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Abstract

An empirical and quantitative comparison of C,
C++, and Java is carried out. The impact of each
language on the development time of a fixed sam-
ple project is estimated. A new estimation method
for the development time is applied which is based
on probability theory. For the sample project, C++

and Java yield better estimates than C. Without
training in object-oriented programming, the C++

estimates for the sample project are worse than the
C estimates. The impact of the programming lan-
guage on the development time cannot be described
by a scale factor.

1 Introduction

In this paper, empirical programmer productiv-
ity data are used to compare the programming
languages C, C++, and Java. The question being
studied is :

Does a particular programming language
save development time ?

The empirical data of this study fall into three
datasets, one for each language. For each dataset,
the development time of a fixed sample project
is estimated. To compute the estimates, a new
estimation method is applied. Comparing the es-
timates for the three languages, a manager should
favor C++ or Java against C as the language for
the sample project. He can expect a 12 % faster
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sample project completion with C++ or Java.
The empirical data are also used to measure

how training in object-oriented programming im-
proves the estimated development time for the
sample project. Some of the programmers in the
C++ dataset have had no OO training. When in-
cluding the productivity data for the untrained
C++ programmers, the time estimate for the sam-
ple project is 25 % higher than for C.

Finally, the empirical data are used to measure
how outliers among the data points change the es-
timated development time for the sample project.
Unexpected long delays are part of the risk inher-
ent to a project. If outliers are disregarded by the
manager, assuming that the next project won’t
run that bad again, the manager might underes-
timate the effort for the next project. Disregard-
ing an outlier in the Java dataset improves the
expected average development time of the sample
project by 12 %.

The estimation method is based on a probabilis-
tic model for software projects. The model reflects
that the development time of a project depends on
which course the project takes. From a manager’s
point of view, the course of a project describes
”what happens at what time”. From his expe-
rience with past projects a manager knows that
some courses are more likely to occur than oth-
ers. The idea behind the model is to compute for
each possible course of a project the probability
that the project will take that particular course.
To compute the probabilities of the courses for a
project, statistical input data are required about
the courses of past projects. The model used in



this paper is an enhanced version of [ 9 ] . For
other approaches to cost estimation such as ma-
chine learning, analogy, and neural networks, see
[ 3 ] [ 10 ] [ 11 ] [ 12 ] .

Application of the model yields a probability
distribution for the project completion time. This
distribution reflects the uncertainty inherent to
the project : a particular completion time will oc-
cur only with a certain probability. From the dis-
tribution of completion time it is straightforward
to compute various kinds of estimates for the de-
velopment time of the project, as well as estimates
for the risk of exceeding deadlines.

The results for the sample project indicate that
the impact of the programming language on the
development time of a software project is non-
linear. This is in clear contrast to more sim-
plistic estimation models where some scale factor
(”cost driver ”) is used for the programming lan-
guage. The impact of the language is non-linear
in the probabilistic model because the model com-
bines statistical productivity data for the individ-
ual teams with high-level design data for the es-
timated project. The high-level design data mea-
sure the degree of coupling between the compo-
nents of the software. Differences between the pro-
gramming languages result in different productiv-
ity data for the teams, but even if the impact of
the language on the productivity of a team could
be described by a scale factor the structure of the
software enters the model in a non-linear way. As a
consequence, the impact of the programming lan-
guage on the development time must be studied
again with every new project.

It is unlikely that the specific numerical results
of this study can be transferred to other applica-
tion domains, companies, or projects : the method
can be transferred. Therefore, a large part of the
paper explains . . .

• how the required empirical data looks like;
• how to compute the input distributions from

the empirical data ;
• how to obtain the time and risk estimates ;
• how to visualize and interpret the results.

The empirical data come from university pro-
gramming classes. In the classes, 17 students pro-

grammed with C, 25 with C++, and 9 with Java.
Dependencies between some of the programming
exercises in the classes provided the motivation for
the sample project estimated in this paper. To val-
idate the time estimates obtained from the prob-
abilistic model, one must run the sample project
for each of the languages several times with differ-
ent programmers. Since finding enough volunteers
for a controlled validation experiment is a concern,
we are currently changing the setup of the class so
that we can collect validation data over the next
academic semesters.

There seem to be only few empirical studies
which assess how the programming productiv-
ity depends on the programming language. In
[ 1 ] Ada is compared against Fortran. Studying
ten Ada projects, the authors find no significant
change in effort distribution but an increase in
reuse leading to lower delivery cost for Ada. In
[ 2 ] one small system is developed eight times by
different teams using C++. The authors find that
reuse reduces the defect density and the amount
of rework, and increases productivity. In [ 4 ] SML
is compared against C++. One programmer devel-
ops twelve different programs, all from the same
application domain, in each of the two languages.
The authors find much more reuse for SML than
for C++. In [ 5 ] maintenance data for two large
systems are compared, one system written in C
and the other in C++. The author finds that
fixing faults takes much longer for C++ than C.
In [ 6 ] one system is prototyped using ten differ-
ent languages. The authors find that the Haskell
prototype took less time to develop and was easier
to understand than the Ada and C++ prototypes.
In [ 8 ] one system is developed in both Scheme and
Java. The authors report that the coding times,
testing times, and debugging times were similar
for the two languages.

2 Probabilistic model

2.1 Projects

In the model, a software project consists of sev-
eral development teams. Based on the high-level
design of the software, each team is assigned one
component to work on. The teams start working



at the same time and keep working until their com-
ponents are completed. The teams work in par-
allel, but not independently : problems with the
software’s high-level design which are detected in
one component may lead to rework in other com-
ponents.

2.2 States

As a project advances, the software’s design will
be revised from time to time because of problem
reports. In the model, the time span between two
consecutive designs is called a phase. Each phase
lasts one or more time slices. ThUs, time is dis-
crete in the model. For industrial projects, one
slice might correspond to a day or a week.

At any point of (discrete) time the state of a
team is represented by the net development time
that the team has spent working on its compo-
nent, measured in slices. The net development
time for a team is obtained from its total develop-
ment time by substracting all rework times that
the team has spent fixing high-level design prob-
lems. A value of infinity indicates that the team
has finished developing. Note that the state of a
team must be measurable in practice. A metric
such as ”x percent completed ” would be hard to
measure.

The state of the project at the end of a phase
is a vector

ζ = ( ζ 1 , ζ 2 , . . . ζN )

where ζ i is the state of team i at the end of
the phase, and N is the number of teams. The
course of the project is modelled as a sequence
ζ ( 1 ) , ζ ( 2 ) , . . . of states, where ζ ( j ) is
the project’s state at the end of phase j. The
sequence of states is supplemented by the num-
bers d1 , d2 , . . . specifying the length of each
phase.

For example, this might be the course of a
project with three teams :

( 0, 0, 0 )

0

( 3, 3, 3 )

4

( 4, 5, 4 )

6

(∞, ∞, ∞ )

9

The state at the beginning is ( 0 , 0 , 0 ). In the
first phase, a problem gets detected after 4 slices.
The problem involves all three teams. Each team
has already worked for four slices, but the teams
are set back by one slice because they will need
the next slice for fixing the problem. Therefore,
the state of the project after the first phase is
( 3 , 3 , 3 ). In the second phase, another problem
gets detected after 2 slices. The problem involves
the first and the third team. Both teams are set
back by one slice again. Therefore, the state af-
ter the second phase is ( 4 , 5 , 4 ). In the third
phase, all teams complete their component, the
last team after 3 slices. Thus, the state after the
third phase is (∞ , ∞ , ∞ ).

2.3 Probabilities

The transition probability

Pζ ( d, η )

is the probability for ending the next phase after
d time slices with state η given that the previous
phase ended with state ζ .

To compute the transition probabilities, statis-
tical data and design data are required as input;
see the following subsections. As soon as the tran-
sition probabilities are known for all possible val-
ues of ζ , d , and η , one can compute the proba-
bility P ( ω ) that the project will take a particular
course ω by multiplying the transition probabili-
ties which correspond to that course. Recall that a
course of the project is a sequence of state vectors.
For example,

P( 0,0,0 ) ( 4 , ( 3, 3, 3 )) · P( 3,3,3 ) ( 2 , ( 4, 5, 4 ))

is the probability that a three-team project will
advance in its first and second phase as described
in the preceding subsection.

The probability that the project will need ex-
actly x time slices to complete is equal to

ϕ ( x ) =
∑

{ ω : f (ω ) = x }
P( ω ) .

The sum runs over all successful courses ω whose
length of time f ( ω ) is x time slices. A course



is successful when all teams have completed their
component. The length of a course is computed
by summing up the lengths dj of the phases. The
probability distribution ϕ of the project comple-
tion time is given for the sample project in sub-
section 5.1.

2.4 Statistical data

The statistical data required as input to the
model are a measure of the pace at which the
teams have made progress in past projects. The
base probabilities

P( E i
k ) and P ( Di

k )

are the probabilities that team number i will
report a problem ( event E i

k ) or will complete
its component ( event D i

k ) after a net develop-
ment time of exactly k slices. In addition, the
probability of rework time

P( R i
k )

is the probability that team number i will need
exactly k slices to fix a design problem. For later
use, set

p i =
∑

k

P( E i
k ) and q i =

∑

k

P ( Di
k ) .

Depending on the size of the database, a man-
ager will distinguish between different team pro-
ductivity levels and component complexity classes
when computing the base probabilities from the
records of past projects. For a particular team
and component, the manager will . . .

• look at all components developed by the team
in past projects ;

• classify the components according to their
complexity, using a complexity measure of his
choice;

• in each complexity class, look at the records
to find out the development times and rework
times ;

• in each complexity class, compute the net
times and the probability distributions ;

• choose the probability distributions which are
best suited for the given component.

The base probabilities for the sample project are
computed from the empirical data in subsections
4.4 to 4.6.

2.5 Design data

The design data required as input to the model
are a measure for the strength of coupling between
the software’s components. The stronger the cou-
pling is the more likely it is that problems detected
in one component will lead to rework in other com-
ponents. For nonempty subsets K and X of the
set of components the dependency degree

α (K, X )

is the probability that changes in the software’s
design will extend over exactly the components X
given that the problems causing the redesign were
detected in the components K . For example,

α ( { 3 }, { 1, 2, 3 } )

is the probability that a problem detected in the
third component will lead to changes in the first,
second, and third component. The dependency
degrees for the sample project are computed from
its high-level design in subsection 4.7.

3 Sample project

3.1 Database

The empirical data were collected during pro-
gramming classes at Karlsruhe in the years 1996
through 1999. The classes were offered to com-
puter science students at the graduate level. The
classes followed the lines of the ”Personal Soft-
ware Process” [ 7 ] . The goal of the classes was
to help the students identify their programming
weaknesses, such as their typical programming er-
rors, and improve their effort estimation skills.

There were ten programming exercises in each
class, numbered 1A through 10A, which had to be
completed one exercise a week in ascending order.
Each student was free to choose the programming
language for the exercises. Besides C, C++, and
Java, other programming languages were used as
well. The students worked at home using the pro-
gramming environment they were familiar with.



With each exercise, the students were required to
fill out estimation forms during planning, time
and defect logs during programming, and sum-
mary forms after completing the program. The
students had to submit the forms together with
the source code to the instructor for evaluation.
The students were assured that the productivity
and defect data they provided were not used for
grading, so they had no reason to fake the data.

3.2 Components

The idea for the sample project came from look-
ing at the requirements and the solutions for ex-
ercises 4A, 5A, 6A, and 9A. The programs offer
simple statistics functions. Program 4A is a linear
regression program. Program 6A computes the
prediction interval for the linear regression esti-
mate. Program 9A performs the χ2 test on nor-
mality. Program 5A offers numerical integration
of real functions, which is required for the com-
putation of both the prediction interval and the
normality test. Program 5A also offers the inte-
gral of the standard normal distribution, which is
required by the normality test. Corresponding to
exercises 5A, 6A, and 9A, the sample project gets
divided into three components :

normal distribution
numerical integration

�
�

�
�

�
�

�
�

�
�

�
�prediction interval normality test

first component (5A)

second component (6A) third component (9A)

An arrow means ”uses”. There is no direct link
between the second and the third component.

In the sample project, each component is as-
signed to a different team and the components are
developed all at the same time. Since the compo-
nents are small, a team consists of only one pro-
grammer in the sample project, but this doesn’t
make a difference to the probabilistic model. The
requirements do not change during the project.
There are no assumptions made about the soft-
ware engineering methods used. How long would
such a project take to complete ?

3.3 Redesigns

In some cases, a change to program 5A became
necessary while a student was working on 6A. The
numerical integration code in exercise 5A accepted
a pointer to the integrand function f as a pa-
rameter. The function f was called from inside
the integration code at various points. Here is a
stripped version of the corresponding C code :

numint(f)

float (*f) (float);
{
... (*f)(x) ...

In exercise 6A, however, several functions had
to be integrated which were all from a family
( fn )n=1, 2, ... of similar functions. Instead of
having a different pointer for each fn it was natu-
ral to have a single pointer to a function F which,
depending on the value of a variable n, behaved as
one of the functions fn . The students found two
ways of programming a solution.

The first way was to hide the variable n from
the numerical integration code, for example as an
external variable in C or in the class definition
for F in Java, and to set n to the right value
before calling the integration code. In that case,
the numerical integration code wasn’t changed.

The second way was to provide the value of n as
an additional parameter to the numerical integra-
tion and then call F from inside the integration
code with n as a parameter :

numint(F, n)

float (*F)(int, float);
int n;
{

... (*F) (n, x) ...

In that case, the numerical integration code had to
be changed. In the sample project where all three
components would get developed at the same time,
the need to change the code of the first component
would lead to a problem report and later a redesign
of the software.

Which solution had been chosen by a student
was determined by looking at the source code of
exercises 5A and 6A. Both solutions occured with



all three programming languages, even Java. In an
industrial setting, the fact that a redesign occured
in a project would have to be seen from the project
documentation.

4 Empirical input data

4.1 Data points

In the classes, there was a total of 51 students
using either C, C++, or Java. One of the students
programming with C did not work on exercise 9A,
as did two of the students programming with C++.
The following table gives the number of different
students for each of the programming languages
and exercises :

C C++ Java

5A 17 25 9
6A 17 25 9
9A 16 23 9

There were much fewer students using Java than C
or C++, which must be kept in mind when compar-
ing the project estimates for the three languages.
In an industrial setting there frequently will be a
different number of data points for the different
components when estimating a software project.

4.2 Development times

For each exercise, the students had to fill out a
”Project Plan Summary” form. The form includes
a table which contains the actually measured de-
velopment time for the exercise :

Time in Phase Plan Actual Sum

Planning
Design
Design Review
Code
Code Review
Compile
Test
Postmortem

Total

In the ”Actual” column the student fills in the
times that he actually spent in the listed devel-
opment phases. The other two columns are not
of interest here. The times are specified as min-
utes. The times spent in the development phases

are summed up in the ”Total” field. The develop-
ment time input data for this paper is taken from
the ”Total” field. The ”Planning” field and the
”Postmortem” field include the time needed for
filling out all the forms. In an industrial project,
the development time includes all the paperwork,
too.

4.3 Time slices

The measured development times for the exer-
cises are in the range of 1 to 22 hours. Suppose
for a moment that one time slice in the model cor-
responds to 30 minutes of real time. A real time
of 6:44 then is 14 time slices in the model. Do-
ing this conversion for all measured development
times of, say, exercise 9A programmed with C++,
yields a bar chart which displays for each number
of time slices its relative frequency :

0

1

2

3

4

1 44

30min

As will be explained in subsection 4.5, the chart
is close in shape to the chart we get for the base
probabilities of completing the third component
when using 30 minutes as the length of the time
slices. The problem is apparent now : the bars are
scattered over the chart because of variation in the
empirical data, and many bars correspond to one
data point only. In other words, a time slice of 30
minutes is too small to reasonably bundle up the
data points.

To find a better value for the length of a time
slice, some experimentation is needed. Since there
are only few data points for Java, which leaves the
Java charts scattered even for a time slice of 60
minutes, the length of a slice is set to 120 minutes.

It is not necessary to have all gaps closed in
the chart. In particular, it is natural for empirical
data to show some outliers. There also is a tradeoff
here, because the longer one time slice is the more
precision will be lost for the project estimates.



Depending on how long one time slice is com-
pared to the measured development times, it may
be appropriate to do some rounding when con-
verting the measured times into slices. For exam-
ple, with a two hour time slice a real time of 4:12
would count as 3 slices although it is much closer
to 2 slices. For the remainder of the paper, times
that exceed a multiple of two hours by not more
than 15 minutes will be rounded down.

4.4 Probabilities of problem reports

In the programming classes, the change to pro-
gram 5A described in subsection 3.3 was the only
redesign which occured and involved exercises 5A,
6A, and 9A. Here is a table specifying for each lan-
guage how many students worked on 6A and how
many times the change occured :

C C++ Java

students 17 25 9
redesigns 5 8 1

Note that adapting program 4A while working on
6A does not count as a redesign in the sample
project and does not contribute to the probabil-
ities of problem reports. Neither 5A nor 9A use
4A, nor is there a separate team developing 4A in
the sample project.

Program 5A doesn’t use any functionality from
6A or 9A. Thus it is assumed that no problems
with the design will be detected by the first team
in the sample project, and p 1 is set to zero.

Program 9A uses numerical integration the
same way program 6A does : a family of similar
functions gets integrated. In the sample project,
the second and third component are developed at
the same time. Thus it is assumed that a problem
report is as likely to come from the third team as
from the second, and p 2 and p 3 are set equal.

Probabilities p 2 and p 3 together amount to
the empirically measured relative frequency r of
changes to program 5A. For example, the relative
frequency r is 5

17 for C. In the model, compo-
nents are developed independently during a phase.
Elementary probability theory gives the equation
p 2 + p 3 − p 2 · p 3 = r . Solving the equation
for p 2 (or p 3) gives p 2 = p 3 = 1 − √

1 − r .

Here are the resulting values for each language,
specified as percentages :

C C++ Java

r 29.4 32.0 11.1
p 1 0 0 0
p 2 16.0 17.5 5.7
p 3 16.0 17.5 5.7

Splitting the relative frequency r between the
second and the third component is necessary for
the sample project only because of the special set-
ting in which the empirical data were collected :
the exercises were programmed one after another.
If the empirical data came from industrial projects
one would count separately for each component i

of the planned project the relative frequency ri of
problem reports among the data points which are
used for estimating that component, and take ri

as the value for p i .
When working on an exercise, students usually

switched several times between designing, cod-
ing, compiling, and testing. The students had to
note the time when they switched the development
mode on a ”Time Log” form. The comments field
of the form was used to note the reason for switch-
ing. The forms were not filled out detailed enough
to read off the time when a student changed 5A
while working on 6A. As a makeshift, it is assumed
for the sample project that all points in time up to
the maximum measured development time for the
second component are equally likely for a problem
to get reported. The same is assumed for the third
component. Thus,

P ( E i
k ) =

p i

m i − 1

where m i denotes the number of slices corre-
sponding to the maximum net development time
for component i , and k ranges from 1 to m i − 1.
The values for the m i are :

C C++ Java

m 1 5 10 6
m 2 11 9 7
m 3 7 11 10

To sum up, the base probabilities of problem
reports for the sample project are as follows. The
percentages are rounded to two decimal digits :



C C++ Java

P (E 1
k ) 0 0 0

P (E 2
k ) 1.60 2.19 0.95

P (E 3
k ) 2.67 1.75 0.64

4.5 Probabilities of component completion

The probability that the team working on com-
ponent i of the sample project will complete the
component without reporting a problem, given
that the team doesn’t get interrupted to do some
rework because of design changes, is

q i = 1 − p i .

The percentages of the q i for each language are :

C C++ Java

q 1 100.0 100.0 100.0
q 2 84.0 82.5 94.3
q 3 84.0 82.5 94.3

In general, the measured development times of
a component include rework times spent with fix-
ing high-level design problems. The rework times
must be substracted from the measured devel-
opment times to get the net development times.
Among the data points used for estimating com-
ponent i of the sample project, the data points
which had a net development time of k slices are
counted and their relative frequency s i

k is com-
puted. The base probabilities of completion time
for component i then have the values

P ( Di
k ) = q i · s i

k

where k ranges from 1 to mi .
For exercise 5A, the measured development

times can be taken as net development times be-
cause no high-level design problems occured while
program 5A was being developed. Recall that the
change to 5A described in subsection 3.3 was made
while 6A was being developed. The measured
times for exercise 5A, programmed in C, and the
corresponding numbers of slices are :

2:11 1 2:15 1 4:32 3 9:25 5
3:50 2 4:11 2 4:15 2 3:00 2
6:26 4 1:40 1 6:01 3 3:43 2
6:28 4 3:26 2 1:10 1 1:59 1
3:04 2

Two of the seventeen data points have (net)
development time equal to four slices, so s1

4 =
2
17 . Since q 1 is one, the relative frequencies s 1

k

already are the probabilities of component com-
pletion for the first team in the sample project if
the language is C :

k P (D1
k )

1 29.41
2 41.17
3 11.77
4 11.77
5 5.88 0.0

41.2

1 5

C #1

For C++ and Java, the charts showing the base
probabilities for the first team look like this :

0.0

32.0

1 10

C++ #1

0.0

55.6

1 6

Java #1

The empirical data for C++ shows an outlier,
k = 10. We shall come back to this outlier in
subsection 5.2.

For exercise 6A, the measured development
times include rework times spent for changing pro-
gram 5A. The exact rework times could not be
taken from the ”Time Log” forms because the
forms hadn’t been filled out by the students de-
tailed enough. As a makeshift, the rework times
are estimated to have been between 15 and 30
minutes, and the measured development times are
rounded accordingly. With empirical data from in-
dustrial projects the rework times would be seen
from the project documentation.

For C and exercise 6A the measured develop-
ment times are :

∗8:30 1:41 4:48 20:25 ∗4:57 9:15 10:45
4:43 12:54 3:59 ∗7:40 ∗5:29 ∗5:16 6:04
2:45 2:23 4:15

The development times for exercise 6A which in-
clude some time for changing program 5A are



marked with an asterisk. Among these times, the
8:30 is rounded down to 4 slices to take into ac-
count the rework time. The corresponding base
probabilities for the second team are :

k P (D2
k )

1 4.94
2 19.77
3 29.65
4 9.88
5 4.94
6 4.94
7 4.94
11 4.94

0.0

29.7

1 11

C # 2

For C++ and Java, the charts showing the base
probabilities for the second team look like this :

0.0

23.1

1 9

C++ # 2

0.0

31.4

1 7

Java #2

For exercise 9A, the measured development
times can be taken as net development times. Re-
call that the change to 5A described in subsection
3.3 was made while 6A was being developed. The
measured times for exercise 9A, programmed in C,
and the corresponding base probabilities for the
third team are :

4:21 6:32 13:42 5:58 14:03 9:33 5:09
11:31 3:50 9:14 4:44 10:09 5:17 2:11
3:36 5:03

k P (D3
k )

1 5.24
2 10.50
3 31.50
4 5.24
5 15.76
6 5.24
7 10.50

0.0

31.5

1 7

C # 3

For C++ and Java, the charts showing the base
probabilities for the third team look like this :

0.0

28.7

1 11

C++ #3

0.0

31.4

1 10

Java #3

The data for Java shows an outlier, k = 10. We
shall come back to the outlier in subsection 5.4.

4.6 Probabilities of rework times

The development times for the exercises are
small. Therefore, a team is set back in the sample
project by only one time slice if a redesign occurs
which involves the team. Thus, the probability of
rework time is

P ( R i
1 ) = 100.0

for all teams. Since a slice is two hours, this will
still overestimate the impact of a redesign.

4.7 Dependency degrees

There are two interfaces in the sample project.
One interface is to the numerical integration code
which is provided by the first team and used by
both the second and the third team. The other
interface is to the integral of the normal distribu-
tion which is provided by the first team and used
by the third team. Thus there are two cases when
a problem report occurs in the sample project. If
the problem relates to the numerical integration
interface, then all three components are involved.
If the problem relates to the interface to the nor-
mal distribution’s integral, then the first and the
third component are involved. Assuming that the
two cases are equally likely, the table for the de-
pendency degrees is :

1 2 3 1, 2 1, 3 2, 3 1, 2, 3

1 0 0 0 0 50 0 50
2 0 0 0 0 0 0 100
3 0 0 0 0 50 0 50

1, 2 0 0 0 0 0 0 100
1, 3 0 0 0 0 50 0 50
2, 3 0 0 0 0 0 0 100

1, 2, 3 0 0 0 0 0 0 100



The table contains one line for each K and one
column for each X . The set braces are left out.

For example, suppose that both the first and the
second team report a problem, so K = { 1 , 2 } .
The problem reported by the first team relates to
the first or the second interface, or both. The
problem reported by the second team certainly re-
lates to the first interface. Therefore, all three
teams will be involved in the redesign. Thus,
X = { 1 , 2 , 3 } with probability 100 %.

5 Results

5.1 Project estimates

Using the probabilistic model, one can compute
from the empirical input data for each of the pro-
gramming languages C, C++, and Java the prob-
ability distribution ϕ for the project completion
time of the sample project. For the C language,
the model yields the following chart :

0.0

18.6

1 16

C

The horizontal axis shows the number x of time
slices and the vertical axis the probability ϕ ( x ).

Managers can obtain a lot of information from
the chart. For example, the chances of complet-
ing the sample project within 12 hours correspond
to the sum of the first six bars, which is about
61 %. Recall that one time slice is two hours. In
other words, if there were a deadline of 12 hours
for completing the project, the risk of not finishing
in time were a high 39 %.

An ”average case ” estimate for the development
time of the sample project is obtained as the (prob-
abilistic) expected value for the chart. To picture
this, multiply the number x of each bar with its
height ϕ ( x ) and sum up. The expected value for
the sample project, programmed with C, is 12.4
hours.

Another development time estimate is obtained
when prescribing a maximum acceptable risk for

the project. For example, if management is willing
to accept a 20 % risk of exceeding the planned de-
velopment time, it is sufficient to plan for a project
duration of 16 hours. This is seen from the chart
by successively adding up the bars until the sum
exceeds 80 %. The number of bars which were
added up corresponds to the development time
which must be planned for. If the maximum ac-
ceptable risk is 10 %, management must plan for
a project duration of 24 hours.

For C++, the chart for the distribution ϕ and
the project estimates are :

C++

average 13.2h
20 % risk 20h
10 % risk 26h
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C++

For Java, the chart for the distribution ϕ and
the project estimates are :

Java

average 11.8h
20 % risk 14h
10 % risk 20h
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Java

The results are compared in subsection 5.3. One
must be careful when interpreting the results for
Java, because they are based on only a few data
points.

5.2 Training impact

The project estimates for C++ are higher than
the estimates for C. For example, the 20 % risk es-
timate is 20 hours for C++ compared to 16 hours
for C. The reason is that six students of the first
programming class who used C++ have had no
training at the university in object-oriented pro-
gramming before taking the class. Their code
looked much like C code with some object-oriented
”overhead” added.

When including only data points for trained
C++ students, the relative frequency r of prob-
lem reports for C++ drops to 26.3 %. Some long



development times for the exercises also drop out,
in particular the outlier data points for exercises
5A and 6A. Because the base probabilities have
improved, the estimates for the sample project im-
prove, too :

C++

average 10.6 h
20 % risk 14 h
10 % risk 16 h
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C++

The time estimates have improved by 20, 30, and
38 % compared to the previous results for C++ .
This clearly shows for the sample project the im-
pact of training when a new technology is intro-
duced into software development. It has previ-
ously been reported in [ 1 ] that extensive train-
ing is needed before the benefits of object-oriented
programming turn out.

5.3 Language comparison

For the comparison, the C++ project estimates
are based on the input data from the C++ stu-
dents who had some training in object-oriented
programming, see the preceding subsection.

From the probability distribution ϕ of project
completion time one can compute the correspond-
ing cumulative distribution Φ for the sample
project. By definition, Φ ( z ) is the probability
that the project will take at most z time slices
to complete, which corresponds to the sum of the
first z bars of the distribution ϕ . The faster the
graph for the cumulative distribution increases the
greater are the chances to complete the project
early. Therefore, the differences between the pro-
gramming languages can be visualized by compar-
ing the Φ-graphs :
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The Φ-graph for C most of the time runs below
the Φ-graph for C++, and there is a horizontal
gap between the two graphs in the upper range.
Thus one can expect faster completion and lower
risk for the sample project when developing with
C++ instead of C. This is reflected by the project
estimates for the two languages :

C C++

average 12.4h 10.6 h
20 % risk 16h 14h
10 % risk 24h 16h

There are two ways to compare the estimates.
First, one can fix the maximum acceptable risk
and look at the corresponding expected develop-
ment times. For example, if a maximum accept-
able risk of 20 % is fixed the expected development
time is 16 hours for C but only 14 hours for C++.
Second, one can fix a deadline and look at the
corresponding risks of exceeding the deadline. For
example, if a deadline of 16 hours is fixed the risk
of exceeding the deadline is 20 % for C but only
10 % for C++.

If the estimates were for an industrial project
extending over several months, an expected 12 %
decrease in development time, respectively, an ex-
pected decrease in risk from 20 % to 10 % would
be a good reason for the manager to favor C++

against C as the programming language for the
project.

Keeping in mind that the number of Java data
points is small, a manager might also favor Java
against C for the sample project when looking at
the risk estimates :

C Java

average 12.4h 11.8 h
20 % risk 16h 14h
10 % risk 24h 20h
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Again, there is a horizontal gap between the
two graphs in the upper range, leading to lower
risk estimates for Java. The picture is less clear
when comparing C++ with Java :

C++ Java

average 10.6 h 11.8h
20 % risk 14 h 14h
10 % risk 16 h 20h
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The 10 % risk estimate is better for C++ than
for Java, but it is hard to tell whether the hor-
izontal gap between the two graphs at the 90 %
range is significant or not. The number of Java
data points is small and there is a sharp bend in
the graph for Java which looks unnatural, see the
next subsection.

5.4 Outliers

Outliers in the input data can have a significant
impact on the project estimates obtained from the
model. For example, the Java outlier k = 10 of
subsection 4.5 for exercise 9A is responsible for the
sharp bend in the Φ-chart for Java. When disre-
garding the outlier, the chart and the estimates
are much closer to the C++ results than before :

C++ Java

average 10.6 h 10.4h
20 % risk 14 h 14h
10 % risk 16 h 14h
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The Java chart looks more natural now. The
outlier might be explained with an unexperienced
student, because the development times of the stu-
dent for the other exercises were rather long, too.
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