
To appear in IEEE Trans. on Software Engineering 1998 (Ref.no. S96134)

A Controlled Experiment to Assess the Bene�ts

of Procedure Argument Type Checking

Lutz Prechelt (prechelt@ira.uka.de)
Walter F. Tichy (tichy@ira.uka.de)

Fakult�at f�ur Informatik
Universit�at Karlsruhe

D-76128 Karlsruhe, Germany
Phone: +49/721/608-4068, Fax: -7343

March 23, 1998

Abstract

Type checking is considered an important mechanism
for detecting programming errors, especially interface
errors. This report describes an experiment to assess
the defect-detection capabilities of static, inter-module
type checking.

The experiment uses Ansi C and Kernighan&Ritchie
(K&R) C. The relevant di�erence is that the Ansi C
compiler checks module interfaces (i.e., the parameter
lists of calls to external functions), whereas K&R C
does not. The experiment employs a counterbalanced
design in which each of the 40 subjects, most of them
CS Ph.D. students, writes two non-trivial programs
that interface with a complex library (Motif). Each
subject writes one program in Ansi C and one in
K&R C. The input to each compiler run is saved and
manually analyzed for defects.

Results indicate that delivered Ansi C programs con-
tain signi�cantly fewer interface defects than delivered
K&R C programs. Furthermore, after subjects have
gained some familiarity with the interface they are us-
ing, Ansi C programmers remove defects faster and are
more productive (measured in both delivery time and
functionality implemented).

Keywords: type checking, defects, quality, productiv-
ity, controlled experiment.

1 Introduction

The notion of data type is an important concept in
programming languages. A data type is an interpreta-
tion applied to a datum, which otherwise would just

be a sequence of bits. The early FORTRAN com-
pilers already used type information to generate e�-
cient code for expressions. For instance, the code pro-
duced for the operator \+" depends on the types of
its operands. User-de�ned data types such as records
and classes in later programming languages emphasize
another aspect: Data types are a tool for modeling the
data space of a problem domain. Thus, types can sim-
plify programming and program understanding. A fur-
ther bene�t is type checking: A compiler or interpreter
can determine whether a data item of a certain type is
permissible in a given context, such as an expression
or statement. If it is not, the compiler has detected a
defect in the program. It is the defect-detection capa-
bility of type checking that is of interest in this paper.

There is some debate over whether dynamic type
checking is preferable to static type checking, how
strict the type checking should be, and whether explic-
itly declared types are more helpful than implicit ones.
However, it seems that overall the bene�ts of type
checking are virtually undisputed. In fact, modern pro-
gramming languages have evolved elaborate type sys-
tems and checking rules. In some languages, such as
C, the type-checking rules were even strengthened in
later versions. Furthermore, type theory is an active
area of research [3].

However, it seems that the bene�ts of type checking
are largely taken for granted or are based on personal
anecdotes. For instance, Wirth states [21] that the
type-checking facilities of Oberon had been most help-
ful in evolving the Oberon system. Many program-
mers can recall instances when type checking did or
could have helped them. However, we could �nd only
a single report on a controlled, repeatable experiment
testing the bene�ts of typing [9].

The cost-bene�t ratio of type checking is far from clear,

1

because type checking is not free: It requires e�ort
on behalf of the programmer in providing type infor-
mation. Furthermore, there are good arguments why
relying on compiler type checking may be counter-
productive when doing inspections [12, pp. 263-268].

We conclude that the actual costs and bene�ts of type
checking are largely unknown. This situation seems to
be at odds with the importance assigned to the con-
cept: Languages with type checking are widely used
and the vast majority of practicing programmers are
a�ected by the technique in their day-to-day work. The
purpose of this paper is to provide initial, \hard" evi-
dence about the e�ects of type checking. We describe
a repeatable and controlled experiment that con�rms
some positive e�ects: First, when applied to interfaces,
type checking reduced the number of defects remaining
in delivered programs. Second, when programmers use
a familiar interface, type checking helped them remove
defects more quickly and increased their productivity.

Knowledge about the e�ects of type checking can be
useful in at least three ways: First, we still lack a useful
scienti�c model of the programming process. Under-
standing the types, frequencies, and circumstances of
programmer errors is an important ingredient of such
a model. Second, a better understanding of defect-
detection capabilities of type checking may allow us to
improve and �ne-tune them. Finally, there are still
many environments where type checking is missing
or incomplete, and con�rmed positive e�ects of type
checking may help close these gaps.

In this experiment we analyze the e�ects of type check-
ing when programming against an interface. Subjects
were given programming tasks that involve a complex
interface (the Motif library). One group of subjects
worked with the type checker, the other without. The
dependent variables were as follows:

Completion Time: The time taken from receiving the
task to delivering the program.
Functional Units: The number of complete and cor-
rect functional units in a program. Each functional
unit interfaces to the library and corresponds to one
statement in the \gold program" (the model solution).
Interface Use Productivity: measured in Functional
Units per hour and by Completion Time.
Number of Interface Defects: The number of program
defects in applying the library interface. Such a de-
fect is either an argument missing, too many, of wrong
type, or at incorrect position; or it is the use of an in-
appropriate function.
Interface Defect Lifetime: The total time a particular
interface defect is present in the solution during de-
velopment. Note that this time may be the sum of
one or more time intervals, since a defect may �rst be
eliminated and later reintroduced.

We conjecture that type checking makes type defect
removal quicker and more reliable, thus also speeding
up overall program development. More concretely, we
attempt to �nd support for, or arguments against, the
following three hypotheses.

� Hypothesis 1: Type checking increases Interface
Use Productivity.

� Hypothesis 2: Type checking reduces the num-
ber of Interface Defects in delivered programs.

� Hypothesis 3: Type checking reduces Interface
Defect Lifetimes.

2 Related work

We are aware of only two closely related studies. One
is the Snickering Type Checking Experiment1 with the
Mesa language. In this work, compiler-generated er-
ror messages involving types were diverted to a secret
�le. A programmer working with this compiler on two
di�erent programs was shown the error messages af-
ter he had �nished the programs and was asked to es-
timate how much time he would have saved had he
seen the messages right away. Interestingly, the pro-
grammer had independently removed all the defects
detected by the type checker. He claimed that on one
program, which was entirely his own work, type check-
ing would not have helped appreciably. On another
program which involved interfacing to a complicated
library, he estimated that type checking would have
saved half of total development time. It is obvious
that this type of study has many
aws. But to our
knowledge it was never repeated in a more controlled
setting.

A di�erent approach was taken by the second experi-
ment, performed by Gannon [9]. This experiment com-
pares frequencies of errors in programs written in a
statically typed and a \type-less" language. Each sub-
ject writes the same program twice, once in each lan-
guage, but a di�erent order of languages is used for
each half of the experiment group. The experiment
�nds that the typed group has fewer distinct errors,
fewer error re-occurrences, fewer compilation runs, and
fewer errors remaining in the program (0.21 vs. 0.64
on average). The problem with the experiment is that
it was signi�cantly harder to program with the type-
less language. The task to be programmed involved
strings and the typed language provided this data type,
while the type-less language did not. Gannon reports
that most of the di�culties encountered by the subjects
were actually due to the bit-twiddling required by lack
of typing and that \relatively few errors resulted from

1J.H. Morris, Xerox PARC, unpublished, 1978

2

uses of data of the wrong type" ([9], p.591). Hence the
experiment does not tell us how useful type checking
is.

There is some research on error and defect classi�ca-
tion, which has some bearing on our experiment. Sev-
eral publications describe and analyze the typical de-
fects in programs written by novices, e.g. [6, 18]. The
results are not necessarily relevant for advanced pro-
grammers. Furthermore, type errors do not play an
important role in these studies.

Defect classi�cation has also been performed in larger
scale software development settings, e.g. [1, 10]. Type
checking was not an explicit concern in these stud-
ies, but in some cases related information can be de-
rived. For instance, Basili and Perricone [1] report
that 39 percent of all defects in a 90.000 line FOR-
TRAN project were interface defects. We conjecture
that some fraction of these could have been found by
type checking.

The defect-detection capabilities of testing methods
[2, 8, 22] have received some attention; the correspond-
ing psychological problems were also investigated [20].
There is also a considerable literature about debugging,
e.g. [7, 13, 16, 17], and its psychology, e.g. [17, 19].
However, the defects found by testing or debugging are
those that already passed the type checks. So the re-
sults from these studies would be applicable here only
if they focused on defects detectable by type checking
| which they do not.

Several studies have compared the productivity e�ects
of di�erent programming languages, but they either
used programmers with little experience and very small
programming tasks, e.g. [6], or somewhat larger tasks
and experienced programmers, but lacked proper ex-
perimental control, e.g. [11]. In addition, all such
studies have the inherent problem that they confound
too many factors to draw conclusions regarding type
checking, even if some of the languages provide type
checking and others do not.

It appears that the cost and bene�ts of interface type
checking have not yet been studied systematically.

3 Design of the Experiment

The idea behind the experiment is the following: Let
experienced programmers solve short, modestly com-
plex programming problems involving a complex li-
brary. To control for the type-checking/no-type-
checking variable, let every subject solve one problem
with K&R C, and another with Ansi C. Save the in-
puts to all compiler runs for later defect analysis.

A number of observations regarding the realism of the
setup are in order. A short, modestly complex task

means that most di�culties observed will stem from
using the library, not from solving the task itself. Thus,
most errors will occur when interfacing to the library,
where the e�ects of type checking are thought to be
most pronounced. Furthermore, using a complex li-
brary is similar to the development of a module within
a larger project where many imported interfaces must
be handled. To ensure that the results would not be
confounded by problems with the language, we used
experienced programmers familiar with the program-
ming language. However, the programmers had no ex-
perience with the library | another similarity with
realistic software development, in which new modules
are often written within a relatively foreign context.

In essence, we used two independent variables: There
were two separate problems to be solved (A and B,
as described below) and two alternative treatments
(Ansi C and K&R C, i.e., type checking and no type
checking).

To balance for learning e�ects, sequence e�ects, and
inter-subject ability di�erences, we used a counterbal-
anced design: Each subject had to solve both problems,
each with a di�erent language. The groups were bal-
anced with respect to the order of both problem and
language, giving a total of four experimental groups
(see Table 1). Subjects were assigned to the groups
randomly.

The design also allows to study a third independent
variable, namely experience with the library: In his or
her �rst task the subject has no previous experience
while in the second task some experience from the �rst
task is present.

The following subsections describe the tasks, the sub-
jects, the experiment setup, and the observed variables
and discuss internal and external validity of the experi-
ment. Detailed information can be found in a technical
report [15].

3.1 Tasks

Problem A (2� 2 matrix inversion): Open a win-
dow with four text �elds arranged in a 2 � 2 pattern
plus an \Invert" and a \Quit" button. See Figure 1.
\Quit" exits the program and closes the window. The
text �elds represent a matrix of real values. The values
can be entered and edited. When the \Invert" button
is pressed, replace the values by the coe�cients of the
corresponding inverted matrix, or print an error mes-
sage if the matrix is not invertible. The formula for
2� 2 matrix inversion was given.

Problem B (File Browser): Open a window with
a menubar containing a single menu. The menu entry
\Select �le" opens a �le-selector box. The entry \Open

3

Table 1: Tasks and compilers assigned to the four groups of subjects

�rst problem A �rst problem B
then problem B then problem A

�rst Ansi C Group 1 Group 2
then K&R C 8 subjects 11 subjects
�rst K&R C Group 3 Group 4
then Ansi C 8 subjects 7 subjects

Figure 1: Problem A (2� 2 matrix inversion)

selected �le" pops up a separate, scrollable window and
displays the contents of the �le previously selected in
the �le selector box. \Quit" exits the program and
closes all its windows. See Figure 2.

Figure 2: Problem B (File browser)

For solving the tasks, the subjects did not use native
Motif, but a special wrapper library. The wrapper pro-
vides operations similar to those of Motif, but with im-
proved type checking. For instance, all functions have
�xed-length parameter lists, while Motif often provides
variable-length parameter lists which are not checked.
The wrapper also de�nes types for resource-name con-
stants; in Motif, all resources are handled typelessly.
Furthermore, the wrapper provides some simpli�ca-
tion through additional convenience functions. For in-
stance, there is a single function for creating a Row-
ColumnManager and setting its orientation and pack-
ing mode; Motif requires several calls.

The tasks, although quite small, were not at all trivial.

The subjects had to understand several important con-
cepts of Motif programming (such as widget , resource,
and callback function). Furthermore, they had to learn
to use them from abstract documentation only, with-
out example programs; we used no examples as we felt
that these would have made the programming tasks
too simple. Typically, the subjects took between one
and two hours for their �rst task and about half that
time for their second.

3.2 Subjects

A total of 40 unpaid volunteers participated in the
study. Of those, 6 were removed from the sample: One
deleted his protocol �les, one was obviously too inex-
perienced (took almost 10 times as long as the others),
and 4 worked on only one of the two problems. After
this mortality, the A/B groups had 8+8 subjects and
the B/A groups had 11+7 subjects. We consider this
to be still su�ciently balanced [4].

The 34 subjects had the following education. 2 were
postdocs in computer science (CS); 19 were PhD stu-
dents in CS and had completed an MS degree in CS;
another subject was also a CS PhD student but held an
MS in physics; 12 subjects were CS graduate students
with a BS in CS.

The subjects had between 4 and 19 years of program-
ming experience (� = 10:0) and all but 11 of them had
written at least 3000 lines in C (all but one at least
300 lines). Only 8 of the subjects had some program-
ming experience with X-Windows or Motif; only 3 of
them had written more than 300 lines in X-Windows
or Motif.

3.3 Setup

Each subject received two written documents and one
instruction sheet and was then left alone at a Sun-4
workstation to solve the two problems. The subjects
were told to use roughly one hour per problem, but no
time limit was enforced. Subjects could stop working
even if the programs were not operational.

The instruction sheet was a one-page description of the
global steps involved in the experiment: \Read sec-

4

tions 1 to 3 of the instruction document; �ll in the
questionnaire in section 2; initialize your working envi-
ronment by typing make TC1; solve problem A by. . . "
and so on. The subjects obtained the following mate-
rials, most of them both on paper and in �les:

1. a half-page introduction to the purpose of the ex-
periment

2. a questionnaire about the background of the sub-
ject

3. speci�cations of the two tasks plus the program
skeleton for them

4. a short introduction to Motif programming (one
page) and to some useful commands (for example
to search manuals online)

5. a manual that listed �rst the names of all types,
constants, and functions that might be required,
followed by descriptions of each of them including
the signature, semantic description, and several
kinds of cross-references. The document also in-
cluded introductions to the basic concepts of Motif
and X-Windows. This manual was hand tailored
to contain all information required to solve the
tasks and hardly anything else.

6. a questionnaire about the experiment (to be �lled
in at the end)

Subjects could also execute a \gold" program for each
task. The gold program solved its task completely and
correctly and was to be used as a backup for the verbal
speci�cations. Subjects were told to write programs
that duplicated the behavior of the gold programs.

The subjects did not have to write the programs from
scratch. Instead, they were given a program skeleton
that contained all necessary #include commands, vari-
able and function declarations, and some initialization
statements. In addition, the skeleton contained pseu-
docode describing step by step what statements had
to be inserted to complete the program. The subjects'
task was to �nd out which functions they had to use
and which arguments to supply. Almost all statements
were function calls.

The following is an example of a pseudostatement in
the skeleton.

/* Register callback-function 'button pushed'

for the 'invert' button with the number 1 as

'client data' */

It can be implemented thus:

XtAddCallbackF(invert, XmCactivateCallback,

button pushed, (XtPointer)1);

There were only few variations possible in the imple-
mentation of the pseudocode.

The programming environment captured all program
versions submitted for compilation along with a time

stamp and the messages produced by the compiler and
linker. A time stamp for the start and the end of the
work phase for each problem was also written to the
protocol �le.

The environment was set up to call the standard
C compiler of SunOS 4.1.3 using the command cc

-c -g for the K&R tasks and version 2.7.0 of the
GNU C compiler using gcc -c -g -ansi -pedantic

-W -Wimplicit -Wreturn-type for the Ansi C tasks.

3.4 Dependent variables

For hypotheses 2 and 3 we observed when each individ-
ual defect in a program was introduced and removed.
We also divided the defects in a few non-overlapping
classes. We used the following procedure.

After the experiment was �nished, each program ver-
sion in the protocol �les was annotated by hand. Each
di�erent defect that occurred in the programs was iden-
ti�ed and given a unique number. For instance, for the
call to XtAddCallbackF shown above, there were 15
di�erent defect numbers, including 4 for wrong argu-
ment types, 4 for wrong argument objects with correct
type, and another 7 for more specialized defects.

Each program version was annotated with the defects
introduced, removed, or changed into another defect.
Additional annotations counted the number of type de-
fects, other semantic defects, and syntactic defects that
actually provoked one or more error messages from the
compiler or linker. The time stamps were corrected
for work pauses that lasted more than 10 minutes in
order to capture pure programming time only. Sum-
mary statistics were computed, for which each defect
was classi�ed into one of the following categories:

� slight: Defects resulting in slightly wrong func-
tionality of the program, but so minor that a pro-
grammer may feel no need to correct them. There-
fore, this class will also be ignored in order to avoid
artifacts in the results.

� invis: Defects that are invisible, i.e., they do not
compromise functionality, but only because of un-
speci�ed properties of the library implementation.
Changes in the library implementation may result
in a misbehaving program. Example: Supplying
the integer constant PACK COLUMN instead of the
expected Boolean value True works correctly, be-
cause (and as long as) the constant happens to
have a non-zero value. This rare class of defects
will be ignored: invis defects can hardly be de-
tected and thus are not relevant for our experi-
ment.

5

� invisD: same as invis, except that the defects will
be detected by Ansi C parameter type checking
(but not by K&R C). The invis class excludes in-

visD.

� severe: Defects resulting in signi�cant deviations
from the prescribed functionality.

� severeD: same as severe, except that the defects
will be detected by Ansi C parameter type check-
ing (but not by K&R C). The severe class excludes
severeD.

These categories are mutually exclusive. Defects that
had to be removed before the program would pass even
only the K&R C compiler and linker will be ignored.
Unless otherwise noted, the defect statistics discussed
below are computed based on the sum of severe, sev-
ereD, and invisD.

Other metrics observed were the number of compilation
cycles (versions) and time to delivery, i.e., the time
spent by the subjects before delivering the program
(whether complete and correct or not).

From these metrics and annotations, additional statis-
tics were computed. For instance the frequency of de-
fect insertion and removal, the number of attempts
made before a defect was �nally removed, the Inter-
face Defect Lifetime, and the number and type of de-
fects remaining in the �nal program version. See also
the de�nitions in Section 1.

For measuring productivity and unimplemented func-
tionality, we de�ne a functionality unit (FU) to be a
single statement in the gold program. For example,
the call to XtAddCallbackF shown in Section 3.3 is
one FU. Using the gold programs as a reference nor-
malizes the cases in which subjects produce more than
one statement instead. FUs are thus a better measure
of program volume than lines of code. Gold program
A contains 16 FUs, B contains 11. We annotated the
programs with the number of gaps , i.e., the number of
missing FUs. An FU is counted as missing if a subject
made no attempt to implement it.

3.5 Internal and external validity

The following problems might threaten the internal va-
lidity of the experiment, i.e., the correctness of the re-
sults:

1. For defects where both the K&R and the Ansi C
compiler produce an error message, these messages
might di�er and this might in
uence productivity.
Our subjective judgment here is that for the pur-
poses of this experiment the error messages of both
compilers, although sometimes quite di�erent, are

overall comparable in quality. Furthermore, none
of our subjects were very experienced with one
particular compiler and would understand its mes-
sages faster than others.

2. There may be annotation errors. To insure consis-
tency, all annotations were made by the same per-
son. The annotations were cross-checked �rst with
a simple consistency checker (looking whether er-
rors were introduced before removed, times were
plausible, etc.), and then some of them were
checked manually. The number of annotation mis-
takes found in the manual check was negligible
(about 4%).

3. The learning e�ect from �rst to second task might
be di�erent for K&R subjects than for Ansi C
subjects. This problem, and related ones, is ac-
counted for by the counter-balanced experiment
design.

The following problems might limit external validity of
the experiment, i.e., the generalizability of our results:

1. The subjects were not professional software en-
gineers. However, they were quite experienced
programmers and held degrees (many of them ad-
vanced) in computer science.

2. The results may be domain dependent. This ob-
jection cannot be ruled out. This experiment
should therefore be repeated in domains other
than graphical user interfaces.

3. The results may or may not apply to situations
in which the subjects are very familiar with the
interfaces used. This question might also be worth
a separate experiment.

Despite these problems, we believe that the scenario
chosen in the experiment is nevertheless similar to
many real situations with respect to type-checking er-
rors.

Another issue is worth discussing here: The learning
e�ect (performance change from �rst task to second
task) is larger than the treatment e�ect (performance
change from K&R C to Ansi C). This would be a prob-
lem if the learning reduced the treatment e�ect [16,
pages 106 and 113]. However, as we will see below, in
our case the treatment e�ect is actually increased by
learning, making our experiment results conservative
ones. We are explicitly considering programmers who
are not highly familiar with the interface used. There-
fore learning is a natural and necessary part of our
setting, not an artifact of improper subject selection.

4 Results and Discussion

Many of the statistics of interest in this study have
clearly non-normal distributions and sometimes severe

6

outliers. Therefore, we present medians (to be precise:
an interpolated 50% quantile) rather than arithmetic
means. Where most of the median values are zero,
higher quantiles are given.

The results are shown in Tables 2 through 4. There
are altogether ten di�erent statistics, each appearing in
three main columns. The �rst column shows the statis-
tics for both tasks, independent of order. The second
and third columns re
ect the observations for those
tasks that were tackled �rst and second, respectively.
These columns can be used to assess the learning ef-
fect. Each main column reports the medians (or higher
quantiles where indicated) for the tasks programmed
with Ansi C and K&R C plus the p-value. The p-value
is the result of the Wilcoxon Rank Sum Test (Mann-
Whitney U Test) and, very roughly speaking, repre-
sents the probability (given the observations) that the
medians of the two samples are equal. If p � 0:05, the
test result is considered statistically signi�cant and we
call the distributions signi�cantly di�erent. Signi�cant
results are marked in boldface in the tables. When the
result is not signi�cant, nothing can be said; there may
or may not be a di�erence.

4.1 Productivity

Table 2 shows three measures that describe the over-
all time taken and the productivity exhibited by the
subjects.

Statistic 1, time to delivery, shows no signi�cant di�er-
ence between Ansi C and K&R C for the �rst task or
for both tasks taken together. Ignoring the program-
ming language, the time spent for the second task is
shorter than for the �rst (p = 0:0012, not shown in
the table), indicating a learning e�ect. In the second
task, Ansi C programs are delivered signi�cantly faster
than K&R C programs. A plausible explanation is that
when they started, programmers did not have a good
understanding of the library and were struggling more
with the concepts than with the interface itself. This
explanation was con�rmed by studying the compiler
inputs. Type checking is unlikely to help gain a better
understanding. Type checks became useful only after
programmers had overcome the initial learning hurdle.

Statistic 2, the number of program versions compiled,
does not show a signi�cant di�erence; Ansi C program-
mers compile about as often as K&R C programmers.

Statistic 3 describes the productivity measured in func-
tional units per hour (FU/h). In contrast to time to de-
livery, this value accounts for functionality not imple-
mented by a few of the subjects. Again we �nd no sig-
ni�cant di�erence for the �rst task, but a (weakly) sig-
ni�cant di�erence for the second task. There, Ansi C
median productivity is about 20% higher than K&R C

productivity, suggesting that Ansi C is helpful for
programmers after the initial interface learning phase.
This observation supports hypothesis 1. The combined
(both languages) productivity rises very signi�cantly
from the �rst task to the second task (p = 0:0001, not
shown in the table); this was also reported by the sub-
jects and con�rms that there is a strong learning e�ect
induced by the sequence of tasks. The actual distri-

F
U

/h
ou

r

2

4

6

8

10

12

14

16

18

20

Ansi K&R

Figure 3: Boxplots of productivity (in FU/hour) over both
tasks for Ansi C (left boxplot) and K&R C (right boxplot).
The upper and lower whiskers mark the 95% and 5% quantiles,
the upper and lower edges of the box mark the 75% and 25%
quantiles, and the dot marks the 50% quantile (median). All
other boxplots following below have the same structure.

F
U

/h
ou

r

2

4

6

8

10

12

14

16

Ansi K&R

Figure 4: Boxplots of productivity (in FU/hour) for �rst task.

F
U

/h
ou

r

2

6

10

14

18

22

26

Ansi K&R

Figure 5: Boxplots of productivity (in FU/hour) for second
task.

butions of productivity measured in FU/h are shown
in Figures 3 to 5. We see that Ansi C makes for a more
pronounced increase in productivity from the �rst task
to the second (about 78% for the median) than does
K&R C (about 26% for the median).

7

Table 2: Overall productivity statistics. Medians of statistics for Ansi C vs. K&R C versions of programs and p-values
for statistical signi�cance of Wilcoxon Rank Sum Tests of the two. Values under 0.05 indicate signi�cant di�erences of the
medians. Column pairs are for 1st+2nd, 1st, and 2nd problem tackled chronologically by each subject, respectively. All entries
include data points for both problem A and problem B.

both tasks 1st task 2nd task
Statistic Ansi K&R Ansi K&R Ansi K&R

1 hours to delivery 1.3 1.35 1.6 1.6 0.9 1.3
p = 0.49 0.83 0.018

2 #versions 15 16 19 21 12.5 13
p = 0.84 0.63 0.16

3 FU/h 8.6 9.7 7.2 8.5 12.8 10.7
p = 0.93 0.31 0.061

Table 3: Statistics on internals of the programming process. See Table 2 for explanations.

both tasks 1st task 2nd task
Statistic Ansi K&R Ansi K&R Ansi K&R

4 accumul. interf. dfct. lifetime (median) 0.3 1.2 0.5 2.1 0.2 1.1
p = 0.004 0.028 0.059

5 #right, then wrong again (75% quant.) 1.0 1.0 1.0 1.0 0.0 1.0
p = 0.12 0.82 0.009

4.2 Defect lifetimes

Table 3 gives some insight into the programming pro-
cess.

Statistic 4 is the time from the introduction of an inter-
face defect to its removal (or the end of the experiment)
accumulated over all interface defects introduced by a
subject. The distributions of this variable over both
tasks are also shown as boxplots in Figure 6. As

ac
cu

m
. s

ev
er

eD
 e

rr
or

 li
fe

tim
e

0

2

4

6

8

10

Ansi K&R

Figure 6: Boxplots of accumulated interface defect lifetime
(in hours) over both tasks.

we see, the K&R total defect lifetimes are higher and
spread over a much wider range; the di�erence is signi�-
cant. Note that the frequency of defect insertion (num-
ber of interface defects inserted per hour, not shown in
the table) does not show signi�cant di�erences between
the languages, indicating that Ansi C is of little help
in defect prevention (as opposed to defect removal).
Taken together, these two facts support hypothesis 3:
Ansi C helps to remove interface defects quickly.

Statistic 5 indicates the number of defects, interface
or other, introduced in previously correct or repaired
statements of a program. While there is hardly any
di�erence in the �rst task, the value is signi�cantly

higher for K&R C in the second task. We speculate
that this happens because the type error messages of
Ansi C allow some of the subjects to avoid the trial-
and-error defect removal techniques they would have
used in K&R C; the e�ect occurs only in the second
task, after the subjects have gained a basic understand-
ing of Motif concepts.

4.3 Defects in delivered programs

Table 4 describes the quality of the products delivered
by the subjects.

Statistic 6 says that there are not more unimplemented
functionality units (\gaps") in the K&R C programs.

Statistic 7 con�rms that there are more defects in the
delivered K&R C programs than in the Ansi C pro-
grams; see also the distribution as shown in Figure 7.
The di�erence is much more pronounced in the sec-
ond task, though. Again the reason is probably that
the advantages of Ansi C become fully relevant only
after most other initial problems have been mastered.
Statistics 8 to 10 con�rm that the reason for the dif-
ference lies indeed in the type checking capabilities of
Ansi C: both the rare invisD defects (statistic 8) and
the severeD defects (statistic 10, see also Figure 8) are
much less frequent in delivered Ansi C programs than
in K&R C programs. These defects can be detected
by Ansi C type checking. On the other hand, se-

vere defects (statistic 9, see also Figure 9) are about as
frequent in delivered Ansi C programs as in K&R C
programs. These defects cannot be detected by type
checking.

As we see in the boxplots, the distributions for severe

8

Table 4: Statistics on the delivered program. See Table 2 for explanations. Lines 6 and 8 do not list medians but other
quantiles instead, as indicated.

both tasks 1st task 2nd task
Statistic Ansi K&R Ansi K&R Ansi K&R

6 #gaps (75% quantile) 0.25 0.0 1.5 0.0 0.0 0.0
p = 0.35 0.26 0.70

7 #remaining errs in delivered program 1.0 2.0 1.0 2.0 1.0 2.0
p = 0.016 0.32 0.031

8 | for invisD only (90% quantile) 0.0 1.0 0.0 1.4 0.0 0.0
p = 0.04 0.048 0.41

9 | for severe only 1.0 1.0 1.0 0.0 1.0 1.0
p = 0.66 0.74 0.65

10 | for severeD only 0.0 1.0 0.0 1.0 0.0 1.0
p = 0.0001 0.015 0.0022

al

l r
em

ai
ni

ng
 e

rr
or

s

-1

0

1

2

3

4

5

6

7

8

Ansi K&R

Figure 7: Boxplots of total number of remaining defects in
delivered programs over both tasks.

se

ve
re

D
 r

em
ai

ni
ng

 e
rr

or
s

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Ansi K&R

Figure 8: Boxplots of number of remaining severeD defects
in delivered programs over both tasks.

defects di�er only in the upper tail, whereas the dis-
tributions for the severeD defects di�er dramatically
in favor of Ansi C, resulting in a signi�cant overall
advantage for Ansi C. These observations support hy-
pothesis 2.

se

ve
re

 r
em

ai
ni

ng
 e

rr
or

s

-0.5

0.5

1.5

2.5

3.5

4.5

5.5

Ansi K&R

Figure 9: Boxplots of number of remaining severe defects in
delivered programs over both tasks.

Detailed analysis of the defects remaining in the deliv-
ered programs indicates a slight, but not statistically
signi�cant tendency that besides type defects other
classes of frequent defects also were reduced in the
Ansi C programs: using the wrong variable as a pa-
rameter or an assignment target (p = 0:28) or using
a wrong constant value as a parameter (p = 0:35). It
is unknown whether this is a systematic side-e�ect of
type checking and how it should be explained if it is.

There were no signi�cant di�erences between the two
tasks; all of the above results hardly change if one con-
siders the tasks A and B separately.

4.4 Questionnaire results

Finally, the subjective impressions of the subjects as
reported in the questionnaires are as follows: 26 of the
subjects (79%) noted a learning e�ect from the �rst
program to the second. 9 subjects (27%) reported that
they found the Ansi C type checking very helpful, 11
(33%) found it considerably helpful, 4 (12%) found it
almost not helpful, 5 (15%) found it not at all helpful.
4 subjects could not decide and 1 questionnaire was
lost.

5 Conclusions and further work

The experiment results allow for the following state-
ments regarding our hypotheses:

� Hypothesis 1, Interface Use Productivity:
When programming an interface, type checking
increases productivity, provided the programmer
has gained a basic understanding of the interface.

� Hypothesis 2, Interface Defects in delivered
program:
Type checking reduces the number of Interface De-
fects in delivered programs.

9

� Hypothesis 3, Interface Defect Lifetime:
Type checking reduces the time defects stay in the
program during development.

One must be careful generalizing the results of this
study to other situations. For instance, the experiment
is unsuitable for determining the proportion of inter-
face defects in an overall mix of defects, because it was
designed to prevent errors other than interface errors.
Hence it is unclear how large the di�erences will be if
defect classes such as declaration defects, initialization
defects, algorithmic defects, or control-
ow defects are
included.

Nevertheless, the experiment suggests that for many
realistic programming tasks, type checking of interfaces
improves both productivity and program quality. Fur-
thermore, some of the resources otherwise expended
on inspecting interfaces might be allocated to other
tasks. As a corollary, library design should strive to
maximize the type-checkability of the interfaces by in-
troducing new types instead of using standard types
where appropriate. For instance Motif, on which our
experiment library was based, is a negative example in
this respect.

Further work should repeat similar error and defect
analyses in di�erent settings (e.g. tasks with complex
data
ow or object-oriented languages). In particu-
lar, it would be interesting to compare productivity
and error rates under compile-time type checking, run-
time type checking, and type inference. Other impor-
tant questions concern the in
uence of a disciplined
programming process such as the Personal Software
Process [12]. Finally, an analysis of the errors occur-
ring in practice might help devise more e�ective defect-
detection mechanisms.

Acknowledgments

We thank Paul Lukowicz for patiently guinea-pigging
the experimental setup, Dennis Goldenson for his de-
tailed comments on an early draft, and Larry Votta
for pointing out an important reference and providing
many suggestions on the report. Last, but not least,
we thank our subjects.

10

A Solution for Problem A

This is the program (ANSI C version) that represents the canonical solution for Problem A. Most of it, including
all of the comments, was given to the subjects from the start; they only had to insert the statements marked
here with /*FU 1*/ etc. at those places previously held by pseudocode comments as described in Section 3.3
above. The numbers in the FU comments count the functional units as de�ned in Section 1.

#include <stdio.h>

#include <stdlib.h>

#include "stdmotif.h"

void button_pushed (Widget widget, XtPointer client_data, XtPointer call_data);

Widget mw[4]; /* text fields for matrix coefficients: 0,1,2,3 for a,b,c,d */

/************************* MAIN PROGRAM **************************/

int main (argc, argv)

int argc;

char *argv[];

{

Widget toplevel, /* main window */

manager, /* manager for square and buttons */

square, /* manager for 4 TextFields */

buttons, /* manager for 2 PushButtons */

invert, /* PushButton */

quit; /* PushButton */

XtAppContext app;

XmString invertlabel, quitlabel;

/*---------- 1. initialize X and Motif --------------------------------*/

/* (already complete, should not be changed) */

globalInitialize ("A");

toplevel = XtVaAppInitialize (&app, "Hello", NULL, 0,

&argc, argv, fallbacks, NULL);

/*---------- 2. create and configure widgets --------------------------*/

manager = XmCreateRowColumnManagerOCP ("manager", toplevel, XmVERTICAL,

2, False); /*FU 1*/

square = XmCreateRowColumnManagerOCP ("square", manager, XmHORIZONTAL,

2, True); /*FU 2*/

buttons = XmCreateRowColumnManagerOCP ("buttons", manager, XmHORIZONTAL,

1, False); /*FU 3*/

mw[0] = XmCreateTextFieldWidgetW ("aw", square, 100, "a"); /*FU 4*/

mw[1] = XmCreateTextFieldWidgetW ("bw", square, 100, "b"); /*FU 5*/

mw[2] = XmCreateTextFieldWidgetW ("cw", square, 100, "c"); /*FU 6*/

mw[3] = XmCreateTextFieldWidgetW ("dw", square, 100, "d"); /*FU 7*/

invert = XmCreatePushButtonL ("invert", buttons, /*FU 8*/

XmStringCreateLocalized ("Invert matrix"));

quit = XmCreatePushButtonL ("quit", buttons, /*FU 9*/

XmStringCreateLocalized ("Quit"));

/*---------- 3. register callback functions ---------------------------*/

XtAddCallbackF (invert, XmCactivateCallback, button_pushed,

(XtPointer)1); /*FU 10*/

XtAddCallbackF (quit, XmCactivateCallback, button_pushed,

(XtPointer)99); /*FU 11*/

/*---------- 4. realize widgets and turn control to X event loop ------*/

/* (already complete, should not be changed) */

XtRealizeWidget (toplevel);

XtAppMainLoop (app);

return (0);

11

}

/************************* Functions *************************/

void button_pushed (Widget widget, XtPointer client_data, XtPointer call_data)

{

/* this is the callback function to be called when clicking on

the PushButtons occurs */

double mat[4], new[4], /* old and new matrix coefficients */

det; /* determinant */

String s;

if ((int)client_data == 99)

exit (0); /*FU 12*/

else if ((int)client_data == 1) {

int i;

for (i = 0; i <= 3; i++) {

XtGetStringValue (mw[i], XmCvalue, &s); /*FU 13*/

mat[i] = atof (s); /*FU 14*/

}

det = mat[0]*mat[3] - mat[1]*mat[2];

if (det != 0) {

new[0] = mat[3]/det; new[1] = -mat[1]/det;

new[2] = -mat[2]/det; new[3] = mat[0]/det;

for (i = 0; i <= 3; i++)

XtSetStringValue (mw[i], XmCvalue, ftoa(new[i],8,2)); /*FU 15*/

}

else

matrixErrorMessage("Matrix cannot be inverted",mat,8,2);/*FU 16*/

}

}

B Solution for Problem B

See the description in Appendix A above.

#include <stdio.h>

#include <stdlib.h>

#include "stdmotif.h"

void handle_menu (Widget widget, XtPointer client_data, XtPointer call_data);

Widget toplevel;

/************************* MAIN PROGRAM **************************/

int main (int argc, char *argv[])

{

Widget main_w, /* main window */

menubar, /* the one-entry menu bar */

menu, /* the pulldown menu */

label; /* the label displayed in the work window */

XtAppContext app;

/*---------- 1. initialize X and Motif ------------------------------*/

/* (already complete, should not be changed) */

globalInitialize ("B");

toplevel = XtVaAppInitialize (&app, "Hello", NULL, 0,

&argc, argv, fallbacks, NULL);

/*---------- 2. create and configure widgets ------------------------*/

main_w = XmCreateMainWindowWidget ("main_window", toplevel);/*FU 1*/

12

menubar = XmCreateTrivialMenuBar (main_w, "FileBrowser",

XmStringCreate ("File Browser", "LARGE"), 'F'); /*FU 2*/

label = XmCreateLabelWidget ("by", main_w,

XmStringCreate ("by Lutz Prechelt", "SMALL")); /*FU 3*/

XtSetWidgetValue (main_w, XmCworkWindow, label); /*FU 4*/

menu = XmCreatePulldownMenu3 ("TheMenu", menubar, 0,

XmStringCreateLocalized ("Select file"), 'f',

XmStringCreateLocalized ("Open selected file"), 'O',

XmStringCreateLocalized ("Quit"), 'Q',

handle_menu); /*FU 5*/

/*---------- 3. register callback functions -------------------------*/

/* (handle_menu was already registered above, nothing to be done) */

/*---------- 4. realize widgets and turn control to X event loop ----*/

/* (already complete, should not be changed) */

XtRealizeWidget (toplevel);

XtAppMainLoop (app);

return (0);

}

/************************* Functions *************************/

void handle_menu (Widget widget, XtPointer client_data,

XtPointer call_data)

{

if ((int)client_data == 0) { /* first menu entry selected */

Widget fs = XmCreateFileSelectorDialog (toplevel,

"fileselection"); /*FU 6*/

XtAddCallbackF (fs, XmCokCallback, keepSelectedFile, NULL); /*FU 7*/

XtManageChild (fs); /*FU 8*/

}

else if ((int)client_data == 1) { /* second menu entry selected */

Widget scrolltext = XmCreateScrolledTextWindow (selectedFile(),

toplevel, 25, 80); /*FU 9*/

XtSetStringValue (scrolltext, XmCvalue,

readWholeFile (selectedFile())); /*FU 10*/

}

else if ((int)client_data == 2) { /* third menu entry selected */

exit (0); /*FU 11*/

}

13

References

[1] Victor R. Basili and B.T. Perricone. Software er-
rors and complexity: An empirical investigation.
Communications of the ACM, 27(1):42{52, Jan-
uary 1984.

[2] B. Beizer. Software Testing Techniques. Van Nos-
trand Reinhold, 1990.

[3] Kim Bruce. Typing in object-oriented languages:
Achieving expressibility and safety. ACM Com-
puting Surveys?, .(.):., 1998? to appear, see
http://www.cs.williams.edu/~kim/.

[4] Larry B. Christensen. Experimental Methodology.
Allyn and Bacon, Needham Heights, MA, 6th edi-
tion, 1994.

[5] Curtis R. Cook, Jean C. Scholtz, and James C.
Spohrer, editors. Empirical Studies of Program-
mers: Fifth Workshop, Palo Alto, CA, December
1993. Ablex Publishing Corp.

[6] Alireza Ebrahimi. Novice programmer errors:
Language constructs and plan composition. Intl.
J. of Human-Computer Studies, 41:457{480, 1994.

[7] Marc Eisenstadt. Tales of debugging from the
front lines. In [5], pages 86{112, 1993.

[8] Phyllis G. Frankl and Stewart N. Weiss. An exper-
imental comparison of the e�ectiveness of branch
testing and data
ow testing. IEEE Trans. on
Software Engineering, 1993.

[9] J.D. Gannon. An experimental evaluation of data
type conventions. Communications of the ACM,
1977.

[10] Robert B. Grady. Practical results frommeasuring
software quality. Communications of the ACM,
36(11):62{68, November 1993.

[11] Paul Hudak and Mark P. Jones. Haskell vs. Ada
vs. C++ vs. awk vs. . . . an experiment in software
prototyping productivity. Technical report, Yale
University, Dept. of CS, New Haven, CT, July
1994.

[12] Watts Humphrey. A Discipline for Software Engi-
neering. SEI Series in Software Engineering. Ad-
dison Wesley, Reading, MA, 1995.

[13] Murthi Nanja and Curtis R. Cook. An analysis
of the on-line debugging process. In [14], pages
172{184, 1987.

[14] Gary M. Olson, Sylvia Sheppard, and Elliot
Soloway, editors. Empirical Studies of Program-
mers: Second Workshop, Washington, D.C., De-
cember 1987. Ablex Publishing Corp.

[15] Lutz Prechelt and Walter F. Tichy. A controlled
experiment measuring the impact of procedure ar-
gument type checking on programmer productiv-
ity. Technical Report CMU/SEI-96-TR-014, Soft-
ware Engineering Institute, Carnegie Mellon Uni-
versity, Pittsburgh, PA, June 1996.

[16] B.A. Sheil. The psychological study of program-
ming. ACM Computing Surveys, 1981.

[17] Elliot Soloway and Sitharama Iyengar, editors.
Empirical Studies of Programmers. Ablex Pub-
lishing Corp., Norwood, NJ, June 1986. (The pa-
pers of the First Workshop on Empirical Studies
of Programmers, Washington D.C.).

[18] James G. Spohrer and Elliot Soloway. Analyzing
the high frequency bugs in novice programs. In
[17], pages 230{251, 1986.

[19] Webb Stacy and Jean MacMillian. Cognitive bias
in software engineering. Communications of the
ACM, 38(6):57{63, June 1995.

[20] Barbee Teasley, Laura Marie Leventhal, and Di-
ane S. Rohlman. Positive test bias in software
testing by professionals: what's right and what's
wrong. In Empirical Studies of Programmers:
Fifth Workshop, pages 206{221, Palo Alto, CA,
December 1993. Ablex Publishing Corp.

[21] Nikolaus Wirth. Gedanken zur Software-
Explosion. Informatik Spektrum, 17(1):5{20,
February 1994.

[22] Claes Wohlin and Per Runeson. Certi�cation of
software components. IEEE Trans. on Software
Engineering, 20(6):494{499, June 1994.

Biographical sketch

Lutz Prechelt works as senior researcher at the In-
formatics department of the University of Karlsruhe.
There he also received his diploma (1990) and his Ph.D
(1995) in Informatics. His research interests include
empirical software engineering, software design pat-
terns, compiler construction for parallel machines, con-
structive neural network learning algorithms, measure-
ment and benchmarking issues, and research method-
ology. Prechelt is a member of IEEE, ACM, and GI.

Walter F. Tichy is professor of Computer Science at
the University Karlsruhe, Germany. Previously, he
was senior scientist at Carnegie Group, Inc., in Pitts-
burgh, Pennsylvania and on the faculty of Computer
Science at Purdue University in West Lafayette, Indi-
ana. His primary research interests are software en-
gineering and parallelism. He is currently involved in
a number of projects, including experimental methods

14

in computer science, software architecture and design
patterns, software con�guration management, worksta-
tion clusters, optoelectronic interconnects for parallel
computers, and optimizing compilers for parallel com-
puters. He has consulted widely for industry.
Tichy received a B.S. from the Technical University in
Munich in 1974 and M.S. and Ph.D. degrees in Com-
puter Science from Carnegie-Mellon University in 1976
and 1980. He is a member of ACM, GI, and IEEE
Computer Society.

15

