
ELSEVIER Journal of Systems Architecture 44 (1998) 241-260

JOURNAL OF
SYSTEMS
ARCHITECTURE

ParaStation: Efficient parallel computing by clustering
workstations: Design and evaluation

Thomas M. Warschko .,1, Joachim M. Blum, Walter F. Tichy
O . / ' " Univcrsilv o/Karlsruhe. Dept. ,/ p~/ormatws Am Fasanengarten 5, D-76128 Karlsruhe, Germany

Received 1 November 1996: received in revised form 3 February 1997: accepted 1 April 1997

Abstract

ParaStation is a communications fabric for connecting off-the-shelf workstations into a supercomputer. The fabric
employs technology used in massively parallel machines and scales up to 4096 nodes. ParaStation's user-level message
passing software preserves the low latency of the fabric by taking the operating system out of the communication path,
while still providing full protection in a multiprogramming environment. The programming interface presented by
ParaStation consists of a UNIX socket emulation and widely used parallel programming environments such as
PVM, P4, and MPI. Implementations of ParaStation using various platforms, such as Digital's AlpbaGeneration work-
stations and Linux PCs, achieve end-to-end (process-to-process) latencies as low as 2 ~s and a sustained bandwidth of
up to 15 Mbyte/s per channel, even with small packets. Benchmarks using PVM on ParaStation demonstrate real ap-
plication performance of 1 GFLOP on an 8-node cluster.

Keywordw Works ta t ion cluster; Parallel and distr ibuted computing; User-level communica t ion ; High-speed
interconnects

1. Introduction

Networks of works ta t ions and PCs offer a cost-
effective and scalable a l ternat ive to monol i th ic

* Corresponding author. E-mail: warschko@ira.uka.de.
i WWW: http://wwwipd.ira.uka.de/parastation.

supercomputers . Thus, bund l ing together a cluster
o f works ta t ions - ei ther s ingle-processors or small
mul t iprocessors into a para l le l system would
seem to be a s t ra igh t fo rward solut ion for c o m p u t a -
t ional tasks that are too large for a single machine.
However , conven t iona l c o m m u n i c a t i o n mechan-
isms and p ro toco l s yield c ommun ic a t i on latencies
that p roh ib i t any but very large grain paral le l ism.

1383-7621/0165-6074198/$19.00 © 1998 Elsevier Science B.V. All rights reserved.
P I I S l 3 8 3 - 7 6 2 1 (9 7) 0 0 0 3 9 - 8

242 T M. l+)n's'ehko el al. I Jozwmd ql.V3,stem~' Arehi tevture 44 (lO~)g) 241 260

For example, typical parallel programming envir-
onments such as PVM [1], P4 [2] and MPI [3] have
latencies in the magnitude of milliseconds. As a
consequence, the parallel grain size necessary to
achieve acceptable efficiency has to be in the range
of tens of thousands of arithmetic operations.

In contrast, existing massively parallel systems
(MPPs) offer an excellent communication/compu-
tation ratio. However, engineering lag time leads
to a widening gap in the rapidly increasing perfor-
mance of state-of-the-art microprocessors and
low-volume manufacturing of MPPs results in a
cost/performance disadvantage. This situation is
not unique to MPP systems: it applies to multipro-
cessor servers as well [4].

ParaStation's approach is to combine the bene-
fits of a high-speed MPP network with the excel-
lent price/performance ratio and the standardized
programming interfaces of conventional worksta-
tions. Well-known programming interfaces ensure
portability over a wide range of different systems.
The integration of a high-speed MPP network
opens up the opportunity to eliminate most of
the communication overhead.

The retargeted MPP network of ParaStation
was originally developed for the Triton/l system
[5] and operates in a 256-node system. Key issues
of the network design are based around autono-
mous distributed switching, hardware flow-control
at link-level, and optimized protocols for point-to-
point message passing. In a ParaStation system,
this network is connected to the host system via
a PCl-bus interface board. The software design fo-
cuses on standardized programming interfaces
(UNIX sockets), while preserving the low latency
and high throughput of the MPP network. Para-
Station implements operating system functionality
in user-space to minimize overhead, while provid-
ing the protection for a true multiuser/multipro-
gramming environment.

The current design is capable of performing ba-
sic communication operations with a total process-

to-process latency of just a few microseconds (e.g.,
2 ItS for a 32-bit packet). Compared to workstation
clusters using standard communication hardware
(e.g., message-passing software such as PVM using
Ethernet/FDDI hardware), our system shows per-
formance improvements of more than two orders
of magnitude on communication benchmarks. As
a result, application benchmarks (e.g., ScaLA-
PACK equation solver and others) execute with
nearly linear speedup on a wide range of problem
sizes.

2. Related work

There are several approaches targeting to effi-
cient parallel computing on workstation clusters
which can be classified as shared-memory and dis-
tributed-memory systems. Shared-memory sys-
tems such as MINI [6], SHRIMP [7], SCI-based
SALMON [8,9], Digital's MemoryChannel [10],
and Sun's S-Connect [11] support memory-
mapped communication, allowing user processes
to communicate without expensive buffer manage-
ment and without system calls across the protec-
tion boundary separating user processes from the
operation system kernel.

In contrast to these approaches, distributed
memory systems such as Active Messages [12] for
ATM-based U-Net [13], Illinois Fast Messages
[14] for Myrinet [15], and the Berkeley NOW pro-
ject [4], also based on Myrinet, focus on a pure
message-passing environment rather than a virtual
shared memory. As von Eicken et al. pointed out
[12], recent workstation operating systems do not
support a uniform address space, so virtual shared
memory is difficult to maintain.

As with Active Messages and Fast Messages,
performance improvement within the ParaStation
system is based on user-level access to the network,
but in contrast to them, we provide multiuser/
multiprogramming capabilities. Like Myrinet and

74 M. Warschko et ai. / Journa! o[' Sys tems Architecture 44 (1998) 2 4 1 3 6 0

S-Connect, our network was originally designed
for a MPP system (Triton/l) and has now been re-
targeted to a workstation cluster environment.
Myrinet, IBM-SP2, and Digital 's MemoryChannel
use central switching fabrics, while ParaStation
provides distributed switches on each interface
board.

Recent parallel machines (e.g., Thinking Ma-
chines CM-5, Meiko CS-2, IBM SP-2, Cray
T3D/T3E) also provide user-level access to the net-
work. These solutions rely on custom hardware
and are constrained to the controlled environment
of a parallel machine, whereas ParaStation can be
(and actually is) implemented on a variety of dif-
ferent platforms from different vendors (i.e., any
system that provides a PCI-Bus).

3. P e r f o r m a n c e hurdles in w o r k s t a t i o n c lus ters

Using existing workstation clusters as a virtual
supercomputer suffers from several problems due
to standard communication hardware, traditional
approaches in the operating system, and the design
of widely used programming environments.

Standard communication hardware (i.e., Ether-
net, FDDI , ATM) was developed for a LAN/
WAN environment rather than for MPP commu-
nication. Network links are considered unreliable,
so higher protocol layers must detect packet loss
or corruption and provide retransmission, flow
control and error handling. Common network
topologies, such as a bus or a ring, do not scale
very well. Sharing one physical medium among
the connected workstations results in severe band-
width limitations and high latencies. In contrast,
MPP networks use higher-dimensional topologies
such as grids or hypercubes, where bandwidth
and bisection-bandwidth increases with the num-
ber of connected nodes. A fixed or inappropriate
packet size wastes bandwidth when transmitting
small messages and again leads to large latencies.

243

Thus, critical parameters for a network well-suited
for parallel computation are:
- latency, to transmit small messages,

throughput, to transmit large data streams, and
- scalability, when increasing the number of con-

nected workstations.
In addition to these hardware-related para-

meters, an efficient interface between a high-speed
network and parallel applications is an essential
requirement. By now, the communication subsys-
tem lies within the operating system, which pro-
vides two standardized interfaces: one to the
hardware at device driver level, and the other to
the user in the form of system calls. System calls
guarantee the protection needed in a multiuser en-
vironment, and the device driver level provides a
transparent interface for different hardware. As
the communication subsystem of the operation
system has to deal with different hardware abil-
ities, the overall service at the device driver level
is limited to the least common denominator of
the hardware. This structure prohibits the use of
specialized features of the communication hard-
ware. Implementing the user interface to the com-
munication subsystem as system calls implies at
least a context switch overhead and the copying
of message buffers between user and kernel space.
Often. this takes more time than transmitting the
message over the wire, especially for small mes-
sages. Furthermore, built-in communication pro-
tocols (e.g., TCP/IP) are designed to support
communication in local and wide area networks
and therefore are not very well suited for the needs
of parallel computing. Their complex protocol
stacks tend to limit the throughput of the whole
communication subsystem. To avoid processing
overhead in a protocol stack, the underlying net-
work has to maintain as much functionality as
possible.

In contrast to most local area networks, MPP
networks offer reliable data transmission in combi-
nation with hardware-based flow control. As a

244 T.M. Warschko el al. / Journal (~/'~vstems Architecture 44 (1998) 241 2 6 0

consequence, traditional protocol functionality
such as window-based flow control, acknowledge-
ment of packages, and checksum processing can be
reduced to a minimum (or even be left out). If the
network further guarantees in-order delivery of
packets, the fragmentation task and especially
the reassembly task of a protocol become much ea-
sier, because incoming packets do not have to be
rearranged into the correct sequence. Implement-
ing as much protocol-related functionality as pos-
sible directly in hardware results in minimal and
thus efficient protocols.

The most promising technique to improve the
performance of the network interface as seen by
a user is to move protocol processing into the
user's address space. The ParaStation system in
fact does all protocol processing at user-level while
still providing protection. Another critical issue is
the design of the user interface to the network. Of-
ten, vendors support proprietary APIs (e.g., AAL5
for ATM), but for reasons of portability a user
would prefer a standardized and well-known inter-
face. Thus, the key issues for the design of an effi-
cient communication subsystem for the
ParaStation architecture are:
- sharing the physical network among several

processes,
- providing protection between processes acces-

sing the network simultaneously,
- removing kernel overhead and traditional net-

work protocols from the communication path,
and

- providing a well-known programming interface.
To reach the goal of efficiency, the kernel is re-

moved from the communication path and all hard-
ware interfacing and protocol processing is done at
user-level. Even protection is done within the sys-
tem library at user-level using processor-supported
atomic operations to implement semaphores. Be-
sides proprietary user interfaces, we decided to of-
fer an emulation of the standard Unix socket
interface on top of our system layer.

Popular message-passing environments such as
MPI [3], PVM [1], P4 [2], and others are usually
built on top of the operating system communica-
tion interface which typically provides either reli-
able stream based communication (TCP) or
unreliable message-based communication (UDP).
But the type of service needed for message-passing
is reliable message-based communication. Thus,
all these message-passing environments have to
implement a reliable message-based communica-
tion protocol on top of TCP sockets. This causes
additional overhead due to different addressing
and naming conventions, buffering considerations,
and the mapping of data streams to messages. A
second inefficiency arises from the multiuser and
multiprogramming environment in workstation
clusters. Running several parallel applications si-
multaneously on a workstation cluster results in
scheduling and synchronization delays. The oper-
ating system of each individual node is only able
to use local information to schedule processes,
where global information would be appropriate
(e.g., gang scheduling within the cluster). Thus, ex-
ecution time of each application takes much longer
than running the applications one after another.
Running multiple processes of one application on
one processor causes an additional process switch-
ing overhead, especially if these processes commu-
nicate with each other. Furthermore, all these
environments allow processes to consume mes-
sages in arbitrary order and at arbitrary times.
This implies message buffering at the destination
node unless the receiving process is set up for
receipt.

A promising technique to overcome the perfor-
mance bottlenecks of current message-passing
environments is to support a specialized API with-
in the user-level communication subsystem. This
API could provide all necessary functionality such
as reliable message-based communication chan-
nels, message multiplexing and demultiplexing, dy-
namic coscheduling of concurrent threads, or even

72 AI. War,~chko et aL / Journul qf' Sr,5tetlls Arc ldtec turc 44 (1998) 241 260 245

gang scheduling of applications within the cluster
to better meet the requirements of standardized
message-passing libraries.

4. The ParaStation architecture

The ParaStation architecture is centered
around the reengineered MPP network of Triton/
1 [16,5]. The goal is to support a standard but effi-
cient programming interface such as UNIX sock-
ets. The ParaStation network provides a high
data rate, low latency, scalability, flow control at
link-level, minimized protocol, and reliable data
transmission. Furthermore, because the ParaSta-
tion network is dedicated to parallel applications
and is not intended as a replacement for a common
LAN, it can therefore eliminate the associated pro-
tocols. These properties allow the use of specia-
lized network features, optimized point-to-point
protocols, and controlling the network at user-le-
vel without operating system interaction. The
ParaStation protocol implements multiple logical
communication channels on a physical link. This
is essential to set up a multiuser/multiprogram-
ming environment. Protocol optimization is
achieved by minimizing protocol headers and elim-
inating buffering whenever possible. Sending a
message is implemented as a zero-copy protocol
which transfers the data directly from user-space
to the network interface. Zero-copy behavior dur-
ing message reception is achieved when the pend-
ing message is addressed to the receiving process;
otherwise the message is copied once into a buffer
in a commonly accessible message area. Within the
ParaStation network protocol, operating system
interaction is completely eliminated, removing it
from the critical path of data transmission. The
functionality missing to support a multiuser envir-
onment is implemented at user-level in the Para-
Station system library.

4.1. Hardware Architecture

Experience with network interfaces in parallel
machines made it clear that providing a self-rout-
ing network, flow control, reliable data transmis-
sion, and in-order delivery of packets at the
network interface level opens up the opportunity
to design fast and efficient protocols. A self-rout-
ing network frees the protocol layers from any
routing decision, because packets will not show
up at any software layer on intermediate nodes.
Hardware-based flow control at link-level elimi-
nates all related mechanisms usually found in com-
munication protocols, such as transmission
windows, packet sequence numbers, acknowledge-
ments, timeouts, and retransmissions. In conjunc-
tion with transmission lines with a very low error
rate, hardware-based flow control acts as base
technology to offer a reliable end-to-end data
transmission. In-order delivery of packets is a
more practical issue, because it simplifies the frag-
mentation and especially the reassembly task of a
protocol implementation when transferring large
data sets.

4.1.1. Hardware overview
We use the reengineered MPP-network of Tri-

ton/1 as communication hardware. The network
topology is based on a two-dimensional toroidal
mesh. For small systems a ring topology is suffi-
cient. Data transport is done via a table-based,
self-routing packet switching method which uses
virtual cut-through routing. Every node (see
Fig. 1) is equipped with its own routing table
and with three input buffers: two for intermediate
storage of data packets coming from other nodes
and one for receiving packets from its associated
processing element (workstation). An output buf-
fer delivers data packets to the associated worksta-
tion. The buffering (1 KB fifos) decouples the
network operation from local processing. Packets
contain the address of the target node, the number

246 i2 M. Warschko et al. I Journal q/5),stems Architecture 44 (1998) 2 4 1 ~ 6 0

i From Processor

I Switch
Channel 0 I

Channel 1 - - ~ I I Routi!gtable]

To Processor ~

Channel 0

Channel 1

Fig. 1. ParaStation network.

of data words contained in the packet, and the data
itself. The size of the packet can vary from 4 to 508
bytes. Packets are delivered in order and no pack-
ets will be lost. Flow control is done at link-level
and the unit of flow control is one packet.

For both topologies ring and toroidal mesh
we provide a deadlock-free routing scheme. Dead-
lock-free routing on a ring is simple, as long as the
network is prevented from overloading. This pro-
blem is solved by inserting new packets into the
network only when both channel fifos are empty.
Deadlock-free routing on a toroidal mesh is done
by using X Y dimension routing. First, a packet
is routed along the x-axis of the grid until it
reaches its destination column. Then it is routed
along the),-axis to its final destination node. Pro-
viding similar insertion rules as in the ring routing
for both dimensions and giving the y-axis priority
over the x-axis prevents deadlock.

The current implementation of our communica-
tions processor involves a routing delay of about
250 ns per node and offers a maximum throughput
of 20 Mbyte/s per link. In addition to the commu-
nication network, the interface board provides a
hardware mechanism for fast barrier synchroniza-
tion. To connect several systems, we use 60-wire
flat ribbon cables, with standardized RS-422 differ-
ential signals. Thus, the maximum distance be-
tween any two systems is 10 m (about 30 feet).
The balanced interface circuits of RS-422 in com-
bination with a correct line termination acts as

base to ensure reliable data transmission. Never-
theless, each 16 bit wide data word is protected
with two parity bits to detect transmission errors. 2

4.1.2. Hardware details
The following functional diagram shows details

of the ParaStation network and will be used to ex-
plain how packet transmission, routing, and flow
control is currently implemented. For clarity, the
second communication link is omitted from Fig. 2.

The network interface presents itself as a set of
registers, namely a status register (SREG), a con-
trol register (CREG), and a fifo interface for trans-
mitting data (NREG) to the (low level)
programmer. The SREG provides information
about the current state of the hardware, such as
full, half-full, and empty signals from both trans-
mission fifos (input and output buffer, see figure).
The C R E G is used to control various operations
related to interrupt handling, programming of
the synchronization lines, and loading the Xilinx
FPGA (network processor). The data interface
(NREG) to transfer packets into or out of the net-
work is implemented as a pair of fifos to decouple
the host processor from the operation of the net-
work processor.

The message transfer between host processor,
the network interface, and within the network it-
self is accomplished by a packet-based flow control
mechanism. We choose a packet as the unit of flow
control for several reasons: first, easier buffer man-
agement and transmission control within the net-
work, and second, faster interface routines
between the host processor and the network inter-
face. If the network processor has knowledge
about buffer space in a destination bejbre transmit-
ting a message, it can either refuse to transmit (in-
sufficient buffer space) or it can transmit the

2 The only transmission errors we have ever detected were
caused by faulty hardware.

12 M. Warschko el aL / Journal o~ S)'stems Architecture 44 (199~) 241 200

From workstation

l Read sig_nal

Fifo halffull Data
I Channel b
I

From / to other nodes Fifo empty[_

Fifo halffull

To workstation
! Routingtable Data~ I Packet ready

I Write signal - ~ / |

• Data ~ I Output buffer

Network- 7 ~ ~ /~ro ~io m o~ernodes
Processor j Fifo halffull

Fig. 2. Flow control details.

247

complete message at once (sufficient buffer space).
Thus, the network processor of the sending node
cannot be blocked during a message transfer and
there is no need at the destination node to drop in-
coming packets due to buffer overflow. Blocking a
network node is critical because of deadlock situa-
tions, and dropping packets causes a network to be
unreliable, unless an appropriate (expensive) flow
control mechanism is provided (transmission win-
dows, sequence numbers, acknowledgements,
timeouts, and retransmission).

From the host processor's point of view, knowl-
edge about buffer space within the network inter-
face can be used to speed up transmission
routines. Depending on the buffer space available,
the host processor can refuse to send the message
or it can send the whole message at once. Other-
wise, the host is forced to poll the buffer state each
time a single word is transferred, which takes
about twice as long. Receiving a complete message
is even more difficult, because without special
hardware support it is hard to figure out if a com-
plete message is available at the output buffer. The
output fifo provides empty, half-full, and full sig-
nals; but that is insufficient information to keep
track of the number of received messages. The
ParaStation network solves this problem with ad-
ditional hardware to provide a 'packet ready' sig-
nal if a complete message resides pending in the
output fifo ('packet ready' signals of successive

messages are buffered in an additional fifo). This
information is then used by the host processor to
receive a complete message without additional
polling.

Packet-based flow control and autonomous
routing are closely related within the ParaStation
network. As stated above, the network processor
transmits a packet only if there is enough buffer
space at the destination node. To determine the
path of an incoming packet, the network processor
uses the empty and half-full signals of all incoming
and outgoing links as follows. (In combination
with X Y dimension routing in a toroidal mesh,
this information is sufficient to determine if there
is sufficient buffer space at the destination node.)
According to the X - Y dimension routing, a packet
is first routed along the x-axis and then along the
y-axis to its final destination node. Thus, a packet
pending at the y-channel has to stay on the y-
channel. If the half-full signal of the destination
node along the),-axis is inactive, this packet is
transferred. In case of pending packets at the x-
channel, the network processor has to check the
half-lull signals of both outgoing links, because
without further inspection of the packet it is im-
possible to determine the correct destination link.
Sufficient buffer space at both neighbor nodes
and an empty incoming y-channel causes the net-
work controller to transfer a pending packet at
the x-channel. If there is a packet pending at the

248 T.M. Warschko et al. / Journal o/' Systems Architecture 44 (1998) 24l 260

input buffer of the associated host processor, the
network controller checks the empty signals of
both incoming as well as the half-full signals of
both outgoing channels. To protect the network
from overloading and blocking, all incoming
channels have to be empty and there has to be
sufficient buffer space at both outgoing channels.
Under these conditions, the network processor de-
cides to insert a new packet into the network.
Once the network controller has drawn its decision
on which packet to transfer next, it reads the first
message flit (the destination address of that pack-
et) out of the fifo and puts it on the internal data
bus. The routing table listening to this bus pro-
vides information about the final destination link
of that packet. Finally, the network controller
transfers the packet.

4.2. S o f t w a r e a rch i t ec tu re

The basic principle behind the ParaStation soft-
ware architecture is user-level communication.

Accessing the communication hardware directly
from user space removes the operating system
and traditional protocol stacks from the communi-
cation path. This concept opens up the opportu-
nity to improve both the performance and the
flexibility of communication protocols as well as
to investigate highly optimized and carefully de-
signed high-performance protocols to better meet
the requirements for parallel computing in a work-
station cluster.

To avoid operating system overhead, all inter-
facing to the ParaStation hardware is at user-level
(see Fig. 3). The device driver is used at system
startup to configure the communication boards
and within the startup-code of an application pro-
gram to get information about the hardware. Dur-
ing normal operation (i.e., message transfers), the
ParaStation system library interfaces directly to
the hardware without using the operating system.
The gap between hardware capabilities and user
requirements is bridged within the ParaStation
system library.

W o r k s t a t i o n P a r a S t a t i o n

I
PVM

_ _ E _ _

User Libc

I System

TCPfiP

I
Ethernet

I__
Network

Application

User Library

System Library

Network Protocols

Device Driver

Hardware

Fig. 3. Network interfacing techniques.

I
! PS-PVM I

I

i

ParaStation]

Network~

T.M. Wurschko c't ul. / Journal <4/'Sy,stc'ms Architecture 44 (1998) 241 260

n Users,
m Applications,
p Processes per Application

/ Socket Emulation

ParaStation System Layer (Ports) 1
I

Hardware Abstraction Layer (HAL)

1 User,
1 Application

Fig. 4. ParaStation system library.

249

The ParaStation system library (see Fig. 4) acts
as a second communication subsystem besides that
of the operation system, but ofl'ers at top level the
same communication services as the operating sys-
tem, namely the Unix socket interface. The core
layer (ports) implements all necessary abstractions
(independent communication channels) to provide
a multiuser/multiprogramming environment. The
hardware abstraction layer was introduced to hide
architecture and hardware specific operations from
upper layers. The following sections give a brief
description of all layers within the ParaStation
communication library.

4.2.1. Hardware abstraction layer
This layer intends to hide architecture and

hardware specific operations from upper layers.
It is intended to be used only by the ParaStation
system layer and is not considered as an applica-
tion programming interface. The hardware ab-
straction layer provides highly optimized send/
receive operations, a status information call, and
an initialization call. The initialization call is used
to map the hardware registers (status register,
command register, and communication tiros) into
user space. The information call looks for pending

messages and checks if the network is ready to ac-
cept new messages. The send call transmits a pack-
et into the network and the receive call delivers the
next pending packet to the caller.

Since messages at this level are addressed to
nodes rather than individual communication chan-
nels, message headers simply contain the address
of the target node, the number of data words con-
tained in the packet, and the data itself. While
sending a message, data is copied directly from
user space memory to the interface board. Receiv-
ing a message is split into two separate calls. The
first call (r e c e i v e _ h e a d e r) delivers only the
message header to the caller whereas the second
call (r e c e i v e _ b o d y) copies the message data it-
self to the appropriate location in memory. This
approach allows eliminating all intermediate buf-
fering and leads to true zero-copy behavior.

4.2.2. Sys t em layer (ports)

The system layer provides the necessary ab-
straction (multiple communication channels) be-
tween the basic hardware capabilities (the
hardware just handles packages) and a multiuser/
multiprogramming environment. The major tasks
within this layer are message multiplexing and

250 T.M. Warschko et al. / Journal o f Systems Architecture 44 (1998) 24l 260

demultiplexing, mutual exclusion and correct
interaction between competing processes, and
fragmentation and reassembly of arbitrary-sized
messages.

To support individual communication channels
called ports in ParaStation -, the system layer

maintains a minimal software protocol, which
adds information about the sending and receiving
port in each packet. This concept is sufficient to
support multiple processes by using different port
identifiers for different processes. To handle multi-
ple communication channels, multiplexing of out-
going and especially demultiplexing of incoming
messages is accomplished within this protocol
layer. Message multiplexing is done by ensuring
the correct interaction between competing pro-
cesses. The demultiplexing task instead has to keep
track of the relationship between incoming mes-
sages, port identifiers, and associated processes.
In a first step, the complete message is copied to
a common accessible message pool (shared mem-
ory segment). Afterwards it is easy to decide
whether this message is going to be delivered to
the calling process. Although it introduces addi-
tional overhead in some cases, we choose this buf-
fering technique for the following reasons. First, if
the incoming messages belongs to a different pro-
cess, it has to be buffered anyway. Second, if the
incoming packet is part of a fragmented message,
it first has to be reassembled to a complete message
before it can be delivered to the calling process.
Third, message reception may be invoked while
sending large messages to prevent the network
from overloading and blocking. In this case, in-
coming messages have to be buffered because no
application is going to receive a message.

The general problem of demultiplexing and
buffering messages is closely related to the way ap-
plications are used to receive messages. Receiving
a message is an active process where an application
issues a receive operation and the communication
subsystem is expected to deliver the requested

message. Furthermore, an application assumes
the reception of complete messages and is usually
not prepared to receive message fragments.

Maintaining a correct interaction between pro-
cesses while sending or receiving messages necessi-
tates the locking of critical code regions by
semaphores. For reasons of efficiency, we also im-
plemented these semaphores at user-level, using
processor supported atomic operations. A fine
granularity while locking critical code regions pro-
vides fairness among competing processes. Busy
waiting while trying to enter a critical code region
already locked is prevented by hands-off schedul-
ing. Using this technique, the locking process is
able to continue operation much earlier. This im-
proves overall performance.

To obtain as much performance (and as little
overhead) as possible, the system layer provides a
so called rawdata port, which differs from regular
ports as follows. Rawdata connections are imple-
mented as a separate protocol which uses less pro-
tocol information than regular ports. Second,
receiving small messages is done by copying them
directly to user-space without intermediate buffer-
ing (true zero-copy). Third, the rawdata protocol
uses another locking schema of critical code re-
gions which gives a higher priority to the rawdata
connection. Nevertheless, the rawdata port and
regular ports can be used simultaneously, but ap-
plications using the rawdata port are scheduled
one after another.

Our implementation of these concepts does not
need a single system call. Furthermore, we provide
a zero-copy behavior (no buffering) whenever
possible. This leads to high bandwidth and low
latencies.

4.2.3. Socket layer
The socket layer provides an emulation of the

standard UNIX socket interface (TCP and UDP
connections), so applications using socket commu-
nication can be ported to the ParaStation system

T.M. Warxchko el al. / Journal qf S),stemx Architecture 44 (1998) 241 200 251

with little effort. To provide a greater flexibility,
this layer supports a fall-back mechanism which
transparently uses regular operating system calls
if a communication request cannot be satisfied
within the ParaStation cluster. Calls that can be
satisfied within the ParaStation cluster do not need
any interaction with the operating system.

4.2.4. Appl icat ion layer

The installation of standard programming en-
vironments such as PVM [1], MPI [3], P4 [2],
T C G M S G [17], and others on ParaStation is sim-
ply done by replacing the standard socket interface
with the ParaStation sockets for high-speed com-
munication. This approach allows us to easily
port, maintain, and update these packages. We
use the out-of-the-box software distribution.

4.3. Interact ion o f components

The ParaStation system consists of five major
components (see Fig. 5): the communication hard-
ware (a PCI-bus board), a device driver, the com-
munication library, a common accessible message
buffer, and the ParaStation daemon process.

The ParaStation device driver is responsible for
initializing the ParaStation hardware at system
startup, mapping the hardware registers to user
space at application startup, and - together with
the ParaStation daemon process - for ensuring
protection. The ParaStation daemon process acts
as a rather passive component, as it is not capable
of handling any communication request. It is in-
volved in application startup, maintaining infor-
mation about the state of the ParaStation cluster,
and administration, and is also responsible for
keeping the shared message buffer consistent in
case an application crashes. The shared message
buffer is used to keep control information, such
as used ports and sockets, and process control
blocks of active processes, as well as to buffer in-
coming messages not yet deliverable to the asso-
ciated application.

The ParaStation library itself acts as the trusted
base within a ParaStation system. The library is
statically linked to each application using ParaSta-
tion and ensures correct interaction between all
parts of the system. At application startup, it con-
tacts the ParaStation daemon to register the appli-
cation as a ParaStation process. During this

Application A [Application B

\
\ ,

\ \
\ , \ "x

ParaStation Library

Application Startup I (User Mode)

Operating System ~]
(Kernel Mode) i Driver

L 1 System Startup / Initialization I I Normal Operation
ParaStation Hardware I

(ParaStation '1
'\ Daemon /i
' \ /

M ~ e n t ~ d C~//ontrol

t t e sage Buffer

Control
Information

Fig. 5. Interaction of ParaStation components.

252 T. M. Warachk~ ct al. I Jc, urnal (~[Sv~wma Architecture 44 (1996) 241 260

procedure, the daemon checks permissions as well
as the current library version to prevent outdated
applications from disturbing the system. After per-
mission is granted, it maps all necessary interfaces
to the address space of that application. During
normal operation (i.e., sending and receiving mes-
sages), the library interacts only with the applica-
tion, the hardware, and the shared message
buffer. Applications are not allowed to directly ac-
cess either the hardware or the message buffer; all
operations have to be provided by the library. If
an application finishes, the library informs the dae-
mon process to release all resources used by this
application. Application crashes are automatically
detected by the ParaStation daemon and used re-
sources can be freed.

4.4. Parastat ion p la t jorms

Currently, ParaStation supports AIphaGenera-
tion workstations from Digital Equipment run-
ning Digital UNIX (OSF/1) and Intel PCs (486,
Pentium, PentiumPro) running Linux. Ports to
the DEC-Alpha platform running Linux as well
as ports to the Intel-PC and DEC-Alpha platform
running Windows NT are in progress. Ports to
other platforms (e.g., Sun/Solaris, 1BM-
PowerPC/AIX, SGI/IRIX) are possible, but not
yet scheduled.

Our current testbed consists of three different
ParaStation clusters. One cluster is based on
21064A Alpha workstations (275 MHz, 64 MB
memory) with 8 nodes. The additional cost to
equip this Alpha cluster with the ParaStation com-
munication boards was about 16.000 USD, which
is less than what we paid for a single Alpha work-
station. The second cluster consists of four 21066
Alpha workstations (233 MHz, 64 MB memory).
All Alpha machines are running Digital Unix
3.2c. The third cluster consists of two Intel PCs
(120 MHz, 40 MB memory) running Linux 2.0.

5. Performance evaluation

The evaluation described in this section covers
three different scenarios. The communication and
synchronization benchmarks provide information
about the raw performance of ParaStation.
Although we call this 'raw performance', these
benchmarks reflect application-to-application per-
formance measured at the hardware abstraction
layer. Second, we present the level of performance
that can be achieved at ParaStation's different soft-
ware layers (see Section 4.2). The third scenario di-
rectly deals with application performance, namely
run time efficiency.

Process 1:
measure start-time;
DO i = l,k

send(message)
receive(message)

ENDDO
measure stop-time;
calculate latency and throughput;

Process2:
measure start-time;
DO i = 1,k

send(message)
receive(message)

ENDDO
measure stop-time;
Calculate latency and throughput;

Algorithm 1. Pairwise Exchange codefragment

5.1. Communicat ion benchmark

To measure the end-to-end delay, we imple-
mented a Pairw&e Exchange benchmark (see algo-
rithm 1) where two processes send a message to
each other simultaneously, and then receive simul-
taneously. Unlike a Ping-Pong benchmark, the
second process does not wait for receipt of a mes-

T M. Warschko el al /Journal tJ/'S.vsten~,~" d rchiteelure 44 (199,~) 241 260

Table 1
ParaSialion performance at the hardware abstraction layer

253

Message size (bytes) Alpha 21(/64A, 275 MHz Alpha 21066, 233MHz

Time per iteration Through-put Time per iteration Through-put
([as) (Mbyte/s) (~as) (Mbyte/s)

Intel pentium, 120 MHz

Time per iteration Through-put
(~s) (Mbyte/s)

g~, 'd trcm,~;/er
1 2.52 1). 794 2.39 0.978 1.75 1.143
2 2.51 1.592 2.40 1.957 1.75 2.272
4 2.48 3.228 1.94 4.108 1.76 4.545
8 3.24 4.939 2.58 6.188 2.26 7.080

Bh>ck tran,~'lor
4 3.54 2.260 3.62 2.205 2.93 2.730
8 4.27 3.739 4.13 3.860 3.22 4.969
16 5.71 5,596 5.39 5.921 4.09 7.824
32 8.69 7.358 8.25 7.956 5.72 11.189
64 14.56 8.772 12.90 9.894 9.29 13.778
128 26.40 9.693 22.74 11.238 17.25 14.772
256 50.31 10.227 42.45 12.019 33.25 15.366
5(18 95.90 10.506 81.43 12.450 65.05 15.592

sage before transmitting. This is a more practical
scenario for two processes exchanging messages.

The following table contains the results from
the Pairwise Exchange benchmark, while varying
message size from 1 to 508 bytes. 3 Transmitting
larger messages can be done by fragmentating
them into several smaller packets. To get accurate
timing information, we measured run time of one
million iterations (k - 10 ~ in the above code frag-
ment) for each packet size. For very short message
sizes (word transfer), we use specialized routines
with less overhead than the general block transfer
routine.

For small message sizes (see Table 1), ParaSta-
tion achieves transmission latencies (sending and
receiving a message in user-space) as low as 2.5 Ixs

508 bytes user data is the maximum packet length of the
ParaStation interface.

on systems with the 21064A processor, 1.9 ~ts on
systems with the 21066 processor, and 1.8 p,s on
Pentium machines. For larger message sizes, with
decreasing overhead per byte, we get a total
throughput of up to 10.5 Mbytes/s (21064A),
12.5 Mbytes/s (21066), and 15.5 Mbytes/s (Pen-
tium) respectively. The performance differences
are due to the location of the PCI interface. The
Alpha 21064A is using a board-level chipset
(21072), where as the Alpha 21066 benefits from
its on-chip PCI interface. Furthermore, the Alpha
processor has a write buffer which is capable of
combining writes to the same memory addresses.
As the ParaStation communication interface is im-
plemented as a fifo buffer, we had to insert mem-
ory barrier (MB) instructions after each write to
the fifo to overcome the write combining problem.
The MB instruction itself waits for all outstanding
read and write operations and thus limits the per-
formance on these two architectures. Although the

254 T.M. Wurschko et cd. / Journal ~/ 'Systems Architecture 44 (1998) 241 260

Pentium system uses a board-level chipset (Intel
Triton), this system shows the best performance
because there is no write combining problem.
The Alpha 21164 processor has a write memory
barrier instruction (WMB), which prohibits write
combining but does not interfere with outstanding
read operations. Early measurements on an Alpha
21164 system (300 and 500 MHz) show quite the
same performance as a Pentium system.

5.2. Synchronization benchmark

As mentioned above, SPMD-style parallel pro-
grams often need barrier synchronizations to keep
their processes in synchrony. The following code
fragment (see algorithm 2) was used to measure
the performance of our hardware-supported syn-
chronization mechanism on ParaStation.

To get accurate timing information, we mea-
sured run time of one million iterations (k = 106)

of the given code fragment. To compare our re-
sults to conventional methods, we also implemen-
ted a logarithmic barrier synchronization using
standard operating system calls.

The performance improvement of our hard-
ware mechanism shown in Table 2 is so over-
whelming that no further explanation is needed.
The results were measured on the 21064 cluster;
the 21066 and Pentium clusters are about 17%
faster.

Process I :
measure start-time;
DO i = 1,k

sync0
E N D D O
measure stop-time;
calculate timing;

Process2:
measure start-time;
DO i = 1,k

sync0
E N D D O
measure stop-time;
calculate timing;

Algorithm 2. Synchonization code fragment

5.3. Per~rmance of the protocol hierarchy

Switching from single- to mult iprogramming
environments often suffers from a drastic perfor-
mance decrease. In Table 3, performance figures
of all software layers in the ParaStation system
are presented.

To support a true mult iprogramming environ-
ment, our system layer (ports) only adds about
10 gs (8 ~ts on the PC) additional latency to com-
munication calls, and the loss of throughput com-
pared to the hardware abstraction layer on the

Table 2
Synchronization performance

Number of ParaStation
stations

Ethernet

Runt ime per iteration Synchronizations per Runt ime per iteration Synchronizations per
(gs) second (~ts) second

2 1.6 625.000 576 1739
4 1.7 588.000 1223 818
8 2.3 435.000 1856 539

)14. Warsehko et al. I Journal o/'S),stems Architecture 44 (1998) 241 260

Table 3
Performance of the protocol hierarchy

255

Protocol Alpha 21064A, 275 MHz Pentium, 120 MHz
layer

ParaStation OS/Ethernet ParaStation OS/Ethernet

Latency Band-width Latency Band-width Latency Band-width
(~s) (MB/s) (~ts) (MB/s) (p.s) (MB/s)

Latency Band-width
(~s) (MB/s)

Hardware 1.24 10.5 0.87 15.6
Rawdata 4.15 9.6 3.05 13.6
Port 10.7 8.9 8.9 10.8

Socket 11.4 8.8 283 0.99 9.2 10.7
P4 108 7.5 344 0.95
PVM 129 6.7 539 0.84 102 7.7

Socket (self) 6.4 85 195 33 4.82 88

159 1.08

388 0.86

288 30

Alpha system is within 15% (30% on the PC sys-
tem). The results justify our decision to maintain
the rawdata port which is more than twice as fast
in latency than regular ports and the loss of
throughput drops to 8.5% (13% on the PC system)
compared to the performance of the hardware ab-
straction layer. 4.15 ~ts (3.05 las) latency of the raw-
data port is even less than 4.5 las (3.9 las) for a null
system call on the Alpha (PC).

The performance difference between the hard-
ware abstraction layer (HAL) and the rawdata in-
terface is due to the guarantee of mutual exclusion
and correct interaction between competitive pro-
cesses. Applications using the HAL as a communi-
cation interface assume exclusive access to the
ParaStation network. Only one application per
node is allowed to interface to the hardware at this
level, so there is no need to regulate any interac-
tion between processes. Typically the HAL is only
used by the ParaStation library and not considered
as a user programming interface. The rawdata in-
terface too, is limited to one application per node,
but ensures correct interaction between applica-
tions using upper layers such as ports or sockets.
Thus, several critical code regions (interaction with

the hardware while sending or receiving a message,
updating global information, etc.) are locked by
semaphores. Furthermore and in contrast to the
HAL interface, the rawdata layer supports auto-
matic fragmentation and reassembly of large mes-
sages (>500 bytes), receiving messages only from a
particular node (and not just the next packet as at
the HAL level), and it uses a larger protocol head-
er than the H A L (8 vs. 4 bytes). All these opera-
tions are responsible for the additional latency at
the rawdata level compared to the HAL.

The performance difference between the raw-
data interface and upper layers (ports, sockets) is
mostly due to the enhanced functionality of the
port and socket layer. First of all, the upper layers
provide a multiuser and mult iprogramming envir-
onment. As a consequence, the protocol has to
maintain the relationship between incoming mes-
sages and associated processes. This is done in a
step of demultiplexing incoming messages within
the library. To ensure mutual exclusion and correct
interaction between competing processes, the li-
brary is forced to lock critical code regions at a finer
granularity than at the rawdata level. This main-
tains fairness and good interaction possibilities

256 T M . [~lrschko et al. / J o u r n a l t?/,~|'x/ems Architecture 44 (1998) 241 260

between multiple processes, but causes higher la-
tencies. 4 Furthermore, the intermediate buffering
of incoming messages in the common message pool
is responsible for the performance degradation (see
Section 4.2.2).

The real advantage of ParaStation becomes ob-
vious when comparing its performance to that of
regular operating system calls. ParaStation socket
calls on the DEC Alpha are about 25 times faster
in latency than the regular OS calls while offering
the same services. Similar results are measured
on the PC system where ParaStation is about 17
times faster in latency than equivalent operating
system calls. Throughput, however, is not compar-
able because the ParaStation network is much fas-
ter than Ethernet. Even the relative loss in
throughput is not comparable because it is much
harder to interface to a fast network than to a
slower one. We did not try to fill the empty areas
of Table 3 - which would in fact be especially in-
teresting because our approach heavily relies
on the superior functionality of the ParaStation
hardware, which is not present within common
network adapters such as (Fast) Ethernet, FDDI ,
and ATM.

Another interesting insight is the additional
overhead caused by the programming environ-
ments, P4 and PVM. Within ParaStation on the
Alpha system, these environments add an over-
head of factor 9.5 (P4) and 11.3 (PVM) to the la-
tency of our system layer. Even in the standard
operating system environment, P4 adds about
21% and PVM 116% overhead. Similar results
are measured on the PCs where PVM adds an
overhead of factor 11 to the latency and an over-
head of 144% to the regular operating system, re-
spectively. PVM even decreases throughput when
built on top of the ParaStation sockets by 24'7,

on the Alpha system and 28% on the PC system.
This shows that both packages are not well de-
signed for high-speed networks.

Finally, we measured the performance of a
socket-to-socket communication within a single
process, where network hardware is not needed
at all. This test aims to measure the protocol per-
formance for local communication in the absence
of process switching. Local communication on
ParaStation is optimized and enqueues the sent
message directly into the receive queue of the re-
ceiving socket. Thus, the presented 85 Mbyte/s
(88 Mbyte/s on the PCs) reflects mainly the mere-
c o p y performance of the system. The TCP/IP
implementation within both Digital Unix and Li-
nux seem to optimize local communication be-
cause a throughput of 33 MBytes/s (30 MBytes/s
on the PC) is achieved with this benchmark
test.

5.4. Application pe@)rmance

Focusing only on latency and throughput is too
narrow for a complete evaluation. It is necessary
to show that a low-latency, high-throughput com-
munication subsystem also achieves a reasonable
application efficiency. Our approach is twofold.
First, we took a heat d(tyusion benchmark to test
application performance on our proprietary inter-
face. Second, we installed the widely used and pub-
licly available ScaLAPACK 5 library [18], which
first uses BLACS ~ [19] and then PVM as commu-
nication subsystem on ParaStation.

All ParaStation application benchmarks were
executed on the Alpha 21064A (275 MHz) cluster.

The heat diffusion benchmark starts with an
even temperature distribution on a square metal
plate. On all four sides different heat sources and

4 Semaphores are expensive, especially on the Alpha proces- 5 Scalable Linear Algebra Package.
sor. 6 Basic Linear Algebra Communication Subroutines.

72 M. Warschko et al. I Journal o[" Systems Architecture 44 (1998) 241 260

Table 4
Heat diffusion on ParaStation

257

Problem 1 workstation 2 workstations 4 workstations
size (n) Runtime (ms/iter)

Runtime (ms/iter) Speedup Runtime (ms/iter) Speedup

8 workstations

Runtime (ms/iter) Speedup

64 1.5 0.99 1.5[0.9 1.66
128 6.0 3.5 1.71 2.3 2.61
256 22.3 12.0 1.86 7.5 2.97
512 89.2 46.7 1.91 26.4 3.38

1024 424 217 1.95 113 3.75

2.0 0.75
3.4 1.77
7.0 3.19

17.2 5.19
57.3 7.40

heat sinks are asserted. The goal is to compute the
final heat distribution of the metal plate. This can
easily be done with a Jacobi or Gauss-Seidel itera-
tion by calculating the new temperature of each
grid point as the average of its four neighbours.

Parallelizing this algorithm is simple: we use a
block distribution of rows of the n x n matrix, so
during each iteration, each process has to ex-
change two rows with its neighbouring processes.
To visualize the progress, all data is periodically
collected by one process. Table 4 shows the effec-
tive speedup for different problem sizes. Each ex-
periment was measured with at least 5000
iterations~ visualizing the result every 20 itera-
tions.

As expected (see Table 4), the execution time
on uniprocessor and multiprocessor configura-
tions quadruples as problem size is doubled. This
is obvious, because the asymptotic work of a Ja-
cobi-iteration on a n x n matrix is O(n2). As
shown, we achieve a reasonable speedup for rele-
vant problem sizes on all configurations. Taking
the last line as an example, the efficiency of two
workstations is close to its maximum. In the four
and eight processor configurations, we achieve an
efficiency of 93.75% and 92.5%, respectively. The
reason for the decreasing efficiency when using
more workstations is due to visualizing the pro-
gress every 20 iterations, which is inherently se-
quential. In general, there are only two points

where performance decreases when switching to
the next larger configuration. But this only hap-
pens for problem sizes where parallelizing is
doubtful.

The second application benchmark for Para-
Station - xslu taken from ScaLAPACK - is an
equation solver for dense systems. Numerical ap-
plications are usually built on top of standardized
libraries, so using this library as benchmark is
straightforward. Major goals within the develop-
ment of ScaLAPACK [18] were efficiency (to run
as fast as possible), scalability (as the problem size
and number of processors grow), reliability (in-
cluding error bounds), portability (across all im-
portant parallel machines), flexibility (so that
users can construct new routines from well-de-
signed parts), and ease of use. ScaLAPACK is
available for several platforms, so presented results
are directly comparable to other systems.

Table 5 confirms the scalability of perfor-
mance while problem size as well as the number
of processors increase. The efficiency of the two,
four, and eight processor clusters are 94%, 87%,
and 77%, respectively. It is remarkable that we
get more than a G F L O P for the 8-processor clus-
ter. These are real measured performance figures
and not theoretically calculated numbers. The last
line shows the performance one can get using
ScaLAPACK configured with standard PVM
(Ethernet). The best performance in this scenario

258 71 M. Wmschko el a/. / Journal O/S4'stems Architecture 44 (1998) 24 l 260

Table 5
ScaLAPACK on ParaStation

Problem 1 workstation 2 workstations

size (11)

4 workstations

Time (s) MFIop Time (s) MFlop Time (s) MFIop

8 workstations

Time (s) MFlop

1000 5.0 134 3.36 199 2.95 226
2000 3,-1.4 155 20.8 257 13.6 394

3000 109 165 62.3 289 39.2 459
4000 138 309 84.0 508
5(100 152 547

6000 251 573

7000
8000

Ethernet n --. 3000 165 n 4000 232 n - 6000 320

2.74 244

9.80 545
27.9 647

54.6 782

96.4 865
157 920

234 978

334 1022

n - 8000 261

is reached at a problem size of n = 6 0 0 0 on a 4-
processor cluster. Using more processors results
in a drastic performance loss due to bandwidth
limitation on the Ethernet. For ParaStation, we
see no limitation when scaling to larger configura-
tions. It is even possible to further improve the
ParaStation performance by optimizing the li-
brary hierarchy below ScaLAPACK (ScaLA-
PACK BLACS PVM ParaStation sockets

Hardware).
In general, using various application codes such

as digital image processing and finite element
packages, we achieved relative speedups of 3 5
on ParaStation over regular PVM or P4 on our
4-node and 8-node ParaStation clusters. In all of
these studies, we used the same object codes, just
linking them with different libraries.

6. Conclusion and future work

The integrated and performance-oriented ap-
proach of designing fast interconnection hardware
and a system library with a well-defined and well-
known programming interface has lead to a work-
station cluster environment that is well-suited for

parallel processing. With low communication la-
tencies, minimal protocol, and no operating sys-
tem overhead, it is possible to build effective
parallel systems using off-the-shelf workstations.
While ParaStation is still a workstation cluster
rather than a parallel system, presented perfor-
mance results compare well to parallel systems.
ParaStation's flexibility, scalability (from 2 to
100+ nodes), portability of applications (providing
standard environments such as PVM, MPI, P4 and
Unix sockets), and the performance level achieved
have led us to market ParaStation. 7

In future, we will work on next-generation
hardware, ports to other platforms and support
for various programming environments. Current
issues for a new network design are fiber optic
links, optimized packet switching, and flexible
DMA engines to reach an application-to-applica-
tion bandwidth of about 100 Mbyte/s. Second,
due to the PCI-bus interface, the ParaStation sys-
tem is not limited to Alpha or PC platforms. Cur-
rently, we are working on a port to Alpha

7 For further information, see http://wwwipd.ira.uka.de/
parastation or http://www.hitex.com/parastation.

72 M. H, Ttrxchko et aL / Journal ol A)'.~'lem.v Architecture 44 (1 OtJ~¢) 241 260

machines running Linux, and Pentium PCs as well
as Alpha workstations running Windows NT.
Ports to other platforms (e.g., Sun/Solaris, IBM-
PowerPC/AIX, SGI/IRIX) are possible, but not
yet scheduled. Finally, we plata to support MPI
as a future standard as well as PVM directly within
the ParaStation system layer. This will give PVM
and MPI applications a performance boost over
a socket-based implementation. Besides MPI and
PVM, Active Messages and Fast Messages, respec-
tively are considered as add i t iona l interfaces to the
system layer.

References

[1] A, Beguelim J. Dongarra. A. Geist, W. Jiang. R.
Manchek, V. Sunderam, PVM 3 User's Guide and
Reference Manual (ORNL/TM-121gTJ, Oak Ridge Na-
tional Laboratory, May 1993.

[2] R. Buttler. E. Lusk, Users Guide to the p4 Parallel
Programmimg System (ANL-92/17), Argonne National
Laboratory, October 1992.

[3] L Clarke, I. Glcndinning, R. Hempel, The MPI message
passing interface standard, Technical report, March 94.

[4] T.E. Anderson. D.E. Culler, D.A. Patterson, A Case for
NOW 1Network of Workstations), IEEE Micro 15 (1)
(1995) 54 64.

[5] C.G. Herter, T.M. Warschko, W.F. Tichy. M. Philippsen.
Triton/l: A massively-parallel mixed-mode computer
designed to support high level hmguages, Seventh Inter-
national Parallel Processing Symposium, Proceedings of
the Second Workshop on Heterogeneous Processing,
Newport Beach, CA, April 13 16, 1993, pp. 65 70.

[6] R. Minnich, D. Burns, F. Hady, The memory-integrated
network interface. 1EEL Micro 15(1)(1995} I I 2{).

[7] M.A. Blumrich. C. Dubnicki, E.W. Felten, K. El. M.R.
Mesarina, Virtual-memory-mappcd network interfaces,
IEEE Micro 15 (1) (1995) 21 28.

[81 IEEE, IEEE P1596 Draft Document, Scahlble Coher-
ence Interface Draft 2.0, March 1992.

[9] K. Omang, Perfc~rn3ance results from SALMON, a cluster
of workstations connected by SC1, Technical report 208,

259

University of Oslo, Department of Infornlatics. November
1995.

[10] P. Ross, UNIX iM clusters t\~r technical computing,
Technical report, Digital Equipment Coropration, De-
cember 1995.

[I 1] A.G. Nowatzyk, M.C. Browne, E.J. Kelly, M. Parkin, S-
Connect: From networks of workstations to supercompu-
ter perlbrmance, Proceedings of the 22nd International
Symposium on Computer Architecture (ISCAI, Santa
Margherita Ligure. Italy, June 22 24. 1995, pp. 71 82.

[12] T. von Eicken, A. Basu, V. Buch, Low-latency commu-
nication over ATM networks using active messages, IEEE
Micro 15 (1) (19951 46 53.

[13] A. Basu, V. Buch. W. Vogels, T. von Eieken, U-Net: A
user-levcl network interface for parallel and distributed
computing, Proceedings of the 15th ACM Symposium on
Operating Systems Principles, Copper Mountain, Color-
ado. December 3 6, 1995.

[14] S. Pakin. M. Lauria, A. Chien, High perli3rmance
messaging on workstations: Illinois fast messages (FM)
for Myrinet, Proceedings of the 1995 ACM/IEEE Super-
computing Conference. San Diego. Califc~rnia, December
3 8, 1995.

[15] N..I. Boden, D. Cohen. R.E. Felderman, A.E. Kulawik.
C.L. Seiiz, J.N. Seizovic. W. -K Su, Myrinet: A gigabit-
per-second local area network, IEEE Micro 15 (1) {1995}
29 36.

[16] M. Philippsen, T,M. Warschko. W.F. Tichy. C.G. Herter,
Project Triton: Towards improved programmability of
parallel machines, 26th Hawaii International Conference
on System Sciences, vol. I, Wailea. Maui, Hawaii, January
4 8. 1993, pp. 192 201.

[17] R.J. Harrison, Portable tools and applications for parallel
computers, International Journal on Quantum Chemistry
40 11991) 847 863.

[18] J. Choi. J. Demmel, 1. Dhillon, ,I, Dongarra, S.
Ostrouchov, A. Petitet, K. Stanley, D. Walker, R.C.
Whaley. ScaLAPCK: A portable linear algrbra library for
distributed memory computers design issues and
performance, Technical Report t JT CS-95-283, LAPACK
Working Note #95. University of Tennesec, 1995.

[19] J. Dongarra. RC. Whalcy. A user's guide to the blacs
vl.0. Technical Report UT CS-95-281. LAPACK Work-
ing Note #94, University of Tennesee. 1995.

260 T M. Warschko et al. / Journal o f Sys tems Architecture 44 (1998) 2 4 1 ~ 6 0

Thomas M. Warschko is a Ph.D. stu-
dent at the Department of Informatics
at the University of Karlsruhe. He has
been working in the Parallel Systems
Group under Professor Walter F. Ti-
chy since 1991. Currently he is head-
ing the ParaStation project at the
University of Karlsruhe. Prior to that
he was a leading member of the Triton
project and was involved in the design
and development of the Triton/l par-
allel computer. His main research
interests are high-performance com-

munication networks and high-speed communicat ion protocols
[\)r cluster-computers, parallel and distributed computer ar-
chitectures, parallel and distributed processing, performance
evalutation, and latency hiding, latency tolerating and latency
reducing techniques. Thomas received his diploma in infor-
matics from the University of Karlsruhe, in 1990, and is going
to receive his Ph.D. in 1997. He is a member of the GI and the
ACM.

Joaehim M. Blum is a Ph.D. student at
the Department of Informatics at the
University of Karlsruhe. He has been
working in the Parallel Systems Group
under Professor Walter F. Tichy since
1995. Currently he is a member of the
ParaStation project at the University
of Karlsruhe. His main research areas
are high-speed communicat ion proto-
cols for cluster-computers, perfor-
mance evaluation, distributed
processing, and distributed operating
systems. Joachim received his M.S. in

Computer Science from the University of Massachusetts,
Dartmouth, in 1995. He is a member of the GI.

Walter F. Tichy is professor of Com-
puter Science at the University of
Karlsruhe in Germany. Previously, he
was senior scientist at Carnegie
Group, Inc., in Pittsburgh, PA, and
associate professor of Computer Sci-
ence at Purdue University in West
Lafayette, IN. He has consulted
widely for industry. His primary in-
terests are Software Engineering and
parallelism. He has obtained interna-
tional recognition for his work in
software configuration management
and compiler technology. He is cur-

rently heading a research group involved in a number of pro-
jects. These projects include the study of software architectures,
software configuration management , networks of workstations
for high performance computing, optimizing compilers for
parallel machines, and optical interconnects. Dr. Tichy received
his B.S. in Mathematics from the Technical University Munich,
Germany, in 1974, and his M.S. and Ph.D. in Computer Science
from the Carnegie-Mellon University (PA), in 1976 and 1980,
respectively. He is a member of the GI. the IEEE. the ACM,
and Sigma Xi.

