
Towards Optimizing the Schedule of Software Projects

with Respect to Development Time and Cost

Frank Padberg∗

Fakultät für Informatik

Universität Karlsruhe, Germany

padberg@ira.uka.de

Abstract . A new probabilistic model for software
projects is presented which explicitly takes a schedul-
ing strategy as input. The model is a basis for applying
stochastic optimization techniques to compute schedules
which minimize the development time and cost. Process
simulation is combined with the optimization techniques
to cut down their computing time.

Keywords. Optimal Software Project Scheduling, Pro-
cess Simulation, Probabilistic Process Models.

1 Introduction

Staff is the most valuable resource today in software
development. There has been a dramatic increase in de-
mand for software over the last decade. As a result, the
supply of software engineers is not even close to meet-
ing the current demand. Since the software business is
still growing and it takes years of university education
and training to become a good software engineer, the
situation is likely not to change in the near future.

In view of the shortage of software developers, it
is even more important than ever that software project
managers plan and schedule their development projects
in such a way that the available developers are de-
ployed as effectively as possible. Scheduling means to
bind developers to activities on a time scale, answering

∗ supported by a post-doctoral fellowship of the Deutsche

Forschungsgemeinschaft DFG at the Graduiertenkolleg

Informatik, Karlsruhe

the question : who must do what, and when? Planning
and scheduling a software project is especially difficult
though, for a number of reasons.

• Software is an immaterial product. Thus, tracking
the actual progress of a software project is difficult,
making it hard for a manager to tell when it’s time
to take controlling action such as reassigning tasks.

• The time needed to complete a particular software
development activity is known only roughly. The
time needed depends on technical factors such as the
complexity of the piece of code to develop, but also
on human factors such as the skill and experience
of the developers. The human factors are hard to
measure.

• It is typical for software projects that activities
which run in parallel interfere with each other. For
example, when an interface between some of the
components in a software system gets extended, all
components which use that interface and which are
under development must be reworked. Because of
the unanticipated rework, the completion time for
the components is delayed. It is extremely hard to
foresee at what times during a project this sort of
feedback between development activities will occur
and how much impact on the progress of the project
it will have.

When assigning tasks to the developers, the manager
must also keep in mind that certain staff might be avail-
able only during certain periods of time. In addition,

there are various precedence relations among the tasks
of a project. For example, a module must be designed
before it can be coded.

Software engineering currently offers little help to
software project managers how to find good schedules
for their projects. On the one hand, effort estimation
does not support scheduling. We get an estimate for
the total development effort required for a project, ex-
pressed in man-days, and an estimate for the project
duration. Some models also provide a distribution over
time of the manpower needed for a project. Both the
curve-fitting models and the more recent models, which
use machine learning [17] , neural networks [19] , and
analogy [16] , do not show individual tasks and devel-
opers. Thus, deriving a schedule is not possible. For an
overview of current effort estimation models see [7] .

On the other hand, the automated software engi-
neering environments which have emerged during the
last decade do not support finding good schedules, too.
Such an environment guides and supports project man-
agers and developers during real software projects. Each
software engineering environment comes with a process
modelling language (often more than one) to formally
describe the software development process in detail. The
description captures the activities to be carried out, the
staff involved, the products to be developed, the tools
available, and the relationships between all those. Al-
though it is possible for a project manager to assign
tasks to developers, software engineering environments
do not assist the manager in making that assignment
best possible in order to meet a given deadline and bud-
get. The manager also can specify a duration (and cost)
for each activity, but the impact of feedback in the soft-
ware process on the duration of activities is not mod-
elled. An exception is [14] . One would like to see the
assignment of tasks to the developers and the duration
of tasks changed by the software engineering environ-
ment automatically in the best possible way whenever
the state of the project has changed. For an overview of
software engineering environments see [4] [6] .

What do we need in order to address the schedul-
ing problem for software projects? First, we need a
model for software projects which quantifies the impact

of scheduling decisions on the development time and
cost of a project. Therefore, scheduling actions such
as stopping a task or reassigning a task must be part
of the model. Feedback in the software process and its
impact on activity durations must be modelled. The
uncertainty inherent to the software process concerning
the duration of activities and the occurence of events
must be modelled. Thus, it is natural for the model to
be probabilistic. In the model, events will occur only
with a certain probability at particular points in time.
Scheduling constraints such as precedence relations be-
tween tasks must be included in the model, too.

Second, we need techniques to compute optimal
scheduling strategies for software projects. A schedul-
ing strategy specifies which scheduling action to take in
view of the current project situation. For example, a
scheduling strategy might allocate most of the staff to
those tasks which seem to be closest to completion, or,
which have been worked on for the longest time. An op-
timal strategy minimizes the project duration (or cost).
Since the underlying project model will be probabilis-
tic, an optimal strategy will be stochastically optimal,
minimizing the expected duration or cost. The opti-
mization techniques must be computationally efficient;
a full search for an optimal strategy in the huge set of
all scheduling strategies is not feasible.

To accomplish the first step, this paper presents a
new model for software projects which explicitly takes
a scheduling strategy as input. No process modelling
language is used, just standard mathematical notations.
The model is probabilistic. If the scheduling strategy is
fixed, the model outputs an estimate for the completion
time. The model describes the software process at a
high level of abstraction, talking about teams working
on software components, not about individual develop-
ers performing activities such as coding a module. Still
the model captures much of the dynamics of software
projects. The intention is to keep the model as lean as
possible for the time being.

The new software project model substantially ex-
tends a previous model described in [11] . The previous
model made some simplifying assumptions with respect
to scheduling. It was assumed that there are as many

teams as there are components in the software, that the
teams all start working at the same time, and that the
teams keep working on their component until it is fin-
ished. Instead of scheduling, the previous model focused
on the feedback which is so typical for software projects :
changes in the software’s design lead to rework. The new
model is presented in section 2 of the paper.

The new model defines a Markov decision process.
This setting points out how to accomplish the second
step : we can apply stochastic optimization techniques
from operations research. These techniques are collec-
tively referred to as stochastic dynamic programming
[1] [3] [15] . An outline of the basic techniques is given
in section 3 of the paper. Although operations research
provides optimization techniques that we can apply, the
particular stochastic models studied there are not ap-
propriate to describe the software process. Closest to
what we need are stochastic project networks [8] [9] . A
stochastic project network can model parallel execution
of activities and repeated execution of activities. Yet the
duration of an activity must not depend on any other
activity which runs at the same time, nor on the dura-
tion of an activity which was performed earlier. In other
words, in a stochastic project network different threads
of execution are stochastically independent, as are dif-
ferent activities belonging to the same thread. These
assumptions do not hold for software projects.

How can we exploit simulation of the software pro-
cess for computing optimal schedules? The state space
of the new software project model and hence the search
space for the optimization procedures will be huge. The
situation is similar to problems studied in machine learn-
ing. In machine learning, repeated simulation of the pro-
cess is exploited successfully to cut down the comput-
ing time of the stochastic optimization techniques. The
techniques used in machine learning are referred to as
reinforcement learning or neuro-dynamic programming
[1] [2] . The simulation-based solutions are known to
converge to the optimal strategy. Therefore, how much
accuracy is lost when using simulation depends on how
much computing time is invested. An outline how to
use simulation for the optimization of software project
schedules is given in section 3 of the paper.

2 The Model

2.1 Software Projects

A software project consists of several development
teams and a project manager. Based on some early
high-level design, the software product is divided into
components. At any time during the project, each team
works on at most one component, and, vice versa, each
component is being worked on by at most one team. It is
not assumed that all teams work all the time, nor that
there are enough teams to work simultaneously on all
the uncompleted components. The assignment of com-
ponents to the teams may change during the project.
Thus, a team usually will work on several different com-
ponents during the project. It is not required that a
team has completed its component before it is assigned
some other component to work on; a team may be
interrupted and re-allocated to another component by
the manager.

Usually, several teams work at the same time, each
on a different component. The teams do not work in-
dependently. From time to time a team might detect a
problem with the software’s high-level design. Since the
components are coupled, for example, through common
interfaces, such a problem is likely to affect other com-
ponents and teams as well. To eliminate the problem,
the high-level design gets revised. If there are additional
problem reports by other teams while the design is be-
ing revised, they are taken into account, too. When
the redesign is completed, some of the components will
have to be reworked because of the design changes, while
others are not affected. To sum up, the progress that
a team makes developing its component depends on the
progress of the other teams.

When all components have been completed, they
are put together and the software gets integration
tested. If errors are detected, a new development cy-
cle begins. The model describes a development cycle
probabilistically.

2.2 Time

Time is discrete in the model. The time axis gets
subdivided into periods of equal length, called time

slices. Think of a time slice as corresponding to, say,
one week in real time. In addition, there is a deadline
for completing the project. If the deadline is exceeded,
the project will be cancelled as a failure.

2.3 Phases

In the model, a project advances through phases.
Each phase lasts for some number of time slices which
may vary from phase to phase. By definition, a phase
ends . . .

• when staff becomes available, or,

• when the software’s high-level design changes.

Staff becomes available when some team completes its
component. Staff also becomes available when some
team completes all rework on a component which al-
ready had been completed earlier in the project but had
to be reworked because of changes to the software’s de-
sign. Changes to the software’s design might be nec-
essary to fix design errors or because of changes in the
requirements.

Scheduling actions take place only at the end of a
phase. Scheduling at arbitrary points in (discrete) time
is not modelled. The rationale behind this restriction
is that is does not make sense to re-schedule a project
as long as nothing unusual happens. At the end of a
phase though, staff is available again for allocation, or
re-scheduling the project might be appropriate because
of some design changes. At that time, the manager may
also interrupt some of the teams and re-allocate them
to other components. For example, the manager might
decide to re-schedule a team to rework a central com-
ponent which had been completed earlier but must be
changed according to the revised design.

2.4 States

The state of a project changes at the end of each
phase. The state ζ of a project by definition consists of
four parts :

• a progress vector ζ p ;

• a rework vector ζ r ;

• an assignment vector ζ a ;

• a countdown ζ c .

The progress vector has one entry for each compo-
nent. The progress ζ p

k of component k is defined as
the net development time that has been spent working
on the component. The net development time is ob-
tained from the total development time by substracting
all rework times spent with adapting the component to
high-level design changes. As a special case, the progress
entry for a component is set to ∞ to indicate that the
component is completed.

The progress made developing a component must
be measurable in practice. A metric such as ”x percent
completed ” would be hard to measure and thus is not
suitable. Development times can be measured though.

The rework vector has one entry for each compo-
nent, too. Rework is caused by changes to the software’s
high-level design. The rework time ζ r

k for component
k is the time that yet must be spent with adapting
the component to high-level design changes. As soon
as a component’s rework time has been counted down
to zero, ”normal” development of the component can
proceed. If the software’s design is changed again while
a component is being reworked, leading to even more
rework for that component, the extra rework is added
to the component’s rework time. That is, the impact of
high-level design changes on a component is assumed to
add up. Once a component has been completed, only
rework may occur for the component in the sequel.

The assignment vector also has one entry for each
component. Entry ζ a

k is the number of the team which
has worked on component k most recently. As a spe-
cial case, the entry equals 0 if none of the teams has
worked on the component yet. Each entry in the as-
signment vector is given a leading plus or minus sign to
indicate whether the specified team has been working
on the component during the last phase or not.

If the work on a component is not yet completed,
which can be seen from the progress vector and the re-
work vector, a leading minus sign in the assignment vec-
tor means that the specified team has been interrupted
by the manager in an earlier phase while working on
the component. A leading plus sign means that the last
phase has ended while the team was still working on the
component. In most cases, it will make sense for the

manager to have the specified team continue working
on the component during the next or some later phase.
Any other team might need considerable time to become
familiar with the component. For the same reason, it
does not make much sense to record the numbers of all
teams that have worked on the component at some time
during the project, because the component will probably
have changed considerably in the meantime.

The countdown is the time left until the project’s
deadline of, say, x0 slices will be reached. The develop-
ment cycle begins with the initial state σ which is de-
fined by σ p

k = σ r
k = σ a

k = 0 for all k , and σ c = x0 .
The development cycle ends when a termination state τ

is reached. In a termination state, the deadline has not
been exceeded (τ c ≥ 0), all components are completed
(τ p

k = ∞), and there is no rework left (τ r
k = 0). The

development cycle also ends when the deadline is passed.

2.5 Actions and Strategies

Scheduling takes place at the end of the phases.
Possible scheduling actions are :

• assigning a component to a team;

• starting a team;

• stopping a team.

A scheduling action is modelled as an action vector
which has one entry for each team. The action a i for
team i is the number of the component the team is
scheduled to work on during the next phase. The entry
is set to −1 if the team is stopped.

Actions may depend on the current state of the
project and the number of the phase †. In most cases,
several actions are possible for a given state and phase.
A scheduling strategy or policy is a function which
(deterministically) specifies a scheduling action for each

† There is some confusion in the literature here. Dependence of

the action on the number of the phase is needed when studying

finite horizon optimization. In that case, optimal actions may

depend on the number of the phase. Optimal actions for infinite

horizon problems do not depend on the number of the phase. On

the other hand, is does not make much sense to have an action

depend on the entire history of the project because the transition

probabilities are always defined to depend on the current state

alone once the action is specified, not on the entire history.

project state and phase. A strategy is called stationary
if the choice of the action depends on the state only,
whence the strategy is a function mapping states into
actions.

2.6 Constraints

A scheduling action is admissible only if it satis-
fies the precedence relations between the components.
At the current level of abstraction, the model considers
precedence relations between whole components only,
not between single development activities such as de-
signing and coding a module. The precedence relations
resemble the task net of other models for the software
process. The relations are specified as a graph or a ta-
ble, which serves as input to the scheduling strategies.
It is assumed that the relations contain no cycles. The
precedence relations can force some re-scheduling at the
end of a phase if a component has to be reworked which
must precede another component that is currently under
development.

An action must satisfy additional constraints to be
admissible. Each team must work on a different com-
ponent. An action must schedule at least one team to
work. If a component has been completed during an ear-
lier phase and there is no rework for that component,
no team may be scheduled to work on the component.
The set of all actions which are admissible if the project
is in state ζ is denoted by A (ζ).

Currently, the model assumes that all teams are
available during the whole project. Any team may be
scheduled to work on any component, but the teams
need not be equally well-prepared for that. Different
skill levels of the teams are modelled using the base
probabilities of the teams, see subsection 2.8.

2.7 Transition Probabilities

Given a project state ζ and a scheduling action a ,
the next state η of the project is not completely deter-
mined since the different events which will end the next
phase will occur only with a certain probability. Define
the transition probability

P (ζ , a ; η)

to be the probability for ending the next phase with
state η given that the previous phase had ended with
state ζ and scheduling action a was taken.

The transition probability P (ζ , a ; η) does not
depend on any information about the project’s history
except its current state and the action chosen. For such
a modelling to make sense the state must contain all
relevant information about the project’s past. The re-
sulting process

ζ (0) , a (0) , ζ (1) , a (1) , . . .

is called a Markov decision process [1] [3][15] . If the
scheduling strategy is fixed, the process

ζ (0) , ζ (1) , . . .

is a Markov process. Since the actions may depend on
the number of the phase, that Markov process is sta-
tionary only if the scheduling strategy is.

To compute the transition probabilities, the follow-
ing input data are required :

• statistical data about past projects;

• high-level design data.

The statistical data are probability distributions speci-
fying for each team how likely it is that the team will
complete its component, report a high-level design prob-
lem, or adapt its component to a design change within
a given time, see subsection 2.8. The design data are
a measure for the strength of the coupling between the
software’s components, see subsection 2.10.

2.8 Statistical Data

The statistical data required as input to the model
are a measure of the pace at which the teams have made
progress in past projects. Define the base probabilities

P (E i
k (t)) and P (D i

k (t))

to be the probabilities that team i will report a prob-
lem (event E i

k (t)) or will complete its component
(event Di

k (t)) after a net development time of t slices
when working on component k . For later use, set

B i
k (t) =

t⋃
s =1

(
E i

k (s) ∪ Di
k (s)

)
.

Event B i
k (t) corresponds to a situation where team i

does not complete component k nor report a problem
with the design for a net period of t slices.

As another statistical input to the model, define the
probability of rework time

P (Rk (t))

to be the probability that it will take t slices to adapt
component k to the latest design changes.

The base probabilities depend upon various human
and technical factors, for example, the software process
employed by the team, the complexity of the component,
and the skills and the experience of the team. The base
probabilities are computed from empirical data collected
during past projects. If the database is sufficiently large,
a manager will distinguish between different team pro-
ductivity levels and component complexity classes when
computing the base probabilities. For a particular team
and component, a manager will . . .

• look at all components developed by the team in
past projects;

• classify the components according to their complex-
ity, using a complexity measure of his choice;

• in each complexity class, look at the records to find
out the development times and rework times;

• in each complexity class, compute the net times and
the probability distributions;

• choose the probability distributions which fit best
to the given component.

Note that the database will automatically adjust to the
local environment in a company.

An example how to compute the base probabilities
and the probabilities of rework time from empirical data
is given in [13] .

2.9 Advance of a Team

Suppose that team i is scheduled to work on com-
ponent k during the next phase (a i = k). To compute
the transition probabilities, we must know how likely it
is that the next phase will end after d slices because
team i finishes its component or detects a problem with

the high-level design. The corresponding probabilities
can be computed from the team’s base probabilities.
There are two cases to consider :

• Component k has not been completed during an
earlier phase (ζ p

k < ∞).

• Component k has been completed during an earlier
phase (ζ p

k = ∞), but there is some rework for the
component to be worked off (ζ r

k > 0).

In the first case, the probability that team i will
complete component k after d more slices is equal to
the conditional probability

P (Di
k (ζ p

k + d − ζ r
k) | B i

k (ζ p
k)) .

Conditioning by the event B i
k (ζ p

k) takes into account
that some teams already have been working on the com-
ponent for a net time of ζ p

k slices. Similarly, the prob-
ability that there will be a redesign of the software after
d more slices because team i detects a problem is equal
to the conditional probability

P (E i
k (ζ p

k + d − ζ r
k) | B i

k (ζ p
k)) .

The rework time ζ r
k must be substracted in both for-

mulas because the first ζ r
k slices during the phase will

be spent by team i reworking the component, which
yields no net progress. By assumption, teams will not
report problems while they are doing rework.

In the second case, team i will complete the rework
after ζ r

k slices, no earlier. Therefore, the probability
that the team will cause the phase to end after d slices
is equal to one if d = ζ r

k and zero otherwise.

We also must know how likely it is that team i

will not cause the next phase to end for a period of
d slices when working on component k . In the first
case, the probability that team i will not complete the
component nor cause a redesign for a period of d slices
is equal to the conditional probability

P (B i
k (ζ p

k + d − ζ r
k) | B i

k (ζ p
k)) .

In the second case, the probability that team i will not
complete the rework for a period of d slices is equal to
one if d < ζ r

k and zero otherwise.

2.10 Design Data

The design data required as input to the model are
a measure for the strength of the coupling between the
software’s components. The stronger the coupling is the
more likely it is that problems originating in one com-
ponent will lead to rework in other components. For ex-
ample, when an interface offered by some component is
extended, all components which use that interface must
be reworked. Often there is more than one link between
two components in a design.

For nonempty subsets K and X of the set of com-
ponents, the dependency degree

α
(
K, X

)
by definition is the probability that changes in the soft-
ware’s design will extend over exactly the components
X given that the problems causing the redesign were
detected in the components K . At least one compo-
nent must be changed if design problems occur. Thus,
X must be nonempty. For example,

α
({ 3 }, { 1, 2, 3 })

is the probability that a problem detected in the third
component will lead to changes in the first three com-
ponents of the software.

The dependency degrees are computed from the
high-level design of the software. This way, the model
explicitly takes the design of the software as input,
which allows to quantify the impact of design decisions
on the delivery date and cost of a project, see [12] .

2.11 Impact of Design Changes

Suppose that a problem with the software’s high-
level design occurs during a phase. The problem leads to
a revision of the design, whence some of the components
must be changed. To compute the transition probabili-
ties, we must know how likely it is that the revision will
have a certain impact on the components.

If one or more design problems occur during a phase
in the set of components K, the probability that there
will be changes to the components in the set X is given
by the dependency degree α

(
K, X

)
. For each compo-

nent k in X , the probability that the amount of rework

to be added to the component’s rework time will be t

slices is given by the probability distribution Rk (t) of
rework times. Therefore, the probability that a design
revision will have a certain impact on the progress of the
project is computed by multiplying the corresponding
dependency degree and probabilities of rework times.

2.12 Transition Probabilities (Continued)

Suppose that a state ζ and an admissible action
a ∈ A(ζ) are given. The next state then is partially
determined. For example, if a team is scheduled by the
action to work on a particular component, the entry
for the component in the next state’s assignment vec-
tor must be set accordingly. Many combinations of ζ

and a with a state η as the next state therefore will
be inconsistent. As a result, many transition probabili-
ties will be equal to zero and need not be considered in
computations.

To compute the transition probability P (ζ , a ; η)
for some state η take the following steps :

• compute the length d of the phase which passes
between ζ and η

• check whether the action a and the two assignment
vectors ζ a and η a are consistent

• check whether the progress vector η p and the re-
work vector η r are valid

• compute the set X of components which must be
changed as part of the latest redesign, and the
amount of additional rework for these components

• determine the set K of components where the re-
design comes from

• multiply the right base probabilities, dependency
degrees, and probabilities of rework time.

The length d of the phase which passes between
states ζ and η is equal to the difference ζ c − η c of the
countdowns. The length of the phase must be greater
than zero, otherwise the transition probability is set
to zero.

Since the action a is admissible, it is consistent
with the assignment vector ζ a . The new assignment
vector η a is completely determined by the action a

and the old assignment vector ζ a . If team i is sched-
uled to work on component k by the action, the entry
for component k in the next state’s assignment vector
must be η a

k = i . If no team is scheduled to work on
component k , the entry must be η a

k = ζ a
k . If the new

assignment vector η a is any different from that, the
transition probability is set to zero.

Several checks must be performed on the progress
vector and the rework vector of state η to see whether
η is a valid next state for ζ when action a is taken. For
example, only those components k which are worked on
during the phase can have net progress or their rework
time counted down. There are several basic cases to
consider :

• there already is some net progress for component k

(ζ p
k > 0) or not

• some team works on component k during the phase
(η a

k > 0) or not

• component k had already been completed in some
earlier phase (ζ p

k = ∞) or not

• there is enough time to achieve net progress for com-
ponent k during the phase (d > ζ r

k) or not.

The following table shows which values of η p
k and η r

k

in the next state’s progress vector and rework vector are
valid. Just disregard the tk column for the moment.

case η p
k η r

k tk

η a
k ≤ 0

ζ p
k = 0

0 0 0

η a
k ≤ 0

ζ p
k > 0

ζ p
k ≥ ζ r

k η r
k − ζ r

k

η a
k > 0

ζ p
k = ∞ ∞ ≥ ζ r

k − d η r
k − (ζ r

k − d)

η a
k > 0

ζ p
k < ∞

d > ζ r
k

∞ or

ζ p
k + (d − ζ r

k)
≥ 0 η r

k

η a
k > 0

ζ p
k < ∞

d ≤ ζ r
k

ζ p
k ≥ ζ r

k − d η r
k − (ζ r

k − d)

If the new state η deviates from any of the values or
bounds specified in the table, the transition probability
is set to zero.

The table also shows by how much additional re-
work tk component k will be set back because of the
latest design changes. The set X of components which
must be changed is

X =
{

k
∣∣ tk > 0

}
.

There might be additional rework even for components
on which no team works during the phase. The set X

may be empty. If X is nonempty, at least one team
reports a design problem during the phase.

The set M of all teams which are scheduled to work
during the phase is computed from the action a as

M =
{

i
∣∣ a i > 0

}
.

The set M is a disjoint union of several subsets M1

through M4 . The subset M1 consists of all teams which
just complete their component at the end of the phase
and is computed as

M1 =
{

i
∣∣ η p

ai
= ∞ but ζ p

ai
< ∞ }

.

The subset M4 consists of all teams which just com-
plete all rework on a component that had already been
completed in an earlier phase and is computed as

M4 =
{

i
∣∣ ζ p

ai
= ∞ and d = ζ r

ai

}
.

The subset M2 consists of all teams which report a
design problem during the phase. The set M3 consists
of all teams which are still working at the end of the
phase.

In most cases, the sets M2 and M3 are not de-
termined by the action a and the states ζ and η . For
example, think of two scenarios where a different team
reports a design problem in each scenario. Both problem
reports may lead to design changes in the same set of
components and to the same amount of rework for each
of the changed components. Therefore, if not already set
to zero because of inconsistencies, the transition proba-
bility P (ζ , a ; η) is a sum

P (ζ , a ; η) =
∑
Z

P (Z)

where the sum runs over all partitions Z of the set
M \ (M1 ∪ M4) into two sets M2 and M3 . For each

partition Z , the probability P (Z) which contributes
to the transition probability is computed as a product
of several factors :

• For each team in M , one factor comes from the base
probabilities, as described in subsection 2.9.

• One factor comes from the dependency degree for
K and X , as described in subsection 2.11. Here,

K =
{

a i

∣∣ i ∈ M2

}
.

• For each component k in X , one factor comes from
the distribution Rk (t) of rework time for that com-
ponent, as described in subsection 2.11. The value
of tk from the table given above is used as the pa-
rameter t .

2.13 Proof

The transition probabilities P (ζ , a ; η) yield a
Markov decision process only if for each state ζ and
each action a the probabilities for all possible transi-
tions to some other state η sum up to one. That is,

∑
η

P (ζ , a ; η) = 1 .

The proof of this equation runs along the same lines as
the proof given in [10] for the previous model [11] .

3 Optimization Using Simulation

3.1 Cost Functions

Associate with the transition from a state ζ to
some state η the transition cost

g (ζ , a ; η) .

The cost of a transition depends on the scheduling action
a taken. For example, in the software project model the
transition cost may be the length d = ζ c − η c of the
phase which passes between ζ and η . The transition
cost also may be the staffing cost for the phase, which
depends on the length of the phase, the set of teams
scheduled to work during the phase, the cost per week
for teams which work, and the cost per week for teams
which wait to be scheduled.

Each state ζ is also assigned a terminal cost

g (ζ)

which is incurred when ending the process in state ζ .
For example, in the software project model the terminal
cost of a state which corresponds to the project being
cancelled as a failure might be some financial penalty.
Termination states, which correspond to a successful
outcome of the project, have zero terminal cost.

Using the transition costs, one can assign to any
finite sequence

ω = ζ (0) , a (0) . . .

. . . ζ (m − 1) , a (m− 1) , ζ (m)

of state-action pairs its cost

g (ω) =
m−1∑
i =0

g (ζ (i) , a (i); ζ (i + 1))

by summing up the costs of all the transitions in the
sequence †. The sequence ω can be viewed as the path
or the course of the project when observed for a period
of m phases from state ζ (0) on. For the software
project model, the first state ζ (0) in a sequence ω

need not be equal to the initial project state σ .

Given a state ζ and an action a , the next state
of the process will be η only with a certain probability.
The expected cost for the next transition is

∑
η

P (ζ , a ; η) · g (ζ , a ; η) .

The probability that the process will proceed from state
ζ according to a sequence ω is equal to the product

P (ω) =
m−1∏
i =0

P (ζ (i) , a (i); ζ (i + 1))

of the corresponding transition probabilities. Thus,
given a strategy π the expected n-stage cost-to-go for
state ζ is computed as

Gπ
n (ζ) =

∑
Ω π

n (ζ)

P (ω) · (
g (ω) + g (ζ (n))

)
.

† We are a bit sloppy with the notation here, using g with

transitions, states, and state-action sequences as parameters.

The set Ωπ
n (ζ) consists of all sequences ω which start

with state ζ , have n stages, and are controlled by the
strategy π, that is, for which a (i) = π (i, ζ (i)).
The functions Gπ

n are called the cost-to-go functions of
the strategy π.

For the software project model, a stage is the same
as a phase. Since a project must succeed before the
deadline of x0 time slices is exceeded, a project will
last for at most x0 phases. The expected project cost
when scheduling according to π then is

E cost = Gπ
x0

(σ) .

It is understood here that a sequence which terminates
successfully before the deadline is exceeded has zero
transition costs afterwards.

3.2 Optimal Strategies

Optimizing the schedule of software projects with
respect to development time or cost amounts to solving
the following stochastic optimization problem :

Find a scheduling strategy which has minimal
cost-to-go functions in the Markov decision model
for software projects.

A strategy π has minimal cost-to-go functions if

Gπ
n (ζ) ≤ G µ

n (ζ)

for all strategies µ, stages n , and states ζ . An optimal
strategy will be stochastically optimal, minimizing the
expected cost. The cost function g for the software
project model is either the development time function
or the staffing cost function described at the beginning
of subsection 3.1.

The search space for the optimization problem con-
sists of all possible scheduling strategies. The search
space is far too huge to perform a full search. The key
to finding an optimal strategy is the observation that
an optimal action for state ζ with n stages to go must
minimize the sum of

• the expected cost for the next transition and

• the expected optimal cost with n − 1 stages to go.

Denote by G �
n (ζ) the optimal expected cost for state

ζ with n stages to go. Formally, the observation says :

G �
n (ζ) =

min
a∈A(ζ)

∑
η

P (ζ , a ; η) ·(
g (ζ , a ; η) + G �

n−1 (η)
)
.

This is Bellman’s equation of stochastic dynamic pro-
gramming [1] [3] [15] . The proof of Bellman’s equation
relies on the Markov property of the transition proba-
bilities for the underlying stochastic process.

Once the optimal cost-to-go functions have been
computed, an optimal strategy is obtained by choosing
the actions in such a way that the minimum in Bellman’s
equation is attained for all stages n and states ζ . The
optimal cost-to-go functions are unique, of course, but
there might be more than one optimal strategy.

Bellman’s equation gives an iterative algorithm to
compute the optimal cost and an optimal strategy for
a Markov decision process. The algorithm is known as
backwards dynamic programming. Start with the termi-
nal costs of the states as the optimal zero-stage costs,

G �
0 (ζ) = g (ζ) .

Then, compute the optimal one-stage costs from Bell-
man’s equation for all states ζ . Then, compute the opti-
mal two-stage costs, and so on. For the software project
model, the terminal cost of a state which corresponds
to the project being cancelled as a failure should be set
to some high value to make that state look bad to the
optimization algorithm as a last state.

3.3 Policy Iteration

Computing the optimal expected cost and an op-
timal strategy using backwards dynamic programming
is increasingly expensive as the number of states grows.
For the software project model, the number of states
will be huge, growing exponentially with the number of
components.

Based on Bellman’s equation, another algorithm
for computing an optimal strategy has been devel-
oped, called policy iteration, which computationally is
more efficient [1] [3] [15] . Policy iteration generates a
sequence

π1 , π2 , . . .

of policies and terminates after finitely many iterations
with an optimal policy. The sequence of policies gener-
ated is improving in the sense that the cost-to-go func-
tions improve with each iteration :

Gπk+1
n (ζ) ≤ Gπk

n (ζ)

for all stages n to go, states ζ , and iterations k . The
policy iteration algorithm alternates between a policy
evaluation step and a policy improvement step.

• Policy Evaluation Step. Evaluate policy πk by
computing all its cost-to-go functions Gπk

n .

• Policy Improvement Step. Obtain the next policy
πk+1 by performing the minimization of Bellman’s
equation, but using the cost-to-go functions Gπk

n

of the last policy πk instead of the yet to be deter-
mined optimal cost-to-go functions G �

n .

Formally, the improvement step determines the actions
of the next policy πk+1 in such a way that the equation

Gπk+1
n (ζ) =

min
a∈A(ζ)

∑
η

P (ζ , a ; η) ·(
g (ζ , a ; η) + Gπk

n−1 (η)
)

holds for all n and ζ . The equation means that πk+1

chooses the action with n stages to go best possible
when assuming that the following actions will be chosen
according to πk . The algorithm stops if the new policy
does not improve the last one for at least one state,
whence both policies are optimal. The algorithm gets
initialized by choosing some policy π0 . The closer the
cost of the initial policy π0 is to the optimum, the fewer
iterations are necessary before the algorithm terminates
with an optimal strategy.

3.4 Simulation

To evaluate a given strategy in the evaluation step
of the policy iteration algorithm, all of the strategy’s
cost-to-go functions must be computed. This compu-
tation is expensive if the number of states is large. In
machine learning, where the number of states usually
is large, simulation has been successfully employed to
approximate the cost-to-go functions Gπ

n of a given
strategy π, see [2] . The idea is . . .

• to generate sample trajectories of the process, start-
ing from state ζ and scheduling according to π ;

• to compute the cost for each sample trajectory;

• to take the mean of the sample costs as an approxi-
mation of the strategy’s cost-to-go for state ζ .

The sample mean is

G̃π
n (ζ) =

1
S

·
S∑

m =1

sn (ζ , m)

where sn (ζ , m) denotes the cost of sample number
m for state ζ with n stages to go, and S denotes the
number of such samples obtained from the simulation.
The sample mean is taken as an approximation for the
cost-to-go :

G̃π
n (ζ) ≈ Gπ

n (ζ) .

The sample mean is known to converge to the cost-to-go
function with probability one [2] . Therefore, the accu-
racy of the approximation depends only on the number
of simulation runs.

It is possible to use a given trajectory to obtain a
cost sample for each state visited by the trajectory. For
each intermediate state ζ (k) of the trajectory, consider
the segment ζ (k) , ζ (k + 1) , . . . to get cost samples
for state ζ (k) with 1 up to n = N − k stages to go,
where a simulation trajectory is stopped after N stages.
Doing so is feasible because of the Markov property of
the process. Once a trajectory gets to some state, the
statistics of the future only depend on that state, not on
the sequence of states visited before. Therefore, during
a simulation an update formula [2] can be used if state
ζ occurs in a trajectory at stage n for the m-th time :

G̃π
n (ζ) : = G̃π

n (ζ) +

1
m

· (
sn (ζ , m) − G̃π

n (ζ)
)
.

The approximate cost-to-go G̃π
n (ζ) is initialized with

zero. The update formula is applied to each state visited
by a simulation trajectory.

A given strategy may tend to stay in a subset of all
possible states. In that case, states from the subset will
be more likely to occur during simulation than others.
Thus, the cost-to-go estimates for states in the subset

will be more accurate than for states outside. This is a
problem when using simulation for the evaluation step in
the policy iteration algorithm. When using simulation,
the improvement step is

Gπk+1
n (ζ) =

min
a∈A(ζ)

∑
η

P (ζ , a ; η) ·(
g (ζ , a ; η) + G̃πk

n−1 (η)
)
.

One can see that cost-to-go estimates are needed for
all states η with P (ζ , a ; η) �= 0. Suppose that some
state η is needed during the improvement step and that
the simulation for the last strategy πk did not reach
state η enough times to obtain a reasonable cost-to-go
estimate for the state. One can then postpone the im-
provement step and go back to simulating the process
with πk as the strategy and η as the first state. This
approach is called iterative resampling [2] . Iterative re-
sampling has the advantage that states which are not
needed for the policy improvement step do not use up
simulation time.

For the software project model, a phase is simu-
lated by ”throwing a dice ” which behaves according to
the base probabilities, dependency degrees, and prob-
abilities of rework time. No state can occur twice in
a sample trajectory since the countdown is part of the
project state. This avoids some technical problems with
multiple visits to the same state in a single trajectory.
Experience with simulating the previous project model
suggests that the simulations of the new model can be
both accurate and fast.

4 Research

The next step is to implement a computer pro-
gram which is based on the new software project model
and combines policy iteration with process simulation to
compute optimal schedules. Once the program is avail-
able, a number of interesting research questions can be
tackled, including :

• How far away from the optimum are the strategies
that managers use in real projects?

• Should we develop components which are strongly
coupled to several other components early or late in
the project?

• Does the model reflect the results obtained by other
researchers about schedule compression?

References

1. Bertsekas : Dynamic Programming and Optimal Con-

trol I+II. Athena Scientific 1995

2. Bertsekas, Tsitsiklis : Neuro-Dynamic Programming.

Athena Scientific 1996

3. Derman : Finite State Markovian Decision Processes .

Academic Press 1970

4. Derniame, Ali Kaba, Wastell : Software Process : Prin-

ciples, Methodology, and Technology. Lecture Notes in

Computer Science 1500, Springer 1999

5. El Emam, Madhavji : Elements of Software Process As-

sessment and Improvement. IEEE Computer Society

Press 1999

6. Finkelstein, Kramer, Nuseibeh : Software Process Mod-

elling and Technology. Research Studies Press 1994

7. Gray, MacDonell : ” A Comparison of Techniques for

Developing Predictive Models of Software Metrics ”,

Information and Software Technology 39 (1997) 425-437

8. Neumann : Stochastic Project Networks . Lecture Notes

in Economics and Mathematical Systems 344, Springer

1990

9. Neumann : ” Scheduling of Projects with Stochastic

Evolution Structure ”, see [18] 309-332

10. Padberg : Schätzung der Erfolgsaussichten, der Dauer

und der Kosten von Softwareprojekten mit strengen

wahrscheinlichkeitstheoretischen Methoden. Disserta-

tion (in German), Universität Saarbrücken 1998

11. Padberg : ”A Probabilistic Model for Software Pro-

jects ”, Proceedings ESEC/ FSE 7 (1999) 109-126, Lec-

ture Notes in Computer Science 1687, Springer 1999

12. Padberg : ” Linking Software Design with Business Re-

quirements – Quantitatively ”, Second International

Workshop on Economics-Driven Software Engineering

Research, see Proceedings ICSE 22 (2000) 811

13. Padberg : ” Estimating the Impact of the Program-

ming Language on the Development Time of a Software

Project ”, submitted

14. Raffo, Kellner : ” Modeling Software Processes Quanti-

tatively and Evaluating the Performance of Process Al-

ternatives ”, see [5] 297-341

15. Ross : Introduction to Stochastic Dynamic Programm-

ing. Academic Press 1983

16. Shepperd, Schofield, Kitchenham : ”Effort Estimation

Using Analogy ”, Proceedings ICSE 18 (1996) 170-178

17. Srinivasan, Fisher : ” Machine Learning Approaches to

Estimating Software Development Effort ”, IEEE Trans-

actions on Software Engineering 21-2 (1995) 126-137

18. Weglarz : Project Scheduling. Recent Models, Algo-

rithms, and Applications. Kluwer 1999

19. Wittig, Finnie : ” Using Artificial Neural Networks and

Function Points to Estimate 4GL Software Develop-

ment Effort ”, Australian Journal of Information Sys-

tems 1 (1994) 87-94

