
More E�cient Serialization and RMI for Java

Michael Philippsen, Bernhard Haumacher, and Christian Nester

Computer Science Department, University of Karlsruhe
Am Fasanengarten 5, 76128 Karlsruhe, Germany

[phlippjhaumajnester]@ira.uka.de
http://wwwipd.ira.uka.de/JavaParty/

To appear in: Concurrency: Practice & Experience, Vol. 11, 1999.

Abstract. In current Java implementations, Remote Method Invoca-
tion (RMI) is too slow, especially for high performance computing. RMI
is designed for wide-area and high-latency networks, it is based on a slow
object serialization, and it does not support high-performance commu-
nication networks.
The paper demonstrates that a much faster drop-in RMI and an e�cient
drop-in serialization can be designed and implemented completely in Java
without any native code. Moreover, the re-designed RMI supports non-
TCP/IP communication networks, even with heterogeneous transport
protocols. We demonstrate that for high performance computing some of
the o�cial serialization's generality can and should be traded for speed.
As a by-product, a benchmark collection for RMI is presented.
On PCs connected through Ethernet, the better serialization and the
improved RMI save a median of 45% (maximum of 71%) of the runtime
for some set of arguments. On our Myrinet-based ParaStation network
(a cluster of DEC Alphas) we save a median of 85% (maximum of 96%),
compared to standard RMI, standard serialization, and Fast Ethernet; a
remote method invocation runs as fast as 80 �s round trip time, compared
to about 1.5 ms.

1 Introduction

From the activities of the Java Grande Forum [8, 20] and from early compar-
ative studies [7] it is obvious that there is growing interest in using Java for
high-performance applications. Among other needs, these applications frequently
demand a parallel computing infrastructure. Although Java o�ers appropriate
mechanisms to implement Internet scale client/server applications, Java's remote
method invocation (RMI, [23]) is too slow for environments with low latency and
high bandwidth networks, e.g., clusters of workstations, IBM SP/2, and SGI Ori-
gin.

1.1 Breakdown of RMI cost

We have studied the cost of a remote method invocation on two platforms:

{ two PCs: 350 MHz Pentium II, running Windows NT 4.0 Workstation, iso-
lated from the LAN to avoid packet collisions but connected to each other
by Ethernet, JDK 1.2 (JIT enabled).

{ a cluster of 8 Digital Alphas: 500 MHz, running Digital UNIX, connected by
Fast Ethernet, JDK 1.1.6 (regular JIT; the JDK 1.2beta was too buggy).

For three di�erent types of objects we measured the time of a remote invocation
of ping(obj) returning the same obj. A part of this time is spent when commu-
nicating over existing socket connections. We have timed this separately (round
trip), but including serialization. Finally, we measured the time needed for the
JDK-serialization of the argument alone, i.e. without any communication.

Table 1. Ping times (�s) of RMI (=100%), socket communication (including serial-
ization), and just JDK-serialization alone. The argument obj has either 32 int values,
4 int values plus 2 null pointers, or it is a balanced binary tree of 15 objects each of
which holds 4 ints.

�s per object 32 int 4int 2null tree(15)

RMI ping(obj) 2287 1456 3108
PC socket(obj) 1900 83% 1053 72% 2528 81%

serialize(obj) 840 37% 368 25% 1252 40%

RMI ping(obj) 7633 4312 14713
DEC socket(obj) 6728 88% 2927 68% 12494 85%

serialize(obj) 4332 57% 1724 40% 9582 65%

Table 1 gives the results; other types of objects behave similarly. For large
objects with array data the RMI overhead is about constant, so that serialization
and low-level communication dominate the overall cost. As a rule of thumb
however, Java's object serialization takes at least 25% of the cost of a remote
method invocation. The cost of serialization grows with growing object structures
and up to 65% in our measurements. The percentage is bigger for slower JDK
implementations. The RMI overhead is in the range of 0.4 to 2.2 milliseconds.
Benchmarks conducted by the Manta team [22] show similar results.

1.2 Organization of this Paper

We present work on all three areas (serialization, RMI, and network) to achieve
best performance improvements. After a discussion of related work in section 2,
section 3 discusses the central optimization ideas and the design issues of a
better serialization. Section 4 presents the key ideas and the design of a much
leaner RMI. Both our serialization and our RMI can be used (individually or in
combination) as drop-in replacements for standard JDK equivalents. They are
written entirely in Java and are portable. Section 5 brie
y presents the Myrinet-
based ParaStation network that we use instead of Ethernet to demonstrate that
our RMI can easily be used over non-TCP/IP networking hardware. Section 6
discusses the benchmark collection and quantitative results.

2 Related Work

The idea of a remote procedure call, RPC, has been around at least since 1976
[26]. After the �rst paper designs, numerous systems have been built; Corba and
DCOM are this evolutionary process's latest outgrowths.

The earliest systems focusing on latency and bandwidth of RPCs, include the
Cedar RPC [1] by Birrell and Nelson and the Fire
y RPC [17] by Schroeder and
Burrows. Thekkath and Levy [19] study the design space of RPC mechanisms
on several high-speed networks and identify the performance in
uence of all
hardware and software components needed to implement an RPC, including
network controller and cache system.

It is known from this and other work that for a low-latency and high-
bandwidth RPC at least the following optimizations need to be applied:

{ Stubs marshal user data into network packets; skeletons unmarshal the data.
Marshaling routines need to be fast and need to avoid copying. Explicit and
precompiled marshaling routines are needed. Thekkath even includes them
into the kernel. The Fire
y RPC reuses network packets and allows direct
access to the packet data to avoid additional copying.

{ A pool of processes or threads to handle incoming calls must be created
ahead of time, so that their creation time is not added to the duration of
the RPC. Analogously, a pre-allocated network packet should be assigned to
any caller in advance.

{ Upon an incoming call, the process or thread dispatcher should be able
to switch immediately to the single process or thread that waits for that
message.

{ For small/short RPCs it might be advantageous if the caller spins instead
of performing a blocking wait for the return message. Similarly, it might be
better on the side of the callee to have the network thread execute user code.
Both will save context switches and hence cache
ushes.

{ Datagram based solutions are faster than connection oriented protocols. All
the features provided by the communication hardware should be exploited
to reduce software overhead. For example, computation of packet checksums
is better done in hardware. If the network does not drop any packets, there
is no need to implement acknowledgement in software. Thus, any portable
RPC design must allow to use platform speci�c and optimized transport
layer implementations.

RMI extends the ideas of RPC to Java [23]. In contrast to earlier RPC sys-
tems, RMI is designed for a single language environment, where both caller and
callee are implemented in Java. The two most essential di�erences are that RMI
enables the programmer to use a global object model with a distributed garbage
collector. Second, polymorphism works on remote calls, i.e., every argument can
be of its declared type or of any subtype thereof. Polymorphism is not possible
in conventional RPC systems (including Corba, DCOM, and RMI-over-IIOP)
because it requires dynamic loading and binding of stub code.

Unfortunately, Sun's design and implementation of RMI does not address
high performance. Whereas fast RPC implementations have learned to exploit
hardware features, Sun's RMI seems to prevent exactly this. First, since Java
disallows direct access to memory it is hard to avoid copying; pre-allocated net-
work packets cannot be used. Second, since RMI is tied to connection-oriented
TCP/IP-sockets, the socket API prevents streamlining the fast path needed for
a fast RMI: for example, there is no way to teach the scheduler how to switch di-
rectly to a waiting thread and there is no way to get rid of the status information
needed for socket connections but unnecessary for remote method invocations.
Special features of (non-Ethernet) high-performance communication hardware
cannot be exploited.

It is a signi�cant engineering problem to keep RMI's de�nition and API, but
to redesign it internally so it becomes possible to capitalize on existing knowledge
on e�cient RPC implementations. Moreover, the distinctions between RMI and
RPC pose at least two new problems. Whereas arguments and results of RPCs
were of primitive data types (and structures thereof), RMI can ship Java object
graphs. Sun's implementation of marshaling uses Java's object serialization and
is hence done in a very general way by means of type introspection. Not a
lot of work has been done on fast marshaling of Java object graphs. A second
problem is related to the insight that a fast RPC should exploit features of the
communication hardware: Although distributed garbage collectors can favorably
exploit hardware features as well, the current design of RMI does not allow to
use optimized distributed garbage collectors at all.

Our work is the �rst that addresses the whole problem: it achieves a fast
serialization of Java object graphs and re-engineers RMI in general so that non-
TCP/IP-networks can be used and that many of the optimization ideas known
from RPC can be implemented. In addition, optimized distributed garbage col-
lectors can be used. Since our work is implemented entirely in Java it is truly
portable and can be used as drop-in replacement for Sun's RMI. However, some
of the optimization ideas (like direct access to network packets) cannot be im-
plemented since native code would be required.

Some other groups have published ideas on aspects of a more e�cient RMI
implementation or on better serialization as well.

{ At Illinois University, work has been done on an alternative object serial-
ization, see [21]. Thiruvathukal et al. experimented with explicit routines to
write and read an object's instance variables. In our work, we use explicit
routines as well but show that close interaction with the bu�er management
can improve the performance.

{ Henri Bal's group at Amsterdam is currently working on the compiler project
Manta [22]. Manta has an e�cient remote method invocation (35 �s for a
remote null invocation, i.e., without serialization) but it does not have an
e�cient RMI package. Manta is based on a transparent extension of Java for
distributed environments; the remote invocation is part of that environment
and cannot be used as a separate RMI package. Manta compiles a subset
of Java to native code on a high-performance network of PCs. The imple-

mentation of serialization involves the automatic generation of marshaling
routines which avoid dynamic inspection of the object structure and make
use of the fact that Manta knows the layout of objects in memory. The paper
does not mention performance numbers on serialization of general objects,
i.e., graphs. Similar to this work, we use explicit marshaling routines. How-
ever, our work sticks to Java, avoids native code, is easily retargetable to
other high-performance communication hardware, and is portable. Our seri-
alization and RMI packages can be used (individually or in combination) as
a drop-in replacement by anybody. They do not require particular platforms
or particular native compilers.

{ There are other approaches to Java computing on clusters, where object
serialization is not an issue. For example, in Java/DSM [27] a JVM is imple-
mented on top of Treadmarks [10]. Since no explicit communication is nec-
essary and because all communication is handled by the underlying DSM,
no serialization is necessary. However, although this approach has the con-
ceptual advantage of being transparent, there are no performance numbers
available to us.

{ Two groups (Welsh [25], Chang and von Eicken [4]) work on direct access
to underlying machine resources for communication purposes. Welsh imple-
mented a subset of RMI which is barely faster than Sun's RMI. Chang and
von Eicken implemented an interface to VIA for fast communication but
did not provide any support for RMI. To achieve e�ciency, both groups use
memory regions that are not handled by the JVM.

{ An orthogonal approach is to avoid object serialization by means of object
caching. Objects that are not sent will not cause any serialization overhead.
See [12] for the discussion of a prototype implementation of this idea and
some performance numbers.

{ Whereas the impact of serialization performance on Grande applications is
obvious, serialization will become relevant for Corba as well. Future versions
of IIOP (Internet inter-ORB protocol) will apply serialization techniques
[15].

{ Horb [6] and Voyager by ObjectSpace [14] are alternative distributed object
technologies available for Java. In contrast to our work they are neither
drop-in replacements of RMI nor are they designed for high-performance
computing over non-TCP/IP networks.

{ Breg et al. [3] at Indiana University have studied RMI interoperability and
performance. In particular they have ported a subset of RMI to run over
the Nexus runtime system. In contrast to this work, our design can eas-
ily be retargeted to arbitrary communication networks and achieves better
performance.

3 Improving Serialization Performance

3.1 Basics of Object Serialization

Object serialization [18] is a signi�cant functionality needed by Java's RMI im-
plementation. When a method is called from a remote JVM, method arguments

are either passed by reference or by copy. For objects and primitive type values
that are passed by copy, object serialization is needed: The objects are turned
into a byte array representation, including all their primitive type instance vari-
ables and including the complete graph of objects to which all their non-primitive
instance variables refer. This wire format is unpacked at the recipient and turned
back into a deep copy of the graph of argument objects. The serialization can
copy even cyclic graphs from the caller's JVM to the callee's JVM; the serializa-
tion keeps and monitors a hash-table of objects that have already been packed
to avoid repetition and in�nite loops. For every single remote method invoca-
tion, this table has to be reset, since part of the objects' state might have been
modi�ed.

In general, programmers do not implement marshaling and unmarshaling.
Instead, they rely on Java's re
ection mechanism (dynamic type introspection)
to automatically derive an appropriate byte array representation. However, pro-
grammers can provide routines (writeObject or writeExternal) that do more
speci�c operations. These routines are invoked by the serialization mechanism
instead of introspection. Similar routines must be provided for the recipient.

From the method declaration, the target JVM of a remote invocation knows
the declared types of all objects expected as arguments. However, since RMI
supports polymorphism the concrete type of individual arguments can be any
subtype thereof. Hence, the byte stream representation needs to be augmented
with type information. Any implementation of remote method invocation that
passes objects by value will have to pass the type as well.

In the remainder of this paper, the term \serialization" refers to the function-
ality of writing and reading byte array representations in general. The o�cial
implementation of serialization that is available in the JDK is called \JDK-
serialization". Our implementation is called \UKA-serialization".

For regular users of object serialization, it is a nice feature that the JDK
o�ers general code that can do the marshaling and unmarshaling automatically
by dynamic type introspection of the object. For high performance computing
however, better performance can be achieved by means of explicit marshaling
which can be generated automatically. Manta generates such routines during na-
tive compilation. We are working on a tool to generate Java marshaling methods
by means of a class-�le transformation.

The following sections 3.2 to 3.4 will discuss the patterned areas of the bars
of Figure 1. The UKA-serialization can avoid all of them. The cost of serializa-
tion drops from the total bars to the white boxes when the UKA-serialization
is used instead of the JDK-serialization. Suggestions for further improvements
and details on the design of the UKA-serialization code are discussed in sec-
tions 3.5 to 3.7. The quantitative e�ects of UKA-serialization are summarized
in section 3.8.

3.2 Slim Encoding of Type Information

Persistent objects that have been stored to disk must be readable even if the
ByteCode that was originally used to instantiate the object is no longer available.

Explicit Marshaling Routine

0

200

400

600

Write Read

µs
/O

bj
ec

t

Slim type information (section 3.2)
Internal buffering (section 3.4a)
Buffer accessibility (section 3.4b)
Keeping type information on reset (section 3.3)
UKA serialization

Fig. 1. The full bars show the times needed by the JDK-serialization to write/read an
object with 32 int values with explicit marshaling routines. We have used JDK 1.2beta3
(JIT enabled) on a 300 MHz Sun Ultra 10/Ultra Sparc IIi, running Solaris 2.6. (We
have noticed similar results on our PC and DEC platform with other JDK releases.)
The JDK-serialization o�ers two wire protocols. Although protocol 2 is default, RMI
uses protocol 1 because it is slightly faster. Our comparisons use protocol 1 as well.
The patterned areas show the individual savings due to the optimizations discussed in
sections 3.2 to 3.4. By switching on these optimizations, only the times of the lower
white boxes remain. Similar e�ects can be observed for other types of objects, see
Table 2.

Therefore, the JDK-serialization includes the complete type description in the
stream of bytes that represents the state of an object being serialized.

For parallel Java programs on clusters of workstations and DMPs this degree
of persistence is not required. The life time of all objects is shorter than the
runtime of the job. When objects are being communicated it is safe to assume
that all nodes have access to the same ByteCode through a common �le system.
Hence, there is no need to completely encode the type information in the byte
stream and to transmit that information over the network. Instead, the UKA-
serialization uses a textual encoding of class names and package pre�xes. Even
shorter representations are possible.

Simplifying type information has improved the performance of serialization
signi�cantly, see Figure 1.

3.3 Two types of Reset

To achieve copy semantics, every new method invocation has to start with a
fresh hash-table so that objects that have been transmitted earlier will be re-
transmitted with their current state.1 The current RMI implementation achieves
that e�ect by creating a new JDK-serialization object for every method invoca-
tion. An alternative implementation could call the serialization's reset method
instead.

The problem with both approaches is that they not only clear the information
on objects that have already been transmitted. But in addition, they clear all
the information on types.

The UKA-serialization o�ers a new reset routine that only clears the object
hash-table but leaves the information on types unchanged. The dotted areas of
the bars of Figure 1 show how much improvement the UKA-serialization can
achieve by providing a second reset routine.

3.4 Better Bu�ering

The JDK-serialization has two problems with respect to bu�ering.

a) External versus Internal Bu�ering. On the side of the recipient, the JDK-
serialization does not implement bu�ering strategies itself. Instead, it uses
bu�ered stream implementations (on top of TCP/IP sockets). The stream's
bu�ering is general and does not know anything about the byte representa-
tion of objects. Hence, its bu�ering is not driven by the number of bytes that
are needed to marshal an object.

The UKA-serialization handles the bu�ering internally and can therefore
exploit knowledge about an object's wire representation. The optimized bu�ering
strategy reads all bytes of an object at once. The patterned areas marked 3.4a
in Figure 1 shows the cost of external bu�ering.

b) Private versus Public Bu�ers. Because of the external bu�ering used by the
JDK-serialization, programmers cannot directly write into these bu�ers. Instead,
they are required to use special write routines.

UKA-serialization on the other hand implements the necessary bu�ering it-
self. Hence, there is no longer a need for this additional layer of method invoca-
tions. By making the bu�er public, explicit marshaling routines can write their
data immediately into the bu�er. Here, we trade the modularity of the original
design for improved speed. The patterned areas marked 3.4b indicate the addi-
tional gain that can be achieved by having the explicit marshaling routines write
to and read from the bu�er directly.

1 As we have mentioned in the Related Work section, caching techniques could be used
to often avoid retransmission.

3.5 Re
ection Enhancements

Although we haven't implemented it in the UKA-serialization because of our
pure-Java approach, some benchmarks clearly indicate that the JNI (Java native
interface) should be extended to provide a routine that can copy all primitive-
type instance variables of an object into a bu�er at once with a single method
call. For example, class Class could be extended to return an object of a new
class ClassInfo:

ClassInfo getClassInfo(Field[] fields);

The object of type ClassInfo then provides two routines that do the copying
to/from the communication bu�er.

int toByteArray(Object obj, int objectoffset,

byte[] buffer, int bufferoffset);

int fromByteArray(Object obj, int objectoffset,

byte[] buffer, int bufferoffset);

The �rst routine copies the bytes that represent all the instance variables into the
communication bu�er (ideally on the network interface board), starting at the
given bu�er o�set. The �rst objectoffset bytes are left out. The routine returns
the number of bytes that have actually been copied. Hence, if the communication
bu�er is too small to hold all bytes, the routine must be called again, with
modi�ed o�sets.

Some experiments indicate that the e�ect of accessible bu�ers, see Fig-
ure 1(3.4a+b), would increase if such routines were made available in the JNI.

3.6 Handling of Floats and Doubles

In scienti�c applications,
oats and arrays of
oats are used frequently (the same
holds for doubles). It is essential that these data types are packed and unpacked
e�ciently.

The conversion of these primitive data types into a machine-independent byte
representation is (on most machines) a matter of a type cast. However, in the
JDK-serialization, the type cast is implemented in a native method called via JNI
(Float.floatToIntBits(float)) and hence requires various time consuming
operations for check-pointing and state recovery upon JNI entry and JNI exit.
We therefore recommend that JIT-builders inline this method and avoid crossing
the JNI barrier.

Moreover, the JDK-serialization of
oat arrays (and double arrays) currently
invokes the above-mentioned JNI-routine for every single array element. We have
implemented fast native handling of whole arrays with dramatic improvements,
as shown in Figure 2. This, however, cannot be done in pure Java and is left for
JVM vendors to �x.

:ULWH REMHFWV ZLWK IORDW DUUD\V

�

����

����

����

����

�����

� ��� ��� ��� ��� ����

�IORDWV�DUUD\

WL
P
H�
R
E
MH
FW

��
V�

IORDW>@ ZULWH

IORDW>@�QDWLYH ZULWH

5HDG REMHFWV ZLWK IORDW DUUD\V

�

����

����

����

����

�����

� ��� ��� ��� ��� ����

�IORDWV�DUUD\

WL
P
H�
R
E
MH
FW

��
V�

IORDW>@ UHDG

IORDW>@�QDWLYH UHDG

Fig. 2. Serialization of
oat arrays (same benchmark setup).

3.7 Design

This section deals with the technical aspects of designing UKA-serialization so
that it can properly be added to the JDK library. Although the JDK-serialization
seems to be extensible, several `un-object-oriented' tricks were needed. Since this
section does not present any further optimization ideas it may be skipped by
readers who are not very familiar with the details of JDK-serialization.

An important characteristic of the UKA-serialization is that it only improves
the performance for objects that are equipped with explicit marshaling and un-
marshaling routines discussed above. We call these objects UKA-aware objects.
For UKA-unaware objects, the UKA-serialization does not help. Instead, stan-
dard JDK-serialization is used. Therefore, the JDK-serialization code must { in
some way or another { still be present in any design of the UKA-serialization.

In the paragraphs below, we discuss in a increasingly detailed way why
straightforward approaches fail and why subclassing the JDK-serialization im-
poses major problems. Paragraph (e) then shows a design that works.

a) CLASSPATH approach fails. The necessary availability of standard JDK-
serialization code rules out a design that is based on CLASSPATH modi�cations.

The straightforward approach to develop a drop-in replacement for the JDK-
serialization is to implement all the improvements directly in a copy of the exist-
ing serialization classes (java.io.ObjectOutputStream and ...InputStream).
The resulting classes must then shadow the JDK classes in the CLASSPATH so
that the original classes will no longer be loaded.

The advantage of this approach is that existing code that uses serialization
functionality need not be changed in any way. By simply modifying the CLASS-
PATH, one can switch from the JDK-serialization to a drop-in serialization.

The disadvantage of this approach is that it is not maintainable. Unfortu-
nately, the source code of the JDK-serialization keeps changing signi�cantly from
version to version and even from beta release to beta release. Keeping the drop-in
implementation current and re-implementing all the improvements in a changing
code base is quite a lot of work, especially since existing JDK-serialization needs
to survive.

Another straightforward CLASSPATH approach fails: it is impossible to sim-
ply rename the JDK-serialization classes and put UKA-classes with the original
names into the CLASSPATH. This idea does not work, since the renamed classes
can no longer access some native routines because the JNI encodes class names
into the names of native methods.

Since for early versions of the UKA-serialization we have su�ered under quick
release turn-over we decided that the maintainability problem is more signi�cant
than the advantages gained by this approach. Therefore, UKA-serialization is
designed as subclasses of JDK-serialization classes.

b) Consequences of Subclassing the JDK-Serialization. Designing the UKA-
serialization by subclassing the JDK-serialization causes two general disadvan-
tages.

First, existing code that uses serialization functionality has to be modi�ed
in two ways: (a) the UKA-subclass needs to be instantiated wherever a JDK-
parent-class has been created before. Additionally (b), every existing user-de�ned
subclass of a JDK-class needs to become a subclass of the corresponding UKA-
class, i.e., the UKA-classes need to be properly inserted into the inheritance
hierarchy. These modi�cations are su�cient since the UKA-serialization objects
are type compatible with the standard ones due to the subclass relationship.

Even if the source of existing code is not available, the class �les can be
retro�tted to work with the UKA-serialization. Our retro�tting tool modi�es
the class �le's constant table accordingly. After retro�tting, a precompiled class
creates instances of the new serialization instead of the original one.

Using the retro�tting trick we were able to use the UKA-serialization in
combination with RMI although most of the RMI source code is not part of the
JDK distribution.2

The second general disadvantage is that the security manager must be set
to allow object serialization by a subclass implementation. There is no way to
avoid a check by the security manager because it is done in the constructor of
JDK's ObjectOutputStream.

For using the UKA-serialization from RMI, this is not a big problem, since
the RMI security manager allows serialization by subclasses anyway.

c) Problems when Subclassing the JDK-serialization. Unfortunately, after sub-
classing the JDK-serialization, the standard implementation can no longer be
used. This is due to a very restrictive design that prevents reuse.

Since writeObject is �nal in ObjectOutputStream it cannot be overridden
in a subclass. The API provides an alternative, namely a hook method called
writeObjectOverride that is transparently invoked in case a private boolean

ag (enableSubclassImplementation) is set to true. This
ag is true only if the
parameter-less standard constructor of the JDK-serialization is used for creation,
i.e., only if the serialization is implemented in a subclass. The standard construc-
tor however does (intentionally) not properly initialize ObjectOutputStream's
data structures and thus prevents using the original serialization implementa-
tion.3

There are two approaches to cope with that problem. The �rst approach uses
delegation in addition to subclassing. Although the existing code of the JDK-
serialization is not touched, the necessary code gets quite complicated. Moreover,
for certain constellations of instanceof-usage this approach does not work at
all. See paragraph (d) for the details.

The implementation of the UKA-serialization does not use the delegation
approach. Instead we moderately and maintainably changed the existing JDK-
serialization classes to enable reuse. This is more \dirty" but results in a cleaner
overall design. See paragraph (e).

d) Subclassing plus Delegation. The only way out without touching
the implementation of the JDK-serialization is to allocate an additional
ObjectOutputStream delegate object within the UKA-serialization. Its
writeObject() method is invoked whenever a UKA-unaware object is serial-
ized. Since the delegate object can be created lazily, it does not introduce any
overhead unless UKA-unaware objects are serialized.

Subclassing plus delegation has two disadvantages. First, it is not as sim-
ple as it appears. But more importantly, it does not work correctly under all
circumstances.

2 Only three RMI classes needed retro�tting, namely java.rmi.MarshalledObject,
sun.rmi.server.MarshalInputStream, and ...MarshalOutputStream.

3 The reason for this design is that it allows the security manager to check permissions.
However, the same checks could be done with other designs as well.

With respect to simplicity it must be noted, that for the delegate object an-
other subclass of the JDK-serialization is needed for cases where existing code
itself is using subclasses of the JDK-serialization. (RMI for example does it.) In
addition to the hook method mentioned above, the JDK-serialization has sev-
eral other dummy routines which can be overridden in subclasses. Therefore, if
a standard JDK-serialization stream would be used as delegate, it's dummy rou-
tines would be called instead of the user-provided implementations. To solve this
problem, the delegate is a subclass of the JDK-serialization and provides imple-
mentations for all methods that can be overridden in the JDK-implementation.
The purpose of the additional methods is to forward the call back to the UKA-
serialization and hence to the implementation provided by the user's subclass.

There is no guarantee, that subclassing plus delegation works correct in
cases where existing code itself is using subclasses of the JDK-serialization and
where UKA-unaware objects provide explicit marshaling routines that use the
instanceof operator to �nd out the speci�c type of a current serialization ob-
ject. (RMI for example does it.) Since the objects are UKA-unaware they are
handled by the delegate. Therefore, the instanceof operator does no longer
signal type compatibility to the serialization subclasses provided by the code.

Since RMI does exactly this (there are subclasses of the JDK-serialization,
and the code uses explicit marshaling routines that check the type of a serial-
ization stream object), subclassing plus delegation does not work correctly with
RMI. Especially painful are problems with the distributed garbage collector that
are hard to track down due to their indeterministic nature. (However, subclass-
ing plus delegation does work correctly with \well-behaved" users of serialization
functionality.)

e) Subclassing plus Source Modi�cation. We now present an approach that works.
Being based on subclassing the JDK-serialization, it has the general disadvan-
tages discussed in paragraph (b).

The idea is to moderately modify the source code of existing JDK-serial-
ization classes to enable reusing the existing functionality from subclasses. The
modi�cation is kept small enough to not a�ect maintainability.

Three simple changes are su�cient in every JDK release: First, the code of
ObjectOutputStream's regular constructor is copied into an additional initial-
ization method init(OutputStream). Second, to switch between the subclass
and the standard serialization, the access modi�er of the above-mentioned
ag
enableSubclassImplementation is relaxed from private to protected.4 And
third, the final modi�er of writeObject(Object) is removed to override the
method directly and to save an unnecessary call of the hook method.

4 Javasoft recently released a beta version of RMI-IIOP. This software uses an extended
serialization that is compatible with Corba's IIOP. This extension faces the same
problems as ours. But instead of modifying the access modi�er, the authors provide
a native library routine to toggle the
ag. We consider this to be even more \dirty"
than our approach since it is no longer platform independent.

Since these modi�cations are simple they can easily be applied to updated
versions of the JDK without too much thought. Because no additional serializa-
tion object is introduced, the UKA-serialization works �ne, even with RMI.

We hope that Sun will incorporate the ideas of the UKA-serialization in
future releases of the JDK so that this \dirty" source code modi�cation will not
be necessary for ever.

3.8 Quantitative Improvements

Table 2 shows the e�ect of the UKA-serialization for several types of objects. For
an object with 32 int values, instead of 66+354=420 �s on the PCs (JDK 1.2)
(2166 �s on DEC, JDK 1.1.6) for serialization and de-serialization the UKA-
serialization takes 5+15=20 �s (156 �s), which amounts to an improvement of
about 95% (93%). The Alpha is slower because of the older Java version and
the poor JIT. The second column of Table 2 shows the measurements (in �s)
for an object with four ints and two null pointers. The last column presents
the measurements for a balanced binary tree of 15 objects each of which holds
4 ints.

Table 2. Improvements for several types of objects.

32 int 4int 2null tree(15)
�s per object

w r w r w r

JDK serialization 66 354 31 153 178 448
PC

UKA-serialization 5 15 3 11 41 107
improvement % 92 96 90 93 77 76

JDK serialization 700 1466 271 591 1643 3148
DEC

UKA-serialization 54 102 32 71 216 397
improvement % 92 93 88 88 87 87

While for
at objects about 90% or more of the serialization overhead can be
avoided, for the tree of objects the improvement is in the range of 80%. This is
due to the fact that the work needed to deal with potential cycles in the graph
of objects cannot be reduced signi�cantly.

4 Improving RMI's Performance and Flexibility

With KaRMI, we have re-designed and re-implemented the RMI of JDK 1.2.
The central idea is to provide a lean and fast framework to plug in special
purpose or optimized modules. The framework can be used to plug in opti-
mized implementations of RMI functionality, implementations that trade some
of RMI's functionality for speed, or specialized modules, e.g. for special pur-
pose communication hardware or garbage collectors. Currently available are op-
timized implementations, low-level communication modules for both Ethernet
and ParaStation hardware, and several distributed garbage collectors.

The following subsections give an overview of KaRMI, reason about the per-
formance improvements, discuss KaRMI's way to support non-TCP/IP commu-
nication hardware, and cover KaRMI's approach towards alternative distributed
garbage collectors.

4.1 Clean Interfaces between Design Layers

Similar to the o�cial RMI design, we have three layers (stub/skeleton, refer-
ence, and transport).5 In contrast to the o�cial version however, our design
features clear and clearly documented interfaces between the layers. This has
two essential advantages. First a performance advantage: In KaRMI a remote
method invocation requires just two additional method invocations at the in-
terfaces between the layers and does not create temporary objects. The second
main advantage is that alternative reference and transport implementations can
easily be added (see section 4.3).

The crucial design
aw of the o�cial RMI is that it exposes its socket im-
plementation to the application level. For example, the application can export
objects at speci�c port numbers. From their level of abstraction, sockets belong
to the transport layer. Making them a part of the API and thus visible at the
application level, means that the o�cial RMI must use sockets at the transport
layer, even if the underlying networking hardware does not support sockets well.
Hence, socket semantics need to be implemented in an RMI package that uses a
non-TCP/IP network. This is not only unnecessary for Grande applications, it
slows down performance; especially since it is well-known that datagram based
transport layers are more e�cient for RPC than connection-oriented approaches,
see section 2.

The only way out, and hence the only way to exploit the performance of
high-speed networks for Grande applications is to separate Java's sockets from
the design of RMI. Thus, in KaRMI the application can no longer use the socket
factory for example to switch to secured sockets; but we consider this lack ir-
relevant for Grande applications on a closely connected cluster. (It is of course
possible to implement a special purpose transport that uses secured sockets. But
this cannot be in
uenced by the application on a per-object basis.)

Both the clean interfaces between layers and the separation of RMI's design
from transport level sockets allow for KaRMI to work fast and to work with high
performance communication hardware.

5 A short introduction for those readers not too familiar with the architecture of RMI:
The stub/skeleton layer maps a speci�c method invocation onto the generic invoca-
tion interface provided by the reference layer. On the side of the callee, the up-call to
the application is performed. The reference layer is responsible for carrying out the
semantics of the invocation. For example, it determines whether the server is a single
object or a replicated object requiring communication with multiple locations. The
transport layer is responsible for low-level communication without any knowledge
about the semantics.

4.2 Performance Improvements

communication hardware

UTID

UTID

Reference-Layer

Stub-Layer

Transport-Layer

Stub

foo()

ClientRef

ObjectID

preferred

1

1

(ObjectID, int, Object)

1

1

1

1

Technology A Technology B

XApplicationCall(int, Object)

XApplicationCall

Fig. 3. The three layers of the KaRMI design are shown. A method call is handed from
the stub to its reference object (ClientRef). The reference object has an ObjectID

which in turn points to a chain of UTIDs. Each UTID (unique technology identi�ed)
has a pointer to the corresponding technology object that talks to the underlying
communication network.

Figure 3 shows the caller-side of the implementation of a remote method
invocation in KaRMI. A method call that arrives at the stub is forwarded to
its reference object (ClientRef) by calling XApplicationCall(int, Object).
In a straightforward implementation of remote stubs, the int argument of
XApplicationCall speci�es the number of the method to be called; the Object
argument is the list of parameters for the remote call. Other semantics are pos-
sible. The interface provides several copies of XApplicationCall(...), one for
each return type (encoded in the method's name: replace X for the name of a
primitive type, Object, or Void). Whereas the original RMI always uses return
values of type Object and hence has to wrap primitive types, KaRMI avoids
costly wrapping. Analogously, for the up-call on the side of the callee, the meth-
ods are called XdoApplicationCall(..).

The reference object is responsible for addressing the remote object. For that
purpose, it stores an ObjectID (or several object IDs in case of replication). As
will be discussed below, the reference object calls XApplicationCall(ObjectID,
int, Object) of a suitable technology object which performs the low-level com-
munication. The details of addressing and technology objects will be discussed
in section 4.3.

Whereas for each remote method invocation, KaRMI creates a single object,
RMI needs about 25 objects plus one for each argument and non-void return
type. If the connection to the remote side needs to be created �rst or cannot
be re-used, standard RMI needs even more objects. The clean layering leads to
better performance since object creation is costly in Java.

Other improvements result from the following ideas:

{ The standard RMI uses costly calls of native code and the expensive re
ec-
tion mechanism to �nd out about primitive types.6 There are two native
calls per argument or non-void return value plus �ve native calls per remote
method invocation. These can be avoided by a clever serialization. KaRMI
uses native calls only for the interaction with device drivers.

{ In contrast to the o�cial RMI, KaRMI's reference layer detects remote ob-
jects that happen to be local and short-cuts object access. Of course, argu-
ments will still be copied to retain RMI's remote object semantics. But no
thread switches and no communication are needed in KaRMI.

{ The RMI designers prefer hash-tables over other data structures. Hash-tables
are used where arrays would be faster or where KaRMI can avoid them
completely. Although clearing hash-tables is slow, the RMI code frequently
and unnecessarily clears hash-tables before handing them to the garbage
collector.

{ A little slowdown is caused on some platforms by the fact that the RMI
code contains a lot of debugging code that is guarded by boolean
ags. At
execution time, these
ags are actively evaluated. KaRMI does not have
any debugging code (instead we remove the debugging code by means of a
pre-processor.)

4.3 Technology Objects hide Network Hardware

In contrast to RMI, KaRMI can deal with non-TCP/IP networks. It is even
possible to use several types of networking hardware at the same time on the
same node.

For that purpose, KaRMI introduces the notion of a communication tech-
nology. For each networking hardware available to a node A, a corresponding
technology object T is created upon initialization. T contains all the addressing
information needed by other nodes to reach A via this technology. Moreover,

6 Leaving Java through the JNI and re-entering is much too slow in the current JDK.
For Grande applications that are likely to capitalize on existing �ne-tuned native
code, a signi�cant penalty cannot be tolerated.

T implements everything A needs to access the low-level hardware for reaching
other nodes via the network of technology T. E.g., on a node that has both Ether-
net and Myrinet available, there will be two technology objects. Both technology
objects implement the transport layer's XApplicationCall(...). Depending on
the object to be reached, the reference layer uses the best technology object.

When a reference to an object R is made available to a remote node, unique
technology identi�ers (UTIDs), one for each available technology, are passed to
the remote node (by means of serialization). At the remote side, the transport
layer examines the incoming UTIDs to check which technologies can be used.
This check can be done, even if the recipient has never heard of the technology
represented by an incoming UTID. As long as both nodes have at least one
common technology, the reference layer can directly use the preferred technology
to address the remote object R. Otherwise, a bridge object is automatically
created on the boundary between two technology domains.

We have implemented an Ethernet technology class that is designed for
TCP/IP-sockets and uses Java's sockets. The implementation is quite similar
to RMI, i.e., we re-use socket connections, a watch-dog closes connections which
are no longer used, etc. Several of the performance improvements mentioned in
the previous section are implemented in this class.

In addition to the Ethernet technology class, we have implemented an opti-
mized technology on top of the low-level communication layer of the ParaStation
hardware (see section 5). For the optimization, we exploit that packets are guar-
anteed to be delivered in order. Furthermore, there is no need to protect against
network errors, e.g., temporary unavailability of some nodes, connection failure,
etc.

Nodes that are located in our cluster instantiate two technology objects, one
for Ethernet and one for Myrinet, and use the latter when talking to each other.
Since other nodes outside of the cluster are not equipped with Myrinet they
instantiate just the technology object for Ethernet. The cluster nodes use the
slower protocol when talking to them.

4.4 Pluggable Garbage Collection

Distributed garbage collection is complicated due to common failures of dis-
tributed systems such as lost, duplicated, or late messages, as well as crashes of
individual nodes. No distributed garbage collection algorithm has been presented
yet that is e�cient, scalable and fault-tolerant at the same time [16].

RMI's distributed garbage collection is well-designed for wide-area networks
where messaging problems, node crashes, and network problems are likely. How-
ever, on a closely connected cluster of workstations, a distributed garbage col-
lection algorithm faces di�erent environmental conditions: there is no need for
extra messaging to make the algorithm fail-safe, hence more e�ciency can be
reached.

Since there are more e�cient distributed garbage collection algorithms for
stable networks, KaRMI provides the opportunity to plug them in, i.e., there is

a clean interface for the distributed garbage collector which is independent of
the technology layer as well.

For each communication technology, a di�erent distributed garbage collector
can be used, e.g., a fast cluster collector within the ParaStation network, an
RMI-like fault-tolerant collector over the LAN. The bridge objects mentioned
above which are automatically generated at the boundary between communica-
tion technologies make di�erent collectors work together correctly.

4.5 Restrictions

KaRMI is a drop-in replacement for standard RMI. After some changes to
the BOOTCLASSPATH environment variable and new generation of stubs and
skeletons, existing code can make use of KaRMI's improved performance, even
without re-compilation.

However, KaRMI does have some restrictions. As mentioned above, the most
signi�cant one is that KaRMI cannot deal with code that explicitly uses the
socket factory or port numbers. As we have reasoned above, we consider sock-
ets to be an implementation feature that belongs into the transport layer and
therefore do not support them in the API. An unavoidable restriction is that
KaRMI cannot be used if existing code uses undocumented RMI classes (IBM's
San Francisco project does.)

Minor incompatibilities are that stubs and reference objects are no longer a
subclass of RemoteObject and that only one registry can be started per JVM.
But these changes are unlikely to be noticed.

Since we consider the following three features low-priority for Grande appli-
cations, we postponed their implementation. First, KaRMI's current technology
objects do not fall back into HTTP if they cannot access the remote host. Sec-
ond, the current technology objects can only load class �les from a common �le
system, they do not ask a web server to provide class �les. Finally, we did not
yet implement activation of remote objects on demand.

5 ParaStation Network

ParaStation [24] is a communication technology for connecting o�-the-shelf work-
stations to form a supercomputer. The current ParaStation hardware is based on
Myrinet [2], �ts into a PCI slot, employs technology used in massively parallel
machines, and scales up to 4096 nodes.

ParaStation's user-level message passing software preserves the low latency
of the communication hardware by taking the operating system out of the com-
munication path, while still providing full protection in a multiprogramming
environment. We have used ParaStation's highly e�cient direct access to the
low-level communication ports, although we have experimented with ParaSta-
tion's emulation of UNIX sockets as well.

For the present study we have used a ParaStation implementation on 8 Digital
Alpha machines with 500 MHz. In this environment, ParaStation achieves end-

to-end (process-to-process) latencies as low as 48 �s (round trip) and a sustained
bandwidth of more than 50 Mbyte/s per channel.

6 Benchmarks and Results

Quite often contributors to the RMI mailing list ask for benchmark results or
for a collection of benchmark programs. A lot of speculative discussion is de-
voted to the problem whether RMI over IIOP will be faster or slower than
standard RMI. Unfortunately, there does not seem to be a collection of bench-
mark programs available (except for various simple ping-pong programs that
often measure platform characteristics such as cache-sizes or the garbage col-
lector's e�ciency instead of the RMI performance.) The Java Grande Forum's
benchmarking activity lacks an RMI benchmark as well.

6.1 Benchmark Collection

We therefore have put together an initial collection of RMI benchmark programs:
several kernels and some small applications. The kernels test the speci�c behavior
of RMI under certain controlled stress situations. The small applications use a
lot more remote method invocation than is adequate for solving the problems,
i.e., often even a sequential implementation could be faster. But on the other
hand, they test frequent communication patterns or test RMI's performance
when interfered by a lot of thread scheduling activities or synchronization. We
do not claim that the benchmark collection is representative for applications
that use RMI, but it is a good start to evaluate the performance of RMI's basic
capabilities. The collection is available from [9].

Each program in the collection is executed often for every parameter setting
to cope with �nite clock resolution, execution time
uctuations due to cache-
e�ects, JIT-warmup, and outliers (e.g., due to operating system interrupts or
other jobs).

For the programs in the collection, the parameter obj can be created by a
factory. Currently, the benchmark collection comprises factories for the following
types of objects; it is easy to add additional factories.

null null pointer
byte[n] int[n] arrays with n elements (the current benchmark collection
float[n] uses n=50, 200, 500, 2000, 5000, 20000)
4 int 32 int an object with 4 or 32 int values
tree(n) a balanced binary tree of objects with 4 int values and a to-

tal of n nodes (the current benchmark collection uses n=15)

a) Kernels that test RMI between two nodes.

{ void ping()

{ void ping(int, int)

{ void ping(int, int, float, float)

{ void ping(obj) and obj ping(obj)

{ void pingpong(obj) and obj pingpong(obj)

In contrast to a simple ping that returns immediately, the client calls back
the server (pong) before both remote invocations return.

b) Kernel that tests server overload by calls from several clients.

{ obj star(obj)

All clients wait at a barrier before they concurrently call a single method at
the server.

c) Small application kernels.

{ Hamming's problem (from [5]). Given an array of primes a, b, c, . . . (every
second prime in our implementation) output, in increasing order and without
duplicates, all integers of the form ai � bj � ck : : : � n.
The remote method invocations have only primitive type arguments. Several
threads execute per client node (but have little work to do).

{ Para�nGeneration (from [5]). Given an integer n, output the chemical struc-
ture of all para�n molecules for i � n, without repetition and in order of in-
creasing size. Include all isomers, but no duplicates. The chemical formula for
para�n molecules is CiH2i+2. Any representation for the molecules could be
chosen, as long as it clearly distinguishes among isomers. The implemented
solution is based on [11].
This benchmark is designed in the classic master-worker way. Graphs of
objects are passed as arguments and return values.

{ SOR successive overrelaxation. SOR is an iterative algorithm for solving
Laplace equations on a 2d-grid. In every iteration the value of every grid
point is updated based on the values of the four neighboring grid points.
The parallel implementation is based on the red/black algorithm. During
the red phase only the red points of the grid are updated. Red points have
only black neighbors and no black points are changed during the red phase.
During the black phase the black points are updated in a similar way. Rows
are distributed across the available processors. Between phases the values of
border points need to be exchanged. The RMI implementation is provided
by Jason Maassen [13].

6.2 Results

We have studied four software con�gurations on three hardware platforms. Soft-
ware: We timed the behavior of the benchmark collection four times, namely
on pure RMI, on RMI with the UKA-serialization, on KaRMI with the JDK-
serialization, and on KaRMI with the UKA-serialization. Each run timed 64
individual constellations (each kernel for each type of parameter object + small
applications). Hardware: We have used the two hardware platforms mentioned
in section 1.1. In addition, the Alphas have been connected through the Para-
Station network.

Bandwidth. UKA-serialization and KaRMI improve bandwidth as shown in Fig-
ure 4. Currently, only 50% of ParaStation's theoretical peak performance can be
reached. This is due to thread scheduling problems and the interaction of Java
threads and system threads that make direct dispatch di�cult. We will work on
these problems: Some of the optimization ideas mentioned in section 2 will be
applied in future.

Throughput RMI / KaRMI

0

5000

10000

15000

20000

25000

0 100000 200000 300000

packet size #bytes

th
ro

ug
hp

ut
 K

B
yt

e/
s

RMI/Ethernet
RMI/ParaStation
KaRMI/ParaStation

Fig. 4. Bandwidth of UKA-Serialization and KaRMI on the Alpha cluster.

Latency. The lower three box plots in Figure 5 show 2�64 results for each software
con�guration. The lowest box plot shows the improvement over standard JDK
that can be achieved by switching over to the UKA-serialization (plus regular
RMI). The second row shows the e�ect of KaRMI (plus JDK-serialization). The
third row shows the combined e�ect (UKA-serialization plus KaRMI). These �rst
three rows consider Ethernet on PC and Fast Ethernet on Alpha only. The top
box plot shows what happens if the ParaStation network and the corresponding
KaRMI technology object is used on the DEC cluster (64 results).

For each individual time taken, a small circle represents the percentage of
time saved in comparison to the standard RMI implementation. The M repre-
sents the mean, the fat dot is the median. The boxes contain the middle half
of the circles. For example on ParaStation half the measurements save about
70-90% of the runtime. For a quarter of the measurements, more than 90% of
the runtime can be saved. The H-lines indicate the 0.1 and 0.9 quantiles, that is
only the smallest tenth of the data are left of the H. A small excerpt of the raw
data is given in Table 3.

The box plots show that UKA-serialization and KaRMI almost always im-
prove performance, both when used individually and especially when used in

Table 3. Excerpt of the raw data. Both individually and in combination, UKA-
serialization and KaRMI save time, in particular by means of the ParaStation network.
Some DEC timings are left out (. . .) since their trend is similar to the PC timings.

RMI UKA KaRMI UKA + UKA +
timings in �s KaRMI KaRMI +

ParaStation

void ping() 745 689 (8%) 385 (48%) 360 (52%)
void ping(2 int) 731 673 (8%) 619 (15%) 398 (46%)
obj ping(obj)
� 32 int 2287 1106 (52%) 1935 (15%) 674 (71%)

PC � 4 int, 2 null 1456 905 (38%) 1104 (24%) 464 (68%) NA
� tree(15) 3108 1772 (43%) 2708 (13%) 1311 (58%)
�
oat[50] 1462 1192 (18%) 1095 (25%) 859 (41%)
�
oat[5000] 37113 36432 (2%) 37123 (0%) 37203 (0%)
para�ns 19013 12563 (34%) 18350 (3%) 7121 (53%)

void ping() 1451 511 (65%) 117 (92%)
void ping(2 int) 1473 793 (46%) 194 (87%)
obj ping(obj)
� 32 int 7633 1232 (84%) 328 (96%)

DEC � 4 int, 2 null 4312 . . . 1123 (74%) 279 (94%)
� tree(15) 14713 2485 (83%) 1338 (91%)
�
oat[50] 2649 1264 (52%) 483 (82%)
�
oat[5000] 16954 12590 (26%) 8664 (49%)
para�ns (2 PE) 56870 15580 (73%) 19600 (66%)
para�ns (8 PE) 42290 9450 (78%) 13860 (67%)

M

o ooo
o ooo ooo ooo o oo o

o ooo ooo oo
o

o oo ooooo o
oo ooo o o

o oo ooo ooo ooo o oo oo oo
ooo oo
o

o
o o oo

o oo
o

o
oo oo o

o o ooo oo o o oo oo oo
o ooo oo o o o

o oo oo o ooo oo o o oo oo oo oo oo oo oo o

M

o
ooo oooo ooo ooo oo

oo oooo
ooo ooo o

o
oo oooo o

o
o oo
o oo oo oooo ooo ooo oo oo oo
o o oooo oooo oo

o o
o

o
oo oo oo

o
o o

oo ooo
o

o
oo oo

oo oo
o

ooo oo oo
oooo

ooo oo
o oo oo oo o oo oo oo

oo o

M

oooo oooo ooo
ooo o

o
oooooo ooo o

o
o o oooooo
o ooo o

oo o o
oooooo ooo

ooo o o
ooo o

o o oo
oo

oo oo ooo ooo o oo
o

oo o
o ooo

ooo o o
o ooo oo ooo ooo o oo o

oo oo ooo ooo o oo oo oo oo oo oo oo o

M

oooo oooo ooo ooo o oo
ooo

o
o

oo
o

ooo o oooooo
o ooo ooo o oo

oooo
o ooo ooo o oooooo o

ooo oo
oo o

UKA-serialization

KaRMI

UKA-serializ.
and KaRMI

UKA-serializ.
and KaRMI

and ParaStation

-20 0 20 40 60 80 100

percent of time saved

Fig. 5. Percentage of time saved by UKA-serialization, by KaRMI, by a combination
of both, and by additional use of the ParaStation network.

combination. Without special purpose communication hardware a median of
45% of the runtime can be saved; sometimes up to 71%. On ParaStation, a me-
dian of 85% can be saved, sometimes up to 96%. Note that it is impossible to
use ParaStation with regular RMI, only with KaRMI the ParaStation commu-
nication hardware can be employed. Only with both the UKA-serialization and
KaRMI, a remote method invocation can run as fast as 117 �s. With a newer
JIT from DEC we reached 80�s. However, this JIT was still too buggy to use it
throughout this paper.

In each of the box-plots of Figure 5 there are some circles close to zero im-
provement. These represent kernel measurements with array arguments. When
large amounts of data are sent, the low-level communication time is the domi-
nating cost factor that hides any performance improvements in the serialization
and in the RMI implementation. Table 3 and Figure 6 give details. On the PCs
(left diagram) the performance improvements approaches zero for big array data.
Because of the higher bandwidth, on ParaStation we still see an improvement
of above 40% with big arrays, but the general trend is the same. Without the
array arguments, all the box plots of Figure 6 would shift further towards higher
improvements.

Interestingly, the Fast Ethernet implementation saves more runtime than the
ParaStation implementation for the Para�n application. This is due to a thread
scheduling problem which causes the current ParaStation library to busily wait
at the communication card, when Java threads cannot continue.

o

o
o

o

o

o

o

o
o

o

o
o

o

o
o

o

o o

o

o
o

o

o

o

o

o
o

o

o o

o

o
o

o

o o0

20

40

60

80

 PC/Ethernet

1000 10000

o o
o

o
o

o

o

o

o

o o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o o

DEC/ParaStation

1000 10000

user data transfered [bytes]

pe
rc

en
t o

f t
im

e
sa

ve
d

Fig. 6. The percentage of time saved by a combination of the UKA-serialization and
KaRMI vanishes with growing array argument sizes.

For a few circles in Figure 6 one can see a slowdown if either the UKA-
serialization or KaRMI are used alone. For the UKA-serialization, this is caused
by the fact that the standard implementation uses a native routine to create
uninitialized array objects. Our implementation currently calls the standard con-
structor within Java instead. For KaRMI the slowdown can be explained by the
fact that the 1.1.6 stubs used on the Alpha handle primitive type arguments
more e�ciently. The worst circle (-20%) will go away as soon as JDK 1.2 is
available on the Alpha.

7 Conclusion

KaRMI is a more e�cient RMI for Java. The UKA-serialization is a faster seri-
alization. Both can be used (individually or in combination) as drop-in replace-
ments for standard JDK implementations. On PCs connected through Ethernet,
a median of 45% of the runtime can be saved. In addition, our re-design and
re-implementation allows to use high-performance communication hardware as
well. On a cluster of DEC Alphas a median of 85% can be saved; currently a
simple remote ping runs as fast as 80 �s. As a by-product, we have developed a
benchmark collection for RMI.

Acknowledgments

We would like to thank Lutz Prechelt for help with the statistical evaluation
of the raw benchmark data. Matthias Gimbel su�ered through the beta-testing.

The Java Grande Forum and Siamak Hassanzadeh from Sun Microsystems pro-
vided the opportunity and some �nancial support to �nd and discuss shortcom-
ings of both the JDK-serialization and the o�cial RMI.

References

1. Andrew D. Birrell and Bruce Jay Nelson. Implementing remote procedure calls.
ACM Transactions on Computer Systems, 2(1):39{59, February 1984.

2. Nanette J. Boden, Danny Cohen, Robert E. Felderman, Alan E. Kulawik,
Charles L. Seitz, Jarov N. Seizovic, and Wen-King Su. Myrinet: A Gigabit-per-
Second Local Area Network. IEEE Micro, 15(1):29{36, February 1995.

3. Fabian Breg, Shridhar Diwan, Juan Villacis, Jayashree Balasubramanian, Esra
Akman, and Dennis Gannon. Java RMI performance and object model interoper-
ability: Experiments with Java/HPC++. Concurrency: Practice and Experience,
10(11{13):941{956, September{November 1998.

4. Chi-Chao Chang and Thorsten von Eicken. Interfacing java to the virtual interface
architecture. In ACM 1999 Java Grande Conference, San Francisco, 1999. 51{57.

5. John T. Feo, editor. A Comparative Study of Parallel Programming Languages:
The Salishan Problems. Elsevier Science Publishers, Holland, 1992.

6. Satoshi Hirano, Yoshiji Yasu, and Hirotaka Igarashi. Performance evaluation of
popular distributed object technologies for Java. Concurrency: Practice and Ex-
perience, 10(11{13):927{940, September{November 1998.

7. Matthias Jacob, Michael Philippsen, and Martin Karrenbach. Large-scale parallel
geophysical algorithms in Java: A feasibility study. Concurrency: Practice and
Experience, 10(11{13):1143{1154, September{November 1998.

8. Java Grande Forum. http://www.javagrande.org.
9. JavaParty. http://wwwipd.ira.uka.de/JavaParty/.
10. P. Keleher, A. L. Cox, and W. Zwaenepoel. Treadmarks: Distributed shared

memory on standard workstations and operating systems. In Proc. 1994 Win-
ter USENIX Conf., pages 115{131, January 1994.

11. Donald E. Knuth. The Art of Computer Programming, volume I. Addison-Wesley,
Reading, Mass., 1973.

12. Vijaykumar Krishnaswamy, Dan Walther, Sumeer Bhola, Ethendranath Bomma-
iah, George Riley, Brad Topol, and Mustaque Ahamad. E�cient implementations
of Java Remote Method Invocation (RMI). In Proc. of the 4th USENIX Conference
on Object-Oriented Technologies and Systems (COOTS'98), 1998.

13. Jason Maassen and Rob van Nieuwpoort. Fast parallel Java. Master's thesis,
Dept. of Mathematics and Computer Science, Vrije Universiteit, Amsterdam, The
Netherlands, August 1998.

14. ObjectSpace. Voyager. http://www.objectspace.com.
15. OMG. Objects by Value Speci�cation, January 1998.

ftp://ftp.omg.org/pub/docs/orbos/98-01-18.pdf.
16. David Plainfoss�e and Marc Shapiro. A survey of distributed garbage collection

techniques. In International Workshop on Memory Management, Kinross, Scot-
land, UK, September 1995.

17. Michael D. Schroeder and Michael Burrows. Performance of Fire
y RPC. Technical
Report SRC 43, Digital Equipment Corp., April 1989.

18. Sun Microsystems Inc., Mountain View, CA. Java Object Serialization Speci�ca-
tion, November 1998. ftp://ftp.javasoft.com/docs/jdk1.2/serial-spec-JDK1.2.pdf.

19. Chandramohan A. Thekkath and Henry M. Levy. Limits to low-latency com-
munication on high-speed networks. ACM Transactions on Computer Systems,
11(2):179{203, May 1993.

20. George K. Thiruvathukal, Fabian Breg, Ronald Boisvert, Joseph Darcy, Geo�rey C.
Fox, Dennis Gannon, Siamak Hassanzadeh, Jose Moreira, Michael Philippsen,
Roldan Pozo, and Marc Snir (editors). Java Grande Forum Report: Making Java
work for high-end computing. In Supercomputing'98: International Conference on
High Performance Computing and Communications, Orlando, Florida, November
7{13, 1998. panel handout.

21. George K. Thiruvathukal, Lovely S. Thomas, and Andy T. Korczynski. Re
ective
remote method invocation. Concurrency: Practice and Experience, 10(11{13):911{
926, September{November 1998.

22. Jason Maassen, Rob van Nieuwport, Ronald Veldema, Henri E. Bal, and Aske
Plaat. An e�cient implementation of Java's remote method invocation. In Proc.
of the 7th ACM SIGPLAN Symp. on Principles and Practice of Parallel Program-
ming, PPoPP, pages 173{182, Atlanta, GA, May 1999.

23. Jim Waldo. Remote procedure calls and Java Remote Method Invocation. IEEE
Concurrency, 6(3):5{7, July{September 1998.

24. Thomas M. Warschko, Joachim M. Blum, and Walter F. Tichy. ParaStation:
E�cient parallel computing by clustering workstations: Design and evaluation.
Journal of Systems Architecture, 44(3-4):241{260, December 1997. Elsevier Science
Inc., New York.

25. Matt Welsh. NinjaRMI. http://www.cs.berkeley.edu/�mdw/ninja/.
26. J. E. White. A high-level framework for network-based resource sharing. In Proc.

National Computer Conference, June 1976.
27. Weimin Yu and Alan Cox. Java/DSM: A platform for heterogeneous computing.

Concurrency: Practice and Experience, 9(11):1213{1224, November 1997.

