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Abstract

The present report is a follow-up to our report
on an experiment for investigating the e�ects
from Personal Software Process (PSP) training
[1]. It uses the work time data from the ex-
periment plus several simplifying assumptions
in order to assess by stochastic simulation how
much a reduction in the performance variabil-
ity of individual programmers might reduce the
uncertainty of project time requirements.
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1 Introduction

In our experiment for investigating the e�ects
of PSP training each member of a PSP-trained
group of subjects and each member of a non-
PSP-trained control group solved the same pro-
gramming assignment. We will not iterate the
details here and refer the reader to [1] instead.

In this experiment, the mean performance of
the two groups did not di�er much for most of
the performance measures investigated (such as
productivity in lines of code per hour or total
working time in hours). However, we observed
that the variability of these measures across
the members of each group was often smaller
among the members of the PSP-trained group.

Using several simplifying assumptions, we will
now investigate the e�ects that this reduced
variability might have on the probability with
which a correctly devised project schedule will
be overrun (or underrun).

2 Starting point

As a starting point, we use the actual data on
productivity, measured in LOC/hour, observed
in our experiment. This data is shown in Fig-
ure 1.
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Figure 1: Productivity measured as the number
of statement LOC written per hour. Top: PSP
group. Bottom: non-PSP group. The box ranges
across the middle half of the data; the whiskers
indicate the top and bottom 10%. The fat dot is
the median, the 'M' marks the arithmetic mean,
the dashed line around it is plus/minus one stan-
dard error of the mean. For a more detailed ex-
planation of this kind of box plots see [1].

The di�erence in the width of the box (the ex-
tension of the middle half of the data) is sta-
tistically signi�cant as determined by a Boot-
strapping test (p = 0:04. With a con�dence of
80%, the di�erence in box width is larger than
7.4 LOC/hour).

3 Assumptions and de�nitions

1. Assume the software process consists of de-
sign, implementation, and test and these
phases are performed strictly after one an-
other.

Let there be 2 independent design tasks
(D1;D2), which are done in parallel,
then 8 independent implementation tasks
(I1; I2; : : : I8), also done in parallel, and �-
nally 3 independent test tasks (T1; T2; T3),
also done in parallel. The tasks of one
phase all start at the same time; the next
phase starts as soon as the longest task of
the previous phase �nishes.

2. Assume the manager has good knowledge
of the expected productivity pi for each
member i of the team. The manager �nds
a work assignment that perfectly balances
the size s of each subtask such that all
expected work times are the same, e.g.,
s(T1)=pj = s(T2)=pk = s(T3)=pl = texpect;T
etc.

For simplicity, we assume that each phase
has the same total size. The expected to-
tal project duration is therefore texpect :=
texpect;D + texpect;I + texpect;T .

The pi are drawn from historical produc-
tivity data for each team member, such as
the data shown in Figure 1.

3. Assume the manager can estimate each in-
dividual productivity for a given particular
project with an average absolute inaccu-
racy that is only as large as the uncertainty
of the mean productivity of the team as a
whole. In Figure 1, this inaccuracy is rep-
resented by the length d of the dashed line
around the mean.

Note that (3) contains the crucial assumption
that will produce the e�ect shown below: The
given manager estimation inaccuracy implicitly
assumes that the reduction in group variance
that we observed in the experiment is also ac-
companied by a corresponding reduction in the
task-to-task variance1 of each individual in the
group. We cannot observe the latter in the
experiment because each individual performs
only a single task.

4 Simulation and results

We can now simulate the risk of many projects
by computing their actual duration as follows:
For each phase P of each project select subteam
members i at random and assume appropriate
work assignments; member i works on a task of
size si. Compute random productivity devia-
tions di for each member.2 Now determine the
actual work time ti := tact;i := si=(pi + di) of
each member.

The largest resulting actual time determines
the phase duration. We compute 2+8+3 ac-
tual times ti as above and then compute the
total project duration as tact := max(t1; t2) +
max(t3; t4; : : : ; t10)+max(t11; t12; t13). The de-
viation (in percent) from the plan for this

1more precisely: the task-to-task deviations from
that person's mean performance

2Since di has a normal distribution, pi + di could
become negative. Thus, we limit the deviation to factor
4, that is: 0:25 � pi=(pi + di) � 4.
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project is then deviation := 100 � (tact=texpect�
1). By simulating 100 projects in this manner
for each of the groups, we obtain deviation dis-
tributions as shown in Figure 2.

M

o o oo ooo
o ooo oo o

oo o oo o ooo oo
oo

ooo ooooo o oo oo o o o
o o ooo o o ooo

oo o oo oo oo oooo oo oo oo oo oo
oo ooo o ooooo

ooo oo oo ooo ooo

M

oooo ooo
o oo oo
oo oo oo ooo o o oooo oo o

o
ooo oo oo oo

oo o oo ooo oo o
o oo o oooo

oo
oo

oooo
o o oo

oo
oo o

oooo ooo o
o oo oo

ooo o
oo oo ooo

N

P

0 50 100 150 200 250 300

simulated plan deviation [percent]

Figure 2: Deviations from the expected project
time for 100 simulated projects in each group.
Each expectation was computed from the ex-
pected productivity of each team member as pre-
dicted from Figure 1.

As we see, the consequence of the modest vari-
ability di�erence in Figure 1 is rather impres-
sive: the mean deviation from the plan is four
times as large for teams composed of N group
members as for teams of P group members;
catastrophic schedule overruns occur in the N
group only.

5 Discussion and conclusions

A bold conclusion from this simulation would
be the following: \A group of programmers
whose group performance variability was re-
duced by giving them PSP training allows for
development schedules with less slack time and
puts much less burden on risk management."

However, one must obviously be quite careful
before making such a statement (and therefore
we do not make it). There are at least two
major threats to the validity of the statement:

1. The model we applied for the partitioning,
schedule planning, and execution of a soft-
ware project is rather na��ve. In particular,
both the work partitioning and the per-
formance of the individuals are not con-
stant throughout a real project but rather
are changing in a day-to-day feedback loop
coupled with the risks of schedule overruns
as observed by the project participants.

2. In the given context (i.e., our experiment),
the assumption that reduced group vari-
ability is accompanied by reduced individ-
ual variability is just that: an assump-
tion. Our experiment design was not suit-
able for substantiating it. Therefore, our
simulation may not apply to PSP train-
ing (but might still be applicable to some
other case of reduced individual perfor-
mance variance).

Despite these problems, our simulation shows
that it may be worthwhile to search for pos-
sibilities for reducing individual variability. It
is quite plausible that PSP training has such
e�ects, hence we deem it worth further investi-
gation.
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