
prevent the duplication of their objects in local calls. For this reason, we
provide an additional interface Immutable that marks a class (and all its
subclasses) to be immutable. The interface does not declare any methods,
but is only used in the stub generator to decide whether a reference type
that is not otherwise known is immutable and does not need duplication1.

2.3 Redesign of the pure functional interface between KaRMI

layers

The optimization presented in this section is an necessary prerequisite for the
the one described in the next section, but also opens up the possibility of some
interesting extensions to the whole system. Therefore it is worth describing it
separately.

The main advantage of KaRMI over RMI are the simple pure functional
interfaces between the layers. Such clean layering allows to easily add alterna-
tive transport technology implementations to support high performance network
hardware. A pure functional interface means that the only interaction between
two layers of the package during the execution of a remote method invocation is
exactly one method call. This method call ships all necessary information that
is required to perform the remote invocation to the next lower layer. The lowest
layer is responsible for constructing the network packet that ultimately ships the
call to the server side.

First we show, that such pure functional interface is inappropriate because
it causes unnecessary object allocations during a remote invocation. We present
a solution to the problem without violating the extensibility of the system to
alternative transport technologies.

Using pure functional interfaces for the layers in KaRMI requires that each
layer collects all necessary information and forwards it in a single call to the next
1 We decided to have the programmer declare a class immutable instead of trying to
detect this property by code analysis, because there are several cases where code
analysis can not detect a class to be immutable, e.g. non-�nal classes.

7

deeper layer. Because the transport layer is responsible for constructing the byte
representation of the information sent over the network, the higher layers must
forward their information as Java objects to the next layer. This approach does
not �t the access layer very well. The stub is responsible for dealing with the
method signature and converting the arguments to a generic representation. The
deeper layers of the system do no longer deal with the method signature but are
only capable of forwarding remote calls requiring that the arguments are packed
in a format that can simply be forwarded to the server side. On the server side
the skeleton is responsible for extracting the arguments by restoring the concrete
method signature and actually invoking the remote server method. In Java there
exists no eÆcient representation for an arbitrary method signature, that can be
used to represent the arguments of a method invocation. The Java 2 version
of RMI uses an array of objects for the arguments and expects a single object
as result. This representation requires the allocation of an array object for each
method invocation and the wrapping of each argument with basic Java type into
an object. On the server side the Java 2 version of RMI does not use a skeleton
object, but invokes the method of the server implementation object through the
re
ection mechanism. The representation of the method arguments is ineÆcient
because it requires multiple object allocations for simple method signatures. Us-
ing dynamic type inspection to invoke the implementation of the method on the
server side causes additional overhead that can easily be avoided by generating
a customized skeleton object. KaRMI did prevent the wrapping of basic types to
objects by generating a parameter object class for each method signature that
is used in a remote object. The parameter object is used as container object to
tunnel the invocation parameters through the generic layers. This parameter ob-
ject is equipped with custom marshaling and unmarshaling methods for eÆcient
transmission over the network.

Obviously the approach using a parameter object is not the most eÆcient
solution, because at least one additional object is allocated for each method
invocation. No wrapping of basic types to objects is necessary, but all method
parameters are �rst copied to instance variables of the parameter object and
then marshaled to the network stream. This was necessary to ful�ll the design
criterion of a functional API between the layers described above.

To prevent the additional parameter conversion, the stub object must mar-
shal the method arguments directly. To achieve this, we split the method invo-
cation process in three phases. The �rst phase is responsible for establishing a
method invocation context, in the second phase the method is invoked, and in
the third phase the result of the method is returned. The last two phases are un-
der the control of the stub using the invocation context. The KaRMI layers have
only to be crossed in the �rst phase while the object addressing and the correct
transport technology is detected. The invocation context that is the result of
the �rst phase is part of the transport layer and encapsulates a network connec-
tion. Each transport technology installed in KaRMI provides its own invocation
context implementation.

8

// --- Phase 1 ---

Connection c = ref.getContext(...);

// --- Phase 2 ---

c.openSendCall();

// marshal the method arguments to c

c.closeSendCall();

// --- Phase 3 ---

if (c.openReceiveResult()) {

// unmarshal the method result from c

} else {

// unmarshal an exception returned from c

}

c.closeReceiveResult();

Fig. 2. Phases of a remote method invocation

Figure 2 shows the actions performed in the three phases. After the context is
established, the stub starts the method invocation with openSendCall(). After
that call the context is ready to marshal the method arguments. The marshaling
process is �nished by calling closeSendCall(). openReceiveResult() requests
the result of the remote method invocation. The method invocation may either
complete normally by returning the expected result or return exceptionally by
returning an exception object. Which case occurs is indicated by the result of
openReceiveResult(). Finally the context is passed back to the system for
reuse in the call to closeReceiveResult().

This approach has two bene�ts over a pure functional design where simply
one method of the next deeper layer is invoked. First the stub can directly mar-
shal the method arguments with marshaling methods provided by the context
object, so no additional conversion of the arguments takes place. This approach
makes a remote method invocation with no additional object allocation possi-
ble, because the context object is cached and reused for following invocations.
There is no need for wrapping basic types that are the most frequent method
parameters.

The second bene�t is the fact that issuing the method invocation is sepa-
rated from the receipt of the result of the method invocation. This separation is
necessary for a general purpose implementation of asynchronous remote method
invocations. RMI does not support asynchronous remote method invocations,
because in Java all method invocations are synchronous and an asynchronous
invocation does not �t into the concept of RMI where the server implementa-
tion object and the generated remote proxy object must implement a common
interface. An asynchronous remote invocation must necessarily have a signature
di�erent from the server implementation method, because the remote method
can no longer be represented by a single method in the proxy. It must be split

9

into issuing the call and receiving the result. The proxy is generated after the
application is compiled, so the only way of accessing the proxy from the pre-
compiled application is an interface that is known in advance. If the remote
method invocation package is used in the context of JavaParty, this limitation
no longer holds. While it is inconvenient and error-prone if the optimization of
hiding network latencies is left to the programmer, asynchronous remote method
invocations make latency hiding possible that may be performed automatically
by the compiler.

3 Optimizations at the JavaParty layer

So far we have presented optimizations that only involve the remote method
invocation package KaRMI. Besides JavaParty, all applications using KaRMI as
replacement for RMI bene�t from the optimization of early locality detection
in the access layer (l2) and the smart argument copying strategy introduced
in section 2.2. As shown in Figure 1, JavaParty adds an additional layer to the
system to provide transparent remote objects and object migration support. This
is accomplished through adding a handle layer that also uses a proxy object to
access the remote server implementation, but also is aware of migration.

If the object that is the target of the method call is on a remote machine,
the additional layer does not degrade performance signi�cantly, because there is
not much computation performed in the handle and the network access clearly
dominates the overhead of the additional layer.

In case of a local call with the shortcut (l2) in KaRMI, the additional layer
slows down the invocation signi�cantly because instead of two method invoca-
tions (from application code to the stub object in the access layer and from there
to the server implementation object) that are necessary for a local KaRMI call
so far, three invocations are necessary for a local JavaParty invocation. (that
corresponds to a slowdown of 50%).

As shown in Figure 1, the logical consequence is the shortcut invocation (l3)
that invokes the server implementation method directly from the JavaParty han-
dle object in case the call is detected to be local. Because this requires knowledge
of the internal KaRMI structure within JavaParty, we decided to inline the code
of the KaRMI stub objects directly into the JavaParty handle by integrating the
stub generator into the JavaParty compiler. The JavaParty compiler now can
generate smart handle objects that are aware of object migration (the JavaParty
functionality) and can decide about locality of the referenced object by either
invoking the server method directly or accessing the reference layer of KaRMI
to perform a remote invocation (the KaRMI functionality).

4 Benchmark results

Figure 3 shows benchmark results for calls to empty methods with di�erent
parameter and result types. The �rst method studied is a voidmethod that takes
no parameters, the second is a method that takes no parameters but returns

10

an integer as result. The third and fourth take one and two int-parameters
respectively. The �fth method takes a parameter of immutable type as described
in section 2.2, while the sixth one takes a parameter that can be fast marshaled
using the uka.transport package. Note that the time consumed by one method
call is given in microseconds with a logarithmic scale.

void foo() int foo() void foo(int) void foo(int,
int)

void
foo(Immu.)

void
foo(Transp.)

0,01 us

0,10 us

1,00 us

10,00 us

100,00 us

1000,00 us

pure RMI

pure KaRMI (l1)

stub shortcut

smart copy (l2)

Fig. 3. KaRMI benchmark results

The benchmark illustrated in Figure 3 studies bare local RMI/KaRMI com-
munication. Therefore the methods are called on a stub object that is located in
the same virtual machine as the server. The �rst two bars of each group are for
reference only. The �rst bar (with horizontal stripes) describes the time duration
of a regular local Java-RMI call. The second bar (with vertical stripes) shows the
performance of a regular local KaRMI call without the improvements described
in this paper. As you can see, KaRMI already performs much better than RMI.
For methods with no parameters and void or basic return type, the performance
is better by two orders of magnitude. Even for methods with arguments (of basic
or object type), KaRMI outperforms RMI by a large factor (7:4 up to 18:4), but
the KaRMI performance is still far from optimal.

The last two bars of each group (slanted and double striped) show for each
method benchmark the performance of a local call with the optimizations of
KaRMI described in section 2. Even for the void method an additional acceler-
ation factor of 24 is achieved by local call detection at stub level (stubShortcut).
Where KaRMI does only save little in comparison to RMI, the locality detec-
tion at stub level (stubShortcut) and avoiding of argument copying (smartCopy)
does the rest. In all three cases, where costly argument copying can be avoided
the same good absolute performance can be achieved. Where the duplication of
the argument is necessary to preserve the semantics of a remote call, the e�ect
of the optimization is not perceivable because of the huge overhead for object
duplication.

void foo() int foo() void
foo(int)

void
foo(int,
int)

void
foo(Immu.)

0,00 us
0,02 us
0,04 us
0,06 us

0,08 us
0,10 us

KaRMI smartCopy (l2)

JP smartCopy (l2)

JP smartHandle (l3)

pure Java

Fig. 4. JavaParty benchmark results

Results in Figure 4 compare the achieved performance of optimized KaRMI
(KaRMI smartCopy) with a version of JavaParty that simply uses that KaRMI

11

�s per call pure pure KaRMI KaRMI JP JP pure
RMI KaRMI stub- smart- smart- smart- Java

Shortcut Copy Copy Handle

void foo() 166.103 1.367 0.057 0.057 0.093 0.060 0.023
int foo() 172.970 1.260 0.044 0.044 0.066 0.047 0.019
void foo(int) 170.606 23.032 0.058 0.059 0.099 0.069 0.026
void foo(int, int) 172.253 23.265 0.062 0.066 0.105 0.072 0.027
void foo(Immu.) 409.866 22.221 21.595 0.062 0.099 0.069 0.026
void foo(Transp.) 334.720 22.071 20.958 21.469 22.004 22.192 0.024

Table 1. Combined view of KaRMI and JavaParty results

version (JP smartCopy) and JavaParty with the additional optimization de-
scribed in section 3 (JP smartHandle). For reference, the performance of a regu-
lar Java method call is depicted in the last row (pure Java). Note that the scale
of this �gure is linear in contrast to Figure 3. The �rst bar (KaRMI smartCopy)
is identical to the last bar in Figure 3 but rescaled.

You can see that inlining the stub functionality into the JavaParty handle
layer and using the shortcut (l3) for local calls as described in section 3 is able
to almost completely avoid additional JavaParty overhead.

Comparing the time, a local JavaParty method invocation takes, and the
time for a regular Java method call, proves the resulting JavaParty system to be
eÆcient: A local JavaParty method invocation (JP smartHandle) takes only a
factor of 2:5 . . . 2:7 longer than a regular Java method invocation2. You would ex-
pect a slowdown factor with that magnitude, because instead of a single method
invocation in regular Java two invocations are necessary due to the proxy object.
Additionally a test for locality and a type conversion of the server reference is
necessary before the target method can be invoked. Table 1 presents a combined
view of the detailed benchmark results for KaRMI and JavaParty.

5 Conclusion

In this paper, we presented techniques to realize local access to transparent
remote JavaParty objects within the same order of magnitude as a regular Java
method invocation. The results are not restricted to JavaParty, because most
of the optimizations were performed in the KaRMI remote method invocation
package. The locality aware KaRMI package can be used as replacement for RMI,
the standard Java class library for remote method calls. Further on we presented
the fundamentals for extending KaRMI to asynchronous remote method calls.

References

1. Bryan Carpenter, Geo�rey Fox, Sung Hoon Ko, and Sang Lim. Object serializa-
tion for marshaling data in a java interface to MPI. Concurrency: Practice and
Experience, 12(7):539{553, 2000.

2 If copying of method arguments can be avoided.

12

2. Vladimir Getov, Paul A. Gray, and Vaidy S. Sunderam. Aspects of portability
and distributed execution for JNI-wrapped message passing libraries. Concurrency:
Practice and Experience, 12(11):1039{1050, 2000.

3. Bernhard Haumacher and Michael Philippsen. More eÆcient object serialization.
In Parallel and Distributed Processing, number 1586 in Lecture Notes in Computer
Science, Puerto Rico, April 12, 1999. Springer Verlag.

4. Vijaykumar Krishnaswamy, Dan Walther, Sumeer Bhola, Ethendranath Bommaiah,
George Riley, Brad Topol, and Mustaque Ahamad. EÆcient implementations of
Java Remote Method Invocation (RMI). In Proc. of the 4th USENIX Conference
on Object-Oriented Technologies and Systems (COOTS'98), 1998.

5. Michael Philippsen, Bernhard Haumacher, and Christian Nester. More eÆcient
serialization and RMI for Java. Concurrency: Practice and Experience, 12(7):495{
518, May 2000.

6. Michael Philippsen and Matthias Zenger. JavaParty: Transparent remote objects
in Java. Concurrency: Practice and Experience, 9(11):1225{1242, November 1997.

7. Sun Microsystems Inc., Mountain View, CA. Java Remote Method Invocation Spec-
i�cation, October 1998. ftp://ftp.javasoft.com/docs/jdk1.2/rmi-spec-JDK1.2.pdf.

8. Ronald Veldema, Rob van Nieuwport, Jason Maassen, Henri E. Bal, and Aske Plaat.
EÆcient remote method invocation. Technical Report IR-450, Vrije Universiteit,
Amsterdam, The Netherlands, September 1998.

9. Thomas M. Warschko, Joachim M. Blum, and Walter F. Tichy. The ParaStation
project: Using workstations as building blocks for parallel computing. Journal of
Information Sciences, 106(3{4):277{292, May 1998.

