
A Fast Algorithm to Compute

Maximum Likelihood Estimates for the

Hypergeometric Software Reliability Model

Frank Padberg
Fakultät für Informatik

Universität Karlsruhe, Germany
padberg@ira.uka.de

Abstract

We present a fast and exact algorithm to com-
pute maximum likelihood estimates for the number
of faults initially contained in a software, using the
hypergeometric software reliability model. The algo-
rithm is based on a rigorous mathematical analysis of
the growth behavior of the likelihood function for the
model. We also clarify the stochastic process under-
lying the model and prove a recursion formula which is
central for most previous work on the hypergeometric
software reliability model.

1 Introduction

The number of faults contained in a software is an
important quality attribute of the software, not only in
theory, but also in practice. For example, in order to
decide when to stop testing and debugging a software,
project management must know how many faults still
remain in the software after each testing and debugging
cycle. How many faults were fixed during debugging is
known, whence management might as well ask for the
number of faults initially contained in the software.
Clearly, it is impossible to determine the number of
faults contained in a software exactly. Therefore, it
must be estimated in practice.

The idea behind probabilistic software reliability
modeling is to regard the software tests performed dur-
ing development as a large random experiment. The
random experiment is formally modelled as a stochas-
tic process which is parameterized in some way by the
number m of faults initally contained in the software.
The particular results observed in the software tests
then are used to estimate the value of m by applying
suitable statistical techniques.

A well-known example for a probabilistic software re-
liability model is the hypergeometric reliability model.
This model has been studied in a number of papers
[5-14, 18-21] . In the hypergeometric model, the result
of software test k consists of the number wk of faults
detected in the test and the number xk of those faults
which are newly detected. A fault is newly detected if it
has not already been detected in one of the earlier tests.
Each test is modelled using a suitable hypergeometric
probability distribution, which explains the name of the
reliability model; see subsection 2.1. The hypergeomet-
ric distributions all depend on the number m of faults
initially contained in the software. The distributions
for the individual tests are combined into a stochas-
tic process which describes the whole series of tests.
The stochastic process for the hypergeometric reliabil-
ity model has not been properly formalized in previous
papers, although this is necessary in order to correctly
apply statistical estimation techniques. Therefore, as
a first step we clarify the stochastic process underlying
the model in subsection 2.2.

A standard estimate in statistics which frequently
is computed in software reliability models other than
the hypergeometric model (such as [4, 15, 22]) is the
maximum likelihood estimate. To compute the maxi-
mum likelihood estimate in some reliability model, one
must find a global maximum of the likelihood function
L (m) for the model (see subsection 3.1 for the defi-
nition) and particular test series result. Usually, one
attempts to solve the maximum likelihood equation

d log L (m)

d m
= 0.

In the hypergeometric reliability model, the formula for
the likelihood function L (m) contains a large num-
ber of binomials. Thus, the maximum likelihood equa-
tion is complicated. For the special case that each test

reveals the same number of faults (wk is constant),
the approach of solving the max likelihood equation
has been followed for the hypergeometric model in
[21] . Several methods are used in [21] to approximate
the derivative of the logarithm of the likelihood func-
tion, for example, approximating the factorials using
Stirling’s formula. For each method used in [21] , the
resulting approximate maximum likelihood equation is
too complicated to be solved exactly; Newton’s method
is used. Approximating the equation and its zeros
would require to give an error bound for the solution
if it were to be used as an approximate maximum like-
lihood estimate, but no error bounds are given. Also,
the approach not always terminates with a solution.
The question whether a maximum likelihood estimate
exists in the hypergeometric reliability model for each
given test series result is not addressed in [21] .

In this paper, we show that for each but one special
kind of test series maximum likelihood estimates exist
in the hypergeometric software reliability model. We
present a fast and exact algorithm for computing the
maximum likelihood estimates. The key idea leading
to our algorithm is to study the growth quotient

Q (m) =
L (m)

L (m − 1)

of the likelihood function L (m) instead of the like-
lihood function itself. Clearly, the likelihood function
L (m) is increasing if and only if the growth quotient
Q (m) is greater than one; thus, no information is lost.
The growth quotient for a single hypergeometric dis-
tribution has already been studied long ago, see [3] .
Studying the growth quotient has the advantage that
the binomials in the formula for the likelihood function,
which make it difficult to study the growth behavior
of the likelihood function directly, cancel almost com-
pletely. The growth quotient turns out to be a rational
function, see subsection 3.2, and we study its growth
behavior by means of basic algebra and advanced cal-
culus. A typical graph of the growth quotient is shown
in figure 1 : the graph crosses the line y = 1 once,
coming from above, and runs below the line after hav-
ing crossed it. To compute the maximum likelihood
estimate one must determine the crossing point. The
resulting algorithm is presented in section 4.

Instead of maximum likelihood estimates, a least
squares method has been used with the hypergeomet-
ric reliability model to estimate the number of faults
initially contained in the software, see [13, 19] . The
least squares method is based on a recursion formula
for the expected value of the cumulative number ck of
different faults detected during the first k tests. The
recursion formula has not been derived properly in pre-
vious papers, see subsection 2.3. We prove rigorously in
the paper that the recursion formula holds without any

restriction. The recursion formula is important since
most previous work on the hypergeometric reliability
model is based on it.

Some difficulty arises when trying to compute the
maximum likelihood estimates for the examples given
in previous papers. In these examples, the number wk

of faults detected in test k has never been recorded.
Since the wk are essential parameters in the hyperge-
ometric reliability model, the model can’t be directly
applied to the examples. Previous papers assume that
the wk can be computed using a function which takes
the number k of the test as input. The function is in-
terpreted as a ”learning curve”, see [6] . The learning
curve often takes some additional input, such as the
number uk of testers involved in test k . The learning
curve often is parameterized by the number m of faults
initially contained in the software, and some other pa-
rameters. The goal in previous papers then has been to
estimate both m and the other parameters of the learn-
ing curve from the test observations xk (and the input
uk) using the least squares method. Several functions
have been proposed as learning curves, see [6, 14] .

From our point of view, the learning curve ap-
proach intertwines two problems which should better
be treated separately. The first problem is to esti-
mate the number of faults initially contained in the
software from the empirical test results, which include
both the numbers xk and wk when using the hyper-
geometric reliability model. It does not make much
sense to use only part of the test results for estimating;
writing down the wk is at no cost while running the
tests. The second problem is to study how the num-
ber of faults detected in a test relates to the number of
faults contained in the software, including any learning
effects during software testing. Dependencies between
different faults and the kind of test cases used should
be considered, too. The second problem should be ad-
dressed only after an estimate for the number of faults
in the software has been computed. Consequently, we
do not assume that the wk can be computed using
some learning curve, but rather take them as input for
our algorithm.

In section 5, we use our algorithm to compute the
maximum likelihood estimates for two examples taken
from previous papers. Currently, the examples given
in previous papers still serve as a baseline for com-
parisons, although the numbers wk have not been
recorded. Since we need the wk as input for our algo-
rithm, we select a learning curve and compute the wk

using the learning curve. The learning curve parame-
ters are taken from the papers where they have been
obtained with the least squares method. For the sample
data, we compare the maximum likelihood estimates
computed using our algorithm with the least squares
estimates given in the papers and with the maximum

likelihood estimates obtained when using software reli-
ability models other than the hypergeometric reliability
model.

2 Hypergeometric model revisited

2.1 Urn model

The hypergeometric software reliability model can
be described using an urn model as follows. Suppose
that m faults are initially contained in the software.
The urn then contains m balls which are coloured
black initially. In the first software test, w1 faults are
detected, which corresponds to drawing w1 balls from
the urn. Since the faults detected will be known faults
in future tests, the w1 balls are coloured white and
placed back into the urn. In the second test, w2 faults
are detected, which corresponds to drawing w2 balls
from the urn. Some of the faults may be known already,
so only x2 faults are newly detected. This corresponds
to having drawn x2 black balls and w2 − x2 white
balls from the urn. The x2 black balls are coloured
white and all w2 balls are placed back into the urn.
This drawing, colouring white, and replacing of balls is
continued until the last test.

According to the urn model, each software test may
be modelled probabilistically by a suitable hypergeo-
metric probability distribution.

Definition 1 For numbers z ≤ m, z − c ≤ w ,
and w ≤ z , we introduce the notation

p m, w (z , c) =

(
m − c

z − c

)
·
(

c

w − (z − c)

)
(

m

w

) .

When m, w , and c are fixed, p m, w (z , c) is a hyper-
geometric distribution.

Test k is modelled by the hypergeometric distribution

p m, wk (ck , ck−1).

Here, ck denotes the cumulative number of different
faults detected during the first k tests,

ck = x1 + x2 + . . . + xk .

In previous papers, the hypergeometric distribution
for each test has been written down using the num-
ber xk of newly detected faults instead of the cu-
mulative number ck . Using ck is equivalent, because
xk = ck − ck−1 , and more convenient when defining
the stochastic process for the hypergeometric reliability
model, see the comment at the end of the next subsec-
tion.

The urn model implicitly makes an independence
assumption about software faults : it is assumed that
detecting a particular fault is stochastically indepen-
dent of detecting the other faults. This assumption
certainly is a simplification, because in practice faults
often are related. The independence assumption is
accepted as a starting point for software reliability
modeling, though. Besides the independence assump-
tion, other assumptions are made in the hypergeomet-
ric reliability model which are explicitly stated in the
papers, see [12, 19] .

2.2 Underlying stochastic process

In the hypergeometric reliability model, each soft-
ware test is modelled using a hypergeometric distribu-
tion. The distribution p m, wk (ck , ck−1) for test k
depends on the outcome of all previous tests, because
it has ck−1 as a parameter. Therefore, the test series
is not a Bernoulli sequence. To properly define the
stochastic model for the whole test series, two ques-
tions must be answered : What is the sample space?
How is the probability measure defined on the sample
space?

Definition 2 For a series of n tests, the sample
space Ω n consists of all n-tuples (c1, c2, . . . cn)
of natural numbers † where the ck are non-decreasing,
ck ≥ ck−1 .

For each value of n there is a separate sample space.
This has not been made explicit in previous papers.

Definition 3 Let w denote the sequence of numbers
w1, w2, . . . wn. Suppose that m and the sequence
w are given. The probability to observe the outcome
(c1, c2, . . . cn) in the test series is defined as

Pm, w (c1, c2, . . . cn) =

p m, w1 (c1 , 0) · p m, w2 (c2 , c1) ·

p m, w3 (c3 , c2) · . . . · p m, wn (cn , cn−1).

Starting from definition 3, it is well-known how to
prove by induction on n that the probabilities of all
the possible outcomes sum up to one,∑

(c1, c2, ... cn)

Pm, w (c1, c2, . . . cn) = 1.

The proof uses the fact that p m, w (z , c) is a proba-
bility distribution for z when m, w, and c are fixed.
Thus, the definition yields a probability measure

Pm, w

† zero included

on the sample space Ω n.
In the stochastic model just defined, the wk are pa-

rameters and not part of the outcome of the random
experiment, although in practice it is not known in ad-
vance how many faults will be detected in the next test.
For each set of parameters m, w1, w2, . . . wn there
is a separate probability measure on the sample space.
Strictly speaking, the hypergeometric reliability model
thus consists of a whole family of probability measures
for a given sample space Ω n. Again, this has not been
made explicit in previous papers.

The function Ck on the sample space which yields
the cumulative number ck of different faults detected
in the first k tests is a random variable. By con-
struction of the probability measures, the probability
to observe a cumulative number of z faults after test k
depends on ck−1 , but not on the earlier observations
ck−2, ck−3, and so on. This is an important property
of the random variables Ck :

Proposition 1 For each probability measure Pm, w

on the sample space Ω n, the stochastic process

C1 , C2 , . . . Cn

underlying the hypergeometric software reliability model
is a Markov chain.

Proof. We must check that

Pm, w (Ck = z | Ck−1 = ck−1, . . . C1 = c1) =

Pm, w (Ck = z | Ck−1 = ck−1).

By the definition of conditional probabilities, the prob-
ability on the left hand side equals

Pm, w (c1, c2, . . . ck−1, z)

Pm, w (c1, c2, . . . ck−1)

and the probability on the right hand side equals∑
(c1, c2, ... ck−2)

Pm, w (c1, c2, . . . ck−1, z)

∑
(c1, c2, ... ck−2)

Pm, w (c1, c2, . . . ck−1)
.

By definition of the probability measure (definition 3),
both fractions are equal to p m, wk (z , ck−1) .

�

The function Xk on the sample space which yields
the number xk = ck − ck−1 of faults newly detected
in test k is a random variable, too. The probability to
observe x new faults in test k depends on ck−1 , that
is, on all earlier observations xk−1, xk−2, and so on.

Thus, the stochastic process X1 , X2 , . . . Xn is not
a Markov chain. This is the reason why using the xk

to define the probability space for the hypergeometric
software reliability model is less convenient than using
the ck .

2.3 Recursion formula

To estimate the number m of faults initially con-
tained in the software, a least squares method has been
used with the hypergeometric reliability model. The
least squares method is based on a recursion formula
for the expected values Em, w [Ck] of the random vari-
ables Ck . Note that all expected values in the hyperge-
ometric reliability model depend on the parameters m
and w . The recursion formula has been stated properly
(except for the subscripts m and w) in equation (2) of
[12] , but it has not been derived properly yet. For ex-
ample, equation (4) in [19] does not make sense † and
the argument in [19] aiming at the recursion formula
is incomplete. Using the probability measure Pm, w

defined above, we prove rigorously that the recursion
formula holds :

Proposition 2 For each probability measure Pm, w

the following recursion formula holds :

Em, w [Ck] = wk + (1 − wk

m
) · Em, w [Ck−1].

Proof. We suppress the subscripts m and w to
simplify the notation. The formula for the mean of
the hypergeometric distribution [3, 17] yields

E [Ck | Ck−1 = c] = wk + (1 − wk

m
) · c.

This is a formula for the conditional expectation of
the random variable Ck under the condition that the
random variable Ck−1 assumes the value c . Previous
papers have been imprecise about the distinction be-
tween expectations and conditional expectations. From
the general properties of conditional expectations (see
[17]) we get

E [Ck] =
∑

c

E [Ck | Ck−1 = c] · P (Ck−1 = c).

Combine the two equations to compute

E [Ck] =
∑

c

(
wk + (1 − wk

m
) · c

)
·

P (Ck−1 = c)

† N (i) on the left hand side of equation (4) in [19] is a
(conditional) expectation and C (i − 1) on the right hand side
is a random variable.

= wk ·
∑

c

P (Ck−1 = c) +

(1 − wk

m
) ·

∑
c

c · P (Ck−1 = c)

= wk · 1 + (1 − wk

m
) · E [Ck−1].

�

The least squares method searches for a value of m
which minimizes the least squares sum

n∑
k =1

(Em, w [Ck] − ck) 2 .

To find a minimizing m for a given test series out-
come c1 , c2 , . . . cn , exhaustive search is performed
in [19] . To save computing time, [21] proposes to com-
pute the zeros of the derivative with respect to m of
the least squares sum. Since equation (6) in [21] is
derived from the incorrect equation (4) in [19] , the
formula given for the zero of the derivative is incorrect.
In [14] , genetic algorithms are applied to minimize
the least squares sum. The question whether a least
squares estimate exists and is unique for each param-
eter set w and test series outcome c1 , c2 , . . . cn

has not been addressed in the papers.

3 Max likelihood estimates

3.1 Likelihood function

In the stochastic model for the hypergeometric soft-
ware reliability model, the result of test k consists of
the number wk of faults detected in the test and the
cumulative number ck of different faults detected in
the first k tests. The numbers c1 , c2 , . . . cn are
regarded as the outcome of the random experiment,
whereas the numbers w1 , w2 , . . . wn are regarded
as parameters of the stochastic model. If the parame-
ters wk are fixed, we get a family of probability mea-
sures Pm, w on the sample space Ω n which is param-
eterized by the number m of faults initially contained
in the software. When the outcome c1 , c2 , . . . cn is
given, the maximum likelihood estimate for m answers
the question : Which measure Pm, w gives the high-
est probability of observing that particular test series
outcome?

Definition 4 Suppose that a test series outcome
c1 , c2 , . . . cn and the parameters w1 , w2 , . . . wn

are given. The likelihood function for the hypergeomet-
ric reliability model is defined as

L (m) = Pm, w (c1, c2, . . . cn).

The likelihood function yields for each value of m
the probability to observe the given test series out-
come in the measure Pm, w . The likelihood function
depends on the observed outcome c1 , c2 , . . . cn and
the parameters w1, w2, . . . wn . We suppress the cor-
responding subscripts to the likelihood function to sim-
plify the notation. The likelihood function for the hy-
pergeometric reliability model has been stated in equa-
tion (4) of [21] for the special case that the wk are all
the same.

Definition 5 Suppose that a test series outcome
c1 , c2 , . . . cn and the parameters w1 , w2 , . . . wn

are given. The number m̂ is called a maximum likeli-
hood estimate in the hypergeometric reliability model if
it satisfies for all m the inequality

L (m̂) ≥ L (m).

A maximum likelihood estimate depends on the ob-
served test series outcome c1 , c2 , . . . cn and the
parameters w1 , w2 , . . . wn . We suppress the corre-
sponding subscripts to the maximum likelihood esti-
mate to simplify the notation.

It is not at all obvious that a maximum likelihood
estimate exists in the hypergeometric reliability model
for a given test series outcome and parameter set. We
shall see in subsections 3.3 and 3.4 that for each but
one special kind of test series a maximum likelihood
estimate exists and can be computed fast.

For the remainder of this section, the parameter
set w1 , w2 , . . . wn and the test series outcome
c1 , c2 , . . . cn are assumed to be fixed.

3.2 Growth quotient

To compute a maximum likelihood estimate for a
given test series outcome, we must find a global max-
imum of the likelihood function. In other words, we
must study the growth bevavior of the likelihood func-
tion. Instead of computing the derivative of the log-
arithm of the likelihood function with respect to m
and solving for the zeros of the maximum likelihood
equation, we use an elementary approach to study the
growth behavior of the likelihood function.

Definition 6 Define the growth quotient to be

Q (m) =
L (m)

L (m − 1)
.

Clearly, the likelihood function L (m) is increasing
when the growth quotient Q (m) is greater than one,
and decreasing otherwise. As will be seen in the next
two propositions, using the growth quotient has the
great advantage that the binomials in the formula for
the likelihood function cancel almost completely.

Definition 7 For m �= z and m �= 0 , we introduce
the notation

q m, w (z , c) =
(m − c) · (m − w)

m · (m − z)
.

Proposition 3 The growth quotient Q (m) admits
the presentation

Q (m) =

q m, w1 (c1 , 0) · q m, w2 (c2 , c1) ·

q m, w3 (c3 , c2) · . . . · q m, wn (cn , cn−1).

Proof. Refer to the definition of L (m) and check

p m, w (z , c)

p m−1, w (z , c)
= q m, w (z , c).

�

The proposition shows that the growth quotient
Q (m) is a rational function with a nice presentation :
both the numerator and the denominator are given as
a product of linear factors. At least half of the factors
cancel :

Proposition 4 The growth quotient Q (m) admits
the ”cancelled” presentation

Q (m) =
(m− w1) · (m − w2) · . . . · (m − wn)

mn−1 · (m − cn)
.

In addition, for each wj = 0 a factor m cancels. If
cn = wk for some k, the factor m− cn cancels.

Proof. Refer to definition 7 and compute

q m, wk (ck , ck−1) · q m, wk+1 (ck+1 , ck).
�

The proposition shows that the degrees of the poly-
nomials in the numerator and denominator of the
growth quotient Q (m) are bounded by the length
n of the test series. More important, the proposition
shows that the order in which faults are detected as well
as the numbers xk of new faults detected in the tests
do not matter for the value of the maximum likelihood
estimate: only the sum cn of different faults and the
sizes wk of the fault samples enter the formula for the
growth quotient.

3.3 Growth behavior

The number m of faults initially contained in a soft-
ware must be greater or equal to the total number cn of
different faults detected during the test series. There-
fore, to compute a maximum likelihood estimate it suf-
fices to study the behavior of the growth quotient for

m > cn .

Viewed as a function Q (x) of a real-valued variable x
instead of the integer-valued m , the growth quotient is
differentiable and defined for x �= cn and x �= 0, see
proposition 4. Since the likelihood function L (m) is
increasing if and only if the growth quotient is greater
than one, we must answer the following question :

At which points x > cn does the graph of the
growth quotient Q (x) cross the line y = 1?

Refering to the cancelled presentation of the growth
quotient, for x > cn and test series with cn > wk for
all k , the growth quotient Q (x) is a product of one
or more factors

x − wj

x
< 1

and the factor
x − wn

x − cn

> 1.

Therefore, it is not obvious how the graph of the growth
quotient Q (x) is located relative to the line y = 1
when x > cn .

Clearly, the growth quotient approaches y = 1 as
x grows large. Except for some special cases which we
shall discuss in the next subsection, the growth quo-
tient has the following properties :

P1. The graph of the growth quotient Q (x) runs
above the line y = 1 near cn .

P2. Beyond a certain x0 > cn, the graph of the
growth quotient runs below the line y = 1.

P3. Beyond cn , the graph of the growth quotient
has only a single local extreme point, which is a
local minimum.

The proofs of these properties are elementary, but too
long to be included in this paper. Please refer to [16]
for the precise formulation of the theorems and the full
proofs.

The properties P1, P2, and P3 determine the be-
havior of the growth quotient completely for x > cn .
By the intermediate-value theorem for continuous func-
tions [1] , the first and second property imply that the
graph of the growth quotient must cross the line y = 1

at least once. Clearly, the graph can cross or touch the
line only finitely many times since Q (x) − 1 is a ra-
tional function. Suppose now that the graph crosses
the line more than once. Then there must be (at least)
two crossing points such that the graph runs above the
line in between. It follows that the graph has a lo-
cal maximum between these two crossing points, which
contradicts the third property. If the graph touches
the line at some point without crossing it, that point is
a local extreme point (min or max), which again con-
tradicts the third property. To sum up, for most test
series we get the following answer to the question raised
above :

For x > cn , the graph of the growth quotient
Q (x) crosses the line y = 1 only once and
runs below the line afterwards.

A typical graph of the growth quotient Q (x)
for x > cn is shown in figure 1. In that example,
cn = 46.

0.5

1

1.5

2

2.5

46 57 89

Figure 1: a typical graph of the growth quotient

For the example shown in figure 1, Q (57) > 1
whereas Q (58) < 1. It follows that the maximum
likelihood estimate is m̂ = 57. The local minimum
of the growth quotient is located between 89 and 90.

3.4 Special cases

There are some special kinds of test series for which
the growth quotient Q (x) shows a behavior different
from that described by figure 1. The special cases are :

Case A. cn = wk for some index k and wj > 0
for at least one index j �= k ;

Case B. cn = wk for some index k , but wj = 0
for all j �= k ;

Case C. cn > wk and wk = ck − ck−1 for all k .

Cases A and B may be interpreted as follows. The
condition cn = wk means that the effort for the first
k − 1 and the last n − k tests could have been saved,
because test k would have sufficed to detect all cn

faults which are known by the end of the full test series.
For case A, we show in [16] that

Q (m) < 1

for all m > cn . Thus, the maximum likelihood esti-
mate is unique and equals

m̂ = cn

in case A.
As compared to case A, in case B faults are detected

only in test k. For case B, we show in [16] that

Q (m) = 1

for all m > cn . Thus,

any m ≥ cn

is a maximum likelihood estimate in case B.
Case C may be explained as follows. The condition

wk = ck − ck−1 for all k means that in each test all
detected faults are new. This outcome indicates a high
number of faults in the software. In the hypergeometric
reliability model, such an outcome is the more likely the
larger the number of faults contained in the software
is, and we show in [16] that

Q (m) > 1

for all m > cn . Thus,

no maximum likelihood estimate

exists in case C.
All three special cases are unlikely to occur in a soft-

ware test series. Typically, no single test will uncover
all faults known to be in the software by the end of the
test series (cases A and B). Also, faults will be detected
in more than one test (case B) and some faults will be
re-detected in later tests of a series (case C). Thus, the
special cases are unrealistic and can be disregarded in
software testing practice.

4 Algorithm

The behavior of the growth quotient Q (x) in the
typical case implies that the likelihood function L (m)
is increasing only until the graph of the growth quo-
tient falls below the line y = 1 for the first time, see
figure 1. This fact gives us a fast algorithm for com-
puting the maximum likelihood estimate in the hyper-
geometric reliability model :

Step 1. Check whether one of the three special cases
applies, see subsection 3.4. If no, continue with
Step 2.

Step 2. Compute the maximum likelihood estimate
m̂ iteratively as follows.

Step 2a. Set x := cn + 1.

Step 2b. Check whether Q (x) > 1. If yes,
set x := x + 1 and repeat Step 2b. If
no, return the maximum likelihood estimate
m̂ = x − 1.

The growth quotient Q (x) is a rational function.
The polynomials in the numerator and denominator of
the growth quotient are of degree n , where n equals
the number of tests in the series, or of a lower degree
if some wj = 0. Typically, the number of tests will be
large. Thus, the growth quotient must be computed
in Step 2b of the algorithm in a way which avoids
problems with the precision of the floating point arith-
metic. For example, one might take advantage of the
”cancelled” presentation of the growth quotient given
in Proposition 4. Re-order the wk in increasing order
according to their value, so that wn is largest. Com-
pute

x − wn

x − cn

and multiply with the factors

x − wj

x

until the product is less than one, or, all wj have been
used up. When computing Q (x) this way, the factors
have a similar order of magnitude.

5 Examples

We use our algorithm to compute the maximum like-
lihood estimates for two examples taken from previous
papers. In these examples, the numbers wk have not
been recorded. Since we need the wk as input for our
algorithm, we select a learning curve and compute the
wk using the learning curve. The learning curve pa-
rameters are taken from the papers, where they have
been obtained with the least squares method.

The first example is taken from [19, 21] . In the ex-
ample, a total of cn = 481 different faults were de-
tected in a series of n = 111 tests. For each test, the
number xk of new faults and the number uk of testers
involved in the test were recorded. The number wk is
computed using the learning curve

wk = uk · (a · k + b).

The learning curve parameters a and b are listed in
Table V of [21] as

a = 0.082 and b = 1.36.

Several adjustments had to be made to the computed
values for the wk which seem to have been overlooked
in previous papers :

• All computed values were rounded up to the next
integer.

• All faults detected in the first test are new. Thus,
we adjusted w1 from 6 to 5.

• For any test, the number w of faults detected must
be greater or equal to the number x of new faults.
Thus, we adjusted

w11 from 12 to 31;
w13 from 13 to 24;
w14 from 13 to 49;
w15 from 13 to 14.

The final values for the wk are listed in table 1 of the
appendix.

The graph of the first example’s growth quotient
Q (x) is shown for x > cn in figure 2.

0.5

1

1.5

2

2.5

481 484 600

Figure 2: Q (x) for the first example

For the first example,

Q (484) = 1.159 and Q (485) = 0.880.

Since Q (484) > 1 whereas Q (485) < 1, the maxi-
mum likelihood estimate is

m̂ = 484.

The local minimum of the growth quotient is located
between 600 and 601. The computation of the max-
imum likelihood estimate took less than a second on
a standard personal computer. The least squares es-
timate given in [21] for the example is equal to 484,
too.

The second example is taken from [6] . In the exam-
ple, a total of cn = 328 different faults were detected
in a series of n = 19 tests. For each test, the num-
ber xk of new faults and the execution time tk of the
test in milliseconds were recorded. The number wk is
computed using the learning curve

wk = m · tk

1000
· (a · k + b).

Note that the learning curve is parameterized by the
estimate m = 387.71 for the number of faults initially

contained in the software, which has been computed to-
gether with the learning curve parameters in [6] using
the least squares method. We have chosen this example
nonetheless because we wanted to compare the maxi-
mum likelihood estimate obtained in the hypergeomet-
ric reliability model with the maximum likelihood esti-
mates obtained in other reliability models, see below.

The parameters a and b are listed in Table 3 of [6] ,

a = 0.0017 and b = 0.0224.

As in the first example, several adjustments had to be
made to the computed values for the wk . We adjusted

w1 from 23 to 15;
w2 from 25 to 29;
w3 from 21 to 22;
w4 from 12 to 37.

The final values for the wk are listed in table 2 of the
appendix.

The graph of the second example’s growth quotient
Q (x) is shown for x > cn in figure 3.

0.5

1

1.5

2

2.5

328 366 536

Figure 3: Q (x) for the second example

For the second example,

Q (366) = 1.0089 and Q (367) = 0.9922.

It follows that the maximum likelihood estimate is

m̂ = 366.

The local minimum of the growth quotient is located
between 536 and 537. The least squares estimate
given in [6] for the example is equal to 388.

Finally, we compare the maximum likelihood esti-
mate obtained in the hypergeometric reliability model
for the second example with the maximum likelihood
estimates obtained in other software reliability models,
see Table 4 in [6] :

model estimate m̂

exponential [4] 455

delayed S-shaped [22] 351

inflection S-shaped [15] 347

hypergeometric 366

The maximum likelihood estimate in the hypergeo-
metric reliability model is much closer to the estimates
in the S-shaped models than to the estimate in the ex-
ponential model.

6 Added in proof

The formula from definition 3 in subsection 2.2 of
this paper is also given in subsection 4.3.3 of the book
[2] . The question of the existence and uniqueness of
maximum likelihood estimates for the hypergeometric
model is also addressed in [2], but the special case B
from subsection 3.2 of this paper is missing in [2] .

References

1. T. M. Apostol : Mathematical Analysis . Addison-
Wesley 1974

2. K.-Y. Cai : Software Defect and Operational Profile
Modeling. Kluwer 1998

3. W. Feller : An Introduction to Probability Theory and
Its Applications. Wiley 1968

4. A. L. Goel, K. Okumoto : ”Time-Dependent Error-
Detection Rate Model for Software Reliability and
Other Performance Measures”, IEEE Transactions on
Reliability 28:3 (1979) 206-211

5. R.-H. Hou, I.-Y. Chen, Y.-P. Chang, S.-Y. Kuo : ”Opti-
mal Release Policies for Hyper-Geometric Distribution
Software Reliability Growth Model with Scheduled De-
livery Time”, Proceedings Asia-Pacific Software Engi-
neering Conference APSEC (1994) 445-452

6. R.-H. Hou, S.-Y. Kuo, Y.-P. Chang : ”Applying Vari-
ous Learning Curves to Hyper-Geometric Distribution
Software Reliability Growth Model”, Proceedings In-
ternational Symposium on Software Reliability Engi-
neering ISSRE 5 (1994) 8-17

7. R.-H. Hou, S.-Y. Kuo, Y.-P. Chang : ”Hyper-
Geometric Distribution Software Reliability Growth
Model with Imperfect Debugging”, Proceedings Inter-
national Symposium on Software Reliability Engineer-
ing ISSRE 6 (1995) 195-200

8. R.-H. Hou, S.-Y. Kuo, Y.-P. Chang : ”Efficient Alloca-
tion of Testing Resources for Software Module Testing
Based on the Hyper-Geometric Distribution Software
Reliability Growth Model”, Proceedings International
Symposium on Software Reliability Engineering ISSRE
7 (1996) 289-298

9. R.-H. Hou, S.-Y. Kuo, Y.-P. Chang : ”Needed Re-
sources for Software Module Test, Using the Hyper-
Geometric Software Reliability Growth Model”, IEEE
Transactions on Reliability 45:4 (1996) 541-549

10. R.-H. Hou, S.-Y. Kuo, Y.-P. Chang : ”Optimal Release
Policy for Hyper-Geometric Distribution Software-
Reliability Growth Model”, IEEE Transactions on Re-
liability 45:4 (1996) 646-651

11. R.-H. Hou, S.-Y. Kuo, Y.-P. Chang : ”Optimal Release
Times for Software Systems with Scheduled Delivery
Time Based on HGDM”, IEEE Transactions on Com-
puters 46:2 (1997) 216-221

12. R. Jacoby, Y. Tohma : ”The Hypergeometric Distri-
bution Software Reliability Growth Model: Precise
Formulation and Applicability”, Proceedings Interna-
tional Computer Software and Applications Conference
COMPSAC (1990) 13-19

13. R. Jacoby, Y. Tohma : ”Parameter Value Computa-
tion by Least Squares Method and Evaluation of Soft-
ware Availability and Reliability at Service-Operation
by the Hyper-Geometric Distribution Software Relia-
bility Growth Model”, Proceedings International Con-
ference on Software Engineering ICSE 13 (1991) 226-
237

14. T. Minohara, Y. Tohma : ”Parameter Estimation
of Hyper-Geometric Distribution Software Reliability
Growth Model by Genetic Algorithms”, Proceedings
International Symposium on Software Reliability En-
gineering ISSRE 6 (1995) 324-329

15. M. Ohba : ”Software Reliability Analysis Models”,
IBM Journal of Research and Development 28:4 (1984)
428-443

16. F. Padberg : ”Maximum Likelihood Estimates for
the Hypergeometric Software Reliability Model”,
Technical Report, Universität Karlsruhe, Germany,
2001

17. E. Parzen : Modern Probability Theory and Its
Applications. Wiley 1960

18. Y. Tohma, R. Jacoby, Y. Murata, M. Yamamoto : ”Hy-
pergeometric Distribution Model to Estimate the Num-
ber of Residual Software Faults”, Proceedings Interna-
tional Computer Software and Applications Conference
COMPSAC (1989) 610-617

19. Y. Tohma, K. Tokunaga, S. Nagase, Y. Murata :
”Structural Approach to the Estimation of the Num-
ber of Residual Software Faults Based on the Hyperge-
ometric Distribution”, IEEE Transactions on Software
Engineering 15:3 (1989) 345-355

20. Y. Tohma, H. Yamano, M. Ohba, R. Jacoby : ”Param-
eter Estimation of the Hyper-Geometric Distribution
Model for Real Test/Debug Data”, Proceedings Inter-
national Symposium on Software Reliability Engineer-
ing ISSRE 2 (1991) 28-34

21. Y. Tohma, H. Yamano, M. Ohba, R. Jacoby : ”The
Estimation of Parameters of the Hypergeometric Dis-
tribution and Its Application to the Software Reliabil-
ity Growth Model”, IEEE Transactions on Software
Engineering 17:5 (1991) 483-489

22. S. Yamada, M. Ohba, S. Osaki : ”S-Shaped Reliability
Growth Modeling for Software Error Detection”, IEEE
Transactions on Reliability 32:5 (1983) 475-485

Appendix

k xk uk wk

1 5 4 5
2 5 4 7
3 5 4 7

4 5 4 7
5 6 4 8
6 8 5 10
7 2 5 10
8 7 5 11

9 4 5 11
10 2 5 11
11 31 5 31
12 4 5 12
13 24 5 24

14 49 5 49
15 14 5 14
16 12 5 14
17 8 5 14
18 9 5 15

19 4 5 15
20 7 5 15
21 6 5 16
22 9 5 16

23 4 5 17
24 4 5 17
25 2 5 18
26 4 5 18
27 3 5 18

28 9 6 22
29 2 6 23
30 5 6 23
31 4 6 24
32 1 6 24

33 4 6 25
34 3 6 25
35 6 6 26
36 13 6 26
37 19 8 36

k xk uk wk

38 15 8 36
39 7 8 37
40 15 8 38

41 21 8 38
42 8 8 39
43 6 8 40
44 20 8 40
45 10 8 41

46 3 8 42
47 3 8 42
48 8 4 22
49 5 4 22
50 1 4 22

51 2 4 23
52 2 4 23
53 2 4 23
54 7 4 24
55 2 4 24

56 0 4 24
57 2 4 25
58 3 4 25
59 2 4 25

60 7 4 26
61 3 4 26
62 0 4 26
63 1 4 27
64 0 4 27

65 1 4 27
66 0 3 21
67 0 3 21
68 1 3 21
69 1 3 22

70 0 3 22
71 0 3 22
72 1 3 22
73 1 4 30
74 0 4 30

k xk uk wk

75 0 4 31
76 0 4 31
77 1 4 31

78 2 2 16
79 0 2 16
80 1 2 16
81 0 2 17
82 0 2 17

83 0 2 17
84 0 2 17
85 0 2 17
86 0 2 17
87 2 2 17

88 0 2 18
89 0 2 18
90 0 2 18
91 0 2 18
92 0 2 18

93 0 2 18
94 0 2 19
95 0 2 19
96 1 2 19

97 0 2 19
98 0 2 19
99 0 2 19
100 1 2 20
101 0 1 10

102 0 1 10
103 1 1 10
104 0 1 10
105 0 1 10
106 1 1 11

107 0 1 11
108 0 1 11
109 1 1 11
110 0 1 11
111 1 1 11

Table 1: input data for the first example

k xk tk wk

1 15 2450 15
2 29 2450 29

3 22 1960 22
4 37 980 37
5 2 1680 21
6 5 3370 43
7 36 4210 56

8 29 3370 48
9 4 960 15
10 27 1920 30

k xk tk wk

11 27 2880 46
12 22 1440 24

13 21 3260 57
14 22 3840 69
15 6 3840 72
16 7 2300 45
17 9 1760 36

18 5 1990 41
19 3 2990 64

Table 2: input data for the second example

