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Abstract 

ParaStation is a communications fabric for connecting off-the-shelf workstations into a supercomputer. The fabric 
employs technology used in massively parallel machines and scales up to 4096 nodes. ParaStation's user-level message 
passing software preserves the low latency of the fabric by taking the operating system out of the communication path, 
while still providing full protection in a multiprogramming environment. The programming interface presented by 
ParaStation consists of a UNIX socket emulation and widely used parallel programming environments such as 
PVM, P4, and MPI. Implementations of ParaStation using various platforms, such as Digital's AlpbaGeneration work- 
stations and Linux PCs, achieve end-to-end (process-to-process) latencies as low as 2 ~s and a sustained bandwidth of 
up to 15 Mbyte/s per channel, even with small packets. Benchmarks using PVM on ParaStation demonstrate real ap- 
plication performance of 1 GFLOP on an 8-node cluster. 

Keywordw Works ta t ion  cluster; Parallel and  distr ibuted computing;  User-level communica t ion ;  High-speed 
interconnects  

1. Introduction 

Networks  of  works ta t ions  and PCs offer a cost-  
effective and scalable a l ternat ive  to monol i th ic  
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supercomputers .  Thus,  bund l ing  together  a cluster  
o f  works ta t ions  - ei ther  s ingle-processors  or  small  
mul t iprocessors  into a para l le l  system would  
seem to be a s t ra igh t fo rward  solut ion for  c o m p u t a -  
t ional  tasks that  are too  large for a single machine.  
However ,  conven t iona l  c o m m u n i c a t i o n  mechan-  
isms and p ro toco l s  yield c ommun ic a t i on  latencies 
that  p roh ib i t  any but  very large grain paral le l ism.  
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For example, typical parallel programming envir- 
onments such as PVM [1], P4 [2] and MPI [3] have 
latencies in the magnitude of milliseconds. As a 
consequence, the parallel grain size necessary to 
achieve acceptable efficiency has to be in the range 
of tens of thousands of arithmetic operations. 

In contrast, existing massively parallel systems 
(MPPs) offer an excellent communication/compu- 
tation ratio. However, engineering lag time leads 
to a widening gap in the rapidly increasing perfor- 
mance of state-of-the-art microprocessors and 
low-volume manufacturing of MPPs results in a 
cost/performance disadvantage. This situation is 
not unique to MPP systems: it applies to multipro- 
cessor servers as well [4]. 

ParaStation's approach is to combine the bene- 
fits of a high-speed MPP network with the excel- 
lent price/performance ratio and the standardized 
programming interfaces of conventional worksta- 
tions. Well-known programming interfaces ensure 
portability over a wide range of  different systems. 
The integration of a high-speed MPP network 
opens up the opportunity to eliminate most of  
the communication overhead. 

The retargeted MPP network of ParaStation 
was originally developed for the Triton/l  system 
[5] and operates in a 256-node system. Key issues 
of the network design are based around autono- 
mous distributed switching, hardware flow-control 
at link-level, and optimized protocols for point-to- 
point message passing. In a ParaStation system, 
this network is connected to the host system via 
a PCl-bus interface board. The software design fo- 
cuses on standardized programming interfaces 
(UNIX sockets), while preserving the low latency 
and high throughput of the MPP network. Para- 
Station implements operating system functionality 
in user-space to minimize overhead, while provid- 
ing the protection for a true multiuser/multipro- 
gramming environment. 

The current design is capable of performing ba- 
sic communication operations with a total process- 

to-process latency of just a few microseconds (e.g., 
2 ItS for a 32-bit packet). Compared to workstation 
clusters using standard communication hardware 
(e.g., message-passing software such as PVM using 
Ethernet/FDDI hardware), our system shows per- 
formance improvements of more than two orders 
of magnitude on communication benchmarks. As 
a result, application benchmarks (e.g., ScaLA- 
PACK equation solver and others) execute with 
nearly linear speedup on a wide range of problem 
sizes. 

2. Related work 

There are several approaches targeting to effi- 
cient parallel computing on workstation clusters 
which can be classified as shared-memory and dis- 
tributed-memory systems. Shared-memory sys- 
tems such as MINI [6], SHRIMP [7], SCI-based 
SALMON [8,9], Digital's MemoryChannel [10], 
and Sun's S-Connect [11] support memory- 
mapped communication, allowing user processes 
to communicate without expensive buffer manage- 
ment and without system calls across the protec- 
tion boundary separating user processes from the 
operation system kernel. 

In contrast to these approaches, distributed 
memory systems such as Active Messages [12] for 
ATM-based U-Net [13], Illinois Fast Messages 
[14] for Myrinet [15], and the Berkeley NOW pro- 
ject [4], also based on Myrinet, focus on a pure 
message-passing environment rather than a virtual 
shared memory. As von Eicken et al. pointed out 
[12], recent workstation operating systems do not 
support a uniform address space, so virtual shared 
memory is difficult to maintain. 

As with Active Messages and Fast Messages, 
performance improvement within the ParaStation 
system is based on user-level access to the network, 
but in contrast to them, we provide multiuser/ 
multiprogramming capabilities. Like Myrinet and 
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S-Connect, our network was originally designed 
for a MPP system (Triton/l)  and has now been re- 
targeted to a workstation cluster environment. 
Myrinet, IBM-SP2, and Digital 's MemoryChannel  
use central switching fabrics, while ParaStation 
provides distributed switches on each interface 
board. 

Recent parallel machines (e.g., Thinking Ma- 
chines CM-5, Meiko CS-2, IBM SP-2, Cray 
T3D/T3E) also provide user-level access to the net- 
work. These solutions rely on custom hardware 
and are constrained to the controlled environment 
of  a parallel machine, whereas ParaStation can be 
(and actually is) implemented on a variety of  dif- 
ferent platforms from different vendors (i.e., any 
system that provides a PCI-Bus). 

3. P e r f o r m a n c e  hurdles  in w o r k s t a t i o n  c lus ters  

Using existing workstation clusters as a virtual 
supercomputer suffers from several problems due 
to standard communication hardware, traditional 
approaches in the operating system, and the design 
of widely used programming environments. 

Standard communication hardware (i.e., Ether- 
net, FDDI ,  ATM) was developed for a LAN/  
WAN environment rather than for MPP commu- 
nication. Network links are considered unreliable, 
so higher protocol layers must detect packet loss 
or corruption and provide retransmission, flow 
control and error handling. Common network 
topologies, such as a bus or a ring, do not scale 
very well. Sharing one physical medium among 
the connected workstations results in severe band- 
width limitations and high latencies. In contrast, 
MPP networks use higher-dimensional topologies 
such as grids or hypercubes, where bandwidth 
and bisection-bandwidth increases with the num- 
ber of  connected nodes. A fixed or inappropriate 
packet size wastes bandwidth when transmitting 
small messages and again leads to large latencies. 
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Thus, critical parameters for a network well-suited 
for parallel computation are: 
- latency, to transmit small messages, 

throughput,  to transmit large data streams, and 
- scalability, when increasing the number  of  con- 

nected workstations. 
In addition to these hardware-related para- 

meters, an efficient interface between a high-speed 
network and parallel applications is an essential 
requirement. By now, the communication subsys- 
tem lies within the operating system, which pro- 
vides two standardized interfaces: one to the 
hardware at device driver level, and the other to 
the user in the form of  system calls. System calls 
guarantee the protection needed in a multiuser en- 
vironment, and the device driver level provides a 
transparent interface for different hardware. As 
the communication subsystem of the operation 
system has to deal with different hardware abil- 
ities, the overall service at the device driver level 
is limited to the least common denominator  of  
the hardware. This structure prohibits the use of  
specialized features of the communication hard- 
ware. Implementing the user interface to the com- 
munication subsystem as system calls implies at 
least a context switch overhead and the copying 
of message buffers between user and kernel space. 
Often. this takes more time than transmitting the 
message over the wire, especially for small mes- 
sages. Furthermore, built-in communication pro- 
tocols (e.g., TCP/IP) are designed to support 
communication in local and wide area networks 
and therefore are not very well suited for the needs 
of parallel computing. Their complex protocol 
stacks tend to limit the throughput of  the whole 
communication subsystem. To avoid processing 
overhead in a protocol stack, the underlying net- 
work has to maintain as much functionality as 
possible. 

In contrast to most local area networks, MPP 
networks offer reliable data transmission in combi- 
nation with hardware-based flow control. As a 
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consequence, traditional protocol functionality 
such as window-based flow control, acknowledge- 
ment of packages, and checksum processing can be 
reduced to a minimum (or even be left out). If the 
network further guarantees in-order delivery of 
packets, the fragmentation task and especially 
the reassembly task of a protocol become much ea- 
sier, because incoming packets do not have to be 
rearranged into the correct sequence. Implement- 
ing as much protocol-related functionality as pos- 
sible directly in hardware results in minimal and 
thus efficient protocols. 

The most promising technique to improve the 
performance of the network interface as seen by 
a user is to move protocol processing into the 
user's address space. The ParaStation system in 
fact does all protocol processing at user-level while 
still providing protection. Another critical issue is 
the design of the user interface to the network. Of- 
ten, vendors support proprietary APIs (e.g., AAL5 
for ATM), but for reasons of portability a user 
would prefer a standardized and well-known inter- 
face. Thus, the key issues for the design of an effi- 
cient communication subsystem for the 
ParaStation architecture are: 
- sharing the physical network among several 

processes, 
- providing protection between processes acces- 

sing the network simultaneously, 
- removing kernel overhead and traditional net- 

work protocols from the communication path, 
and 

- providing a well-known programming interface. 
To reach the goal of efficiency, the kernel is re- 

moved from the communication path and all hard- 
ware interfacing and protocol processing is done at 
user-level. Even protection is done within the sys- 
tem library at user-level using processor-supported 
atomic operations to implement semaphores. Be- 
sides proprietary user interfaces, we decided to of- 
fer an emulation of the standard Unix socket 
interface on top of our system layer. 

Popular message-passing environments such as 
MPI [3], PVM [1], P4 [2], and others are usually 
built on top of the operating system communica- 
tion interface which typically provides either reli- 
able stream based communication (TCP) or 
unreliable message-based communication (UDP). 
But the type of  service needed for message-passing 
is reliable message-based communication. Thus, 
all these message-passing environments have to 
implement a reliable message-based communica- 
tion protocol on top of TCP sockets. This causes 
additional overhead due to different addressing 
and naming conventions, buffering considerations, 
and the mapping of data streams to messages. A 
second inefficiency arises from the multiuser and 
multiprogramming environment in workstation 
clusters. Running several parallel applications si- 
multaneously on a workstation cluster results in 
scheduling and synchronization delays. The oper- 
ating system of each individual node is only able 
to use local information to schedule processes, 
where global information would be appropriate 
(e.g., gang scheduling within the cluster). Thus, ex- 
ecution time of each application takes much longer 
than running the applications one after another. 
Running multiple processes of one application on 
one processor causes an additional process switch- 
ing overhead, especially if these processes commu- 
nicate with each other. Furthermore, all these 
environments allow processes to consume mes- 
sages in arbitrary order and at arbitrary times. 
This implies message buffering at the destination 
node unless the receiving process is set up for 
receipt. 

A promising technique to overcome the perfor- 
mance bottlenecks of current message-passing 
environments is to support a specialized API with- 
in the user-level communication subsystem. This 
API could provide all necessary functionality such 
as reliable message-based communication chan- 
nels, message multiplexing and demultiplexing, dy- 
namic coscheduling of concurrent threads, or even 
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gang scheduling of applications within the cluster 
to better meet the requirements of standardized 
message-passing libraries. 

4. The ParaStation architecture 

The ParaStation architecture is centered 
around the reengineered MPP network of Triton/ 
1 [16,5]. The goal is to support a standard but effi- 
cient programming interface such as UNIX sock- 
ets. The ParaStation network provides a high 
data rate, low latency, scalability, flow control at 
link-level, minimized protocol, and reliable data 
transmission. Furthermore, because the ParaSta- 
tion network is dedicated to parallel applications 
and is not intended as a replacement for a common 
LAN, it can therefore eliminate the associated pro- 
tocols. These properties allow the use of specia- 
lized network features, optimized point-to-point 
protocols, and controlling the network at user-le- 
vel without operating system interaction. The 
ParaStation protocol implements multiple logical 
communication channels on a physical link. This 
is essential to set up a multiuser/multiprogram- 
ming environment. Protocol optimization is 
achieved by minimizing protocol headers and elim- 
inating buffering whenever possible. Sending a 
message is implemented as a zero-copy protocol 
which transfers the data directly from user-space 
to the network interface. Zero-copy behavior dur- 
ing message reception is achieved when the pend- 
ing message is addressed to the receiving process; 
otherwise the message is copied once into a buffer 
in a commonly accessible message area. Within the 
ParaStation network protocol, operating system 
interaction is completely eliminated, removing it 
from the critical path of data transmission. The 
functionality missing to support a multiuser envir- 
onment is implemented at user-level in the Para- 
Station system library. 

4.1. Hardware Architecture 

Experience with network interfaces in parallel 
machines made it clear that providing a self-rout- 
ing network, flow control, reliable data transmis- 
sion, and in-order delivery of packets at the 
network interface level opens up the opportunity 
to design fast and efficient protocols. A self-rout- 
ing network frees the protocol layers from any 
routing decision, because packets will not show 
up at any software layer on intermediate nodes. 
Hardware-based flow control at link-level elimi- 
nates all related mechanisms usually found in com- 
munication protocols, such as transmission 
windows, packet sequence numbers, acknowledge- 
ments, timeouts, and retransmissions. In conjunc- 
tion with transmission lines with a very low error 
rate, hardware-based flow control acts as base 
technology to offer a reliable end-to-end data 
transmission. In-order delivery of packets is a 
more practical issue, because it simplifies the frag- 
mentation and especially the reassembly task of a 
protocol implementation when transferring large 
data sets. 

4.1.1. Hardware overview 
We use the reengineered MPP-network of Tri- 

ton/1 as communication hardware. The network 
topology is based on a two-dimensional toroidal 
mesh. For small systems a ring topology is suffi- 
cient. Data transport is done via a table-based, 
self-routing packet switching method which uses 
virtual cut-through routing. Every node (see 
Fig. 1) is equipped with its own routing table 
and with three input buffers: two for intermediate 
storage of data packets coming from other nodes 
and one for receiving packets from its associated 
processing element (workstation). An output buf- 
fer delivers data packets to the associated worksta- 
tion. The buffering (1 KB fifos) decouples the 
network operation from local processing. Packets 
contain the address of the target node, the number 
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Fig. 1. ParaStation network. 

of data words contained in the packet, and the data 
itself. The size of the packet can vary from 4 to 508 
bytes. Packets are delivered in order and no pack- 
ets will be lost. Flow control is done at link-level 
and the unit of  flow control is one packet. 

For both topologies ring and toroidal mesh 
we provide a deadlock-free routing scheme. Dead- 
lock-free routing on a ring is simple, as long as the 
network is prevented from overloading. This pro- 
blem is solved by inserting new packets into the 
network only when both channel fifos are empty. 
Deadlock-free routing on a toroidal mesh is done 
by using X Y dimension routing. First, a packet 
is routed along the x-axis of  the grid until it 
reaches its destination column. Then it is routed 
along the ),-axis to its final destination node. Pro- 
viding similar insertion rules as in the ring routing 
for both dimensions and giving the y-axis priority 
over the x-axis prevents deadlock. 

The current implementation of our communica- 
tions processor involves a routing delay of  about 
250 ns per node and offers a maximum throughput 
of  20 Mbyte/s per link. In addition to the commu- 
nication network, the interface board provides a 
hardware mechanism for fast barrier synchroniza- 
tion. To connect several systems, we use 60-wire 
flat ribbon cables, with standardized RS-422 differ- 
ential signals. Thus, the maximum distance be- 
tween any two systems is 10 m (about 30 feet). 
The balanced interface circuits of  RS-422 in com- 
bination with a correct line termination acts as 

base to ensure reliable data transmission. Never- 
theless, each 16 bit wide data word is protected 
with two parity bits to detect transmission errors. 2 

4.1.2. Hardware details 
The following functional diagram shows details 

of  the ParaStation network and will be used to ex- 
plain how packet transmission, routing, and flow 
control is currently implemented. For clarity, the 
second communication link is omitted from Fig. 2. 

The network interface presents itself as a set of  
registers, namely a status register (SREG), a con- 
trol register (CREG),  and a fifo interface for trans- 
mitting data (NREG)  to the (low level) 
programmer. The SREG provides information 
about the current state of  the hardware, such as 
full, half-full, and empty signals from both trans- 
mission fifos (input and output buffer, see figure). 
The C R E G  is used to control various operations 
related to interrupt handling, programming of  
the synchronization lines, and loading the Xilinx 
FPGA (network processor). The data interface 
(NREG)  to transfer packets into or out of  the net- 
work is implemented as a pair of  fifos to decouple 
the host processor from the operation of  the net- 
work processor. 

The message transfer between host processor, 
the network interface, and within the network it- 
self is accomplished by a packet-based flow control 
mechanism. We choose a packet as the unit of  flow 
control for several reasons: first, easier buffer man- 
agement and transmission control within the net- 
work, and second, faster interface routines 
between the host processor and the network inter- 
face. If  the network processor has knowledge 
about buffer space in a destination bejbre transmit- 
ting a message, it can either refuse to transmit (in- 
sufficient buffer space) or it can transmit the 

2 The only transmission errors we have ever detected were 
caused by faulty hardware. 
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Fig. 2. Flow control details. 
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complete message at once (sufficient buffer space). 
Thus, the network processor of the sending node 
cannot be blocked during a message transfer and 
there is no need at the destination node to drop in- 
coming packets due to buffer overflow. Blocking a 
network node is critical because of deadlock situa- 
tions, and dropping packets causes a network to be 
unreliable, unless an appropriate (expensive) flow 
control mechanism is provided (transmission win- 
dows, sequence numbers, acknowledgements, 
timeouts, and retransmission). 

From the host processor's point of  view, knowl- 
edge about  buffer space within the network inter- 
face can be used to speed up transmission 
routines. Depending on the buffer space available, 
the host processor can refuse to send the message 
or it can send the whole message at once. Other- 
wise, the host is forced to poll the buffer state each 
time a single word is transferred, which takes 
about  twice as long. Receiving a complete message 
is even more difficult, because without special 
hardware support it is hard to figure out if a com- 
plete message is available at the output buffer. The 
output fifo provides empty, half-full, and full sig- 
nals; but that is insufficient information to keep 
track of the number  of received messages. The 
ParaStation network solves this problem with ad- 
ditional hardware to provide a 'packet ready'  sig- 
nal if a complete message resides pending in the 
output fifo ( 'packet ready'  signals of  successive 

messages are buffered in an additional fifo). This 
information is then used by the host processor to 
receive a complete message without additional 
polling. 

Packet-based flow control and autonomous 
routing are closely related within the ParaStation 
network. As stated above, the network processor 
transmits a packet only if there is enough buffer 
space at the destination node. To determine the 
path of  an incoming packet, the network processor 
uses the empty and half-full signals of all incoming 
and outgoing links as follows. (In combination 
with X Y dimension routing in a toroidal mesh, 
this information is sufficient to determine if there 
is sufficient buffer space at the destination node.) 
According to the X - Y  dimension routing, a packet 
is first routed along the x-axis and then along the 
y-axis to its final destination node. Thus, a packet 
pending at the y-channel has to stay on the y- 
channel. If  the half-full signal of  the destination 
node along the ),-axis is inactive, this packet is 
transferred. In case of  pending packets at the x- 
channel, the network processor has to check the 
half-lull signals of both outgoing links, because 
without further inspection of the packet it is im- 
possible to determine the correct destination link. 
Sufficient buffer space at both neighbor nodes 
and an empty incoming y-channel causes the net- 
work controller to transfer a pending packet at 
the x-channel. If there is a packet pending at the 
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input buffer of the associated host processor, the 
network controller checks the empty signals of  
both incoming as well as the half-full signals of  
both outgoing channels. To protect the network 
from overloading and blocking, all incoming 
channels have to be empty and there has to be 
sufficient buffer space at  both outgoing channels. 
Under these conditions, the network processor de- 
cides to insert a new packet into the network. 
Once the network controller has drawn its decision 
on which packet to transfer next, it reads the first 
message flit (the destination address of that pack- 
et) out of the fifo and puts it on the internal data 
bus. The routing table listening to this bus pro- 
vides information about the final destination link 
of that packet. Finally, the network controller 
transfers the packet. 

4.2. S o f t w a r e  a rch i t ec tu re  

The basic principle behind the ParaStation soft- 
ware architecture is user-level communication. 

Accessing the communication hardware directly 
from user space removes the operating system 
and traditional protocol stacks from the communi- 
cation path. This concept opens up the opportu- 
nity to improve both the performance and the 
flexibility of communication protocols as well as 
to investigate highly optimized and carefully de- 
signed high-performance protocols to better meet 
the requirements for parallel computing in a work- 
station cluster. 

To avoid operating system overhead, all inter- 
facing to the ParaStation hardware is at user-level 
(see Fig. 3). The device driver is used at system 
startup to configure the communication boards 
and within the startup-code of an application pro- 
gram to get information about the hardware. Dur- 
ing normal operation (i.e., message transfers), the 
ParaStation system library interfaces directly to 
the hardware without using the operating system. 
The gap between hardware capabilities and user 
requirements is bridged within the ParaStation 
system library. 

W o r k s t a t i o n  P a r a S t a t i o n  

I 
PVM 

_ _ E _ _  

User Libc 

I System 

TCPfiP 

I 
Ethernet 

I__ 
Network 

Application 

User Library 

System Library 

Network Protocols 

Device Driver 

Hardware 

Fig. 3. Network interfacing techniques. 
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Network~ 
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Fig. 4. ParaStation system library. 
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The ParaStation system library (see Fig. 4) acts 
as a second communication subsystem besides that 
of the operation system, but ofl'ers at top level the 
same communication services as the operating sys- 
tem, namely the Unix socket interface. The core 
layer (ports) implements all necessary abstractions 
(independent communication channels) to provide 
a multiuser/multiprogramming environment. The 
hardware abstraction layer was introduced to hide 
architecture and hardware specific operations from 
upper layers. The following sections give a brief 
description of all layers within the ParaStation 
communication library. 

4.2.1. Hardware  abstraction layer 
This layer intends to hide architecture and 

hardware specific operations from upper layers. 
It is intended to be used only by the ParaStation 
system layer and is not considered as an applica- 
tion programming interface. The hardware ab- 
straction layer provides highly optimized send/ 
receive operations, a status information call, and 
an initialization call. The initialization call is used 
to map the hardware registers (status register, 
command register, and communication tiros) into 
user space. The information call looks for pending 

messages and checks if the network is ready to ac- 
cept new messages. The send call transmits a pack- 
et into the network and the receive call delivers the 
next pending packet to the caller. 

Since messages at this level are addressed to 
nodes rather than individual communication chan- 
nels, message headers simply contain the address 
of the target node, the number of data words con- 
tained in the packet, and the data itself. While 
sending a message, data is copied directly from 
user space memory to the interface board. Receiv- 
ing a message is split into two separate calls. The 
first call ( r e c e i v e _ h e a d e r )  delivers only the 
message header to the caller whereas the second 
call ( r e c e i v e _ b o d y )  copies the message data it- 
self to the appropriate location in memory. This 
approach allows eliminating all intermediate buf- 
fering and leads to true zero-copy behavior. 

4.2.2. Sys t em layer (ports)  

The system layer provides the necessary ab- 
straction (multiple communication channels) be- 
tween the basic hardware capabilities (the 
hardware just handles packages) and a multiuser/ 
multiprogramming environment. The major tasks 
within this layer are message multiplexing and 
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demultiplexing, mutual exclusion and correct 
interaction between competing processes, and 
fragmentation and reassembly of arbitrary-sized 
messages. 

To support individual communication channels 
called ports in ParaStation -, the system layer 

maintains a minimal software protocol, which 
adds information about the sending and receiving 
port in each packet. This concept is sufficient to 
support multiple processes by using different port 
identifiers for different processes. To handle multi- 
ple communication channels, multiplexing of out- 
going and especially demultiplexing of incoming 
messages is accomplished within this protocol 
layer. Message multiplexing is done by ensuring 
the correct interaction between competing pro- 
cesses. The demultiplexing task instead has to keep 
track of the relationship between incoming mes- 
sages, port identifiers, and associated processes. 
In a first step, the complete message is copied to 
a common accessible message pool (shared mem- 
ory segment). Afterwards it is easy to decide 
whether this message is going to be delivered to 
the calling process. Although it introduces addi- 
tional overhead in some cases, we choose this buf- 
fering technique for the following reasons. First, if 
the incoming messages belongs to a different pro- 
cess, it has to be buffered anyway. Second, if the 
incoming packet is part of a fragmented message, 
it first has to be reassembled to a complete message 
before it can be delivered to the calling process. 
Third, message reception may be invoked while 
sending large messages to prevent the network 
from overloading and blocking. In this case, in- 
coming messages have to be buffered because no 
application is going to receive a message. 

The general problem of demultiplexing and 
buffering messages is closely related to the way ap- 
plications are used to receive messages. Receiving 
a message is an active process where an application 
issues a receive operation and the communication 
subsystem is expected to deliver the requested 

message. Furthermore, an application assumes 
the reception of complete messages and is usually 
not prepared to receive message fragments. 

Maintaining a correct interaction between pro- 
cesses while sending or receiving messages necessi- 
tates the locking of critical code regions by 
semaphores. For  reasons of  efficiency, we also im- 
plemented these semaphores at user-level, using 
processor supported atomic operations. A fine 
granularity while locking critical code regions pro- 
vides fairness among competing processes. Busy 
waiting while trying to enter a critical code region 
already locked is prevented by hands-off schedul- 
ing. Using this technique, the locking process is 
able to continue operation much earlier. This im- 
proves overall performance. 

To obtain as much performance (and as little 
overhead) as possible, the system layer provides a 
so called rawdata port, which differs from regular 
ports as follows. Rawdata connections are imple- 
mented as a separate protocol which uses less pro- 
tocol information than regular ports. Second, 
receiving small messages is done by copying them 
directly to user-space without intermediate buffer- 
ing (true zero-copy). Third, the rawdata protocol 
uses another locking schema of critical code re- 
gions which gives a higher priority to the rawdata 
connection. Nevertheless, the rawdata port and 
regular ports can be used simultaneously, but ap- 
plications using the rawdata port are scheduled 
one after another. 

Our implementation of  these concepts does not 
need a single system call. Furthermore, we provide 
a zero-copy behavior (no buffering) whenever 
possible. This leads to high bandwidth and low 
latencies. 

4.2.3. Socket layer 
The socket layer provides an emulation of  the 

standard UNIX socket interface (TCP and UDP 
connections), so applications using socket commu- 
nication can be ported to the ParaStation system 
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with little effort. To provide a greater flexibility, 
this layer supports a fall-back mechanism which 
transparently uses regular operating system calls 
if a communication request cannot be satisfied 
within the ParaStation cluster. Calls that can be 
satisfied within the ParaStation cluster do not need 
any interaction with the operating system. 

4.2.4. Appl icat ion layer 

The installation of standard programming en- 
vironments such as PVM [1], MPI [3], P4 [2], 
T C G M S G  [17], and others on ParaStation is sim- 
ply done by replacing the standard socket interface 
with the ParaStation sockets for high-speed com- 
munication. This approach allows us to easily 
port, maintain, and update these packages. We 
use the out-of-the-box software distribution. 

4.3. Interact ion o f  components  

The ParaStation system consists of  five major 
components (see Fig. 5): the communication hard- 
ware (a PCI-bus board), a device driver, the com- 
munication library, a common accessible message 
buffer, and the ParaStation daemon process. 

The ParaStation device driver is responsible for 
initializing the ParaStation hardware at system 
startup, mapping the hardware registers to user 
space at application startup, and - together with 
the ParaStation daemon process - for ensuring 
protection. The ParaStation daemon process acts 
as a rather passive component,  as it is not capable 
of handling any communication request. It is in- 
volved in application startup, maintaining infor- 
mation about the state of the ParaStation cluster, 
and administration, and is also responsible for 
keeping the shared message buffer consistent in 
case an application crashes. The shared message 
buffer is used to keep control information, such 
as used ports and sockets, and process control 
blocks of active processes, as well as to buffer in- 
coming messages not yet deliverable to the asso- 
ciated application. 

The ParaStation library itself acts as the trusted 
base within a ParaStation system. The library is 
statically linked to each application using ParaSta- 
tion and ensures correct interaction between all 
parts of the system. At application startup, it con- 
tacts the ParaStation daemon to register the appli- 
cation as a ParaStation process. During this 

Application A [ Application B 
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\ ,  

\ \ 
\ ,  \ "x 

ParaStation Library 

Application Startup I (User Mode) 

Operating System ~ ] 
(Kernel Mode) i Driver 

L 1 System Startup / Initialization I I Normal Operation 
ParaStation Hardware I 

( ParaStation '1 
'\ Daemon /i 
' \  / 

M ~ e n t ~ d  C~//ontrol 

t t  e sage Buffer 

Control 
Information 

Fig. 5. Interaction of ParaStation components. 
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procedure, the daemon checks permissions as well 
as the current library version to prevent outdated 
applications from disturbing the system. After per- 
mission is granted, it maps all necessary interfaces 
to the address space of  that application. During 
normal operation (i.e., sending and receiving mes- 
sages), the library interacts only with the applica- 
tion, the hardware, and the shared message 
buffer. Applications are not allowed to directly ac- 
cess either the hardware or the message buffer; all 
operations have to be provided by the library. If 
an application finishes, the library informs the dae- 
mon process to release all resources used by this 
application. Application crashes are automatically 
detected by the ParaStation daemon and used re- 
sources can be freed. 

4.4. Parastat ion p la t jorms  

Currently, ParaStation supports AIphaGenera- 
tion workstations from Digital Equipment run- 
ning Digital UNIX (OSF/1) and Intel PCs (486, 
Pentium, PentiumPro) running Linux. Ports to 
the DEC-Alpha platform running Linux as well 
as ports to the Intel-PC and DEC-Alpha platform 
running Windows NT are in progress. Ports to 
other platforms (e.g., Sun/Solaris, 1BM- 
PowerPC/AIX, SGI/IRIX) are possible, but not 
yet scheduled. 

Our current testbed consists of three different 
ParaStation clusters. One cluster is based on 
21064A Alpha workstations (275 MHz, 64 MB 
memory) with 8 nodes. The additional cost to 
equip this Alpha cluster with the ParaStation com- 
munication boards was about 16.000 USD, which 
is less than what we paid for a single Alpha work- 
station. The second cluster consists of four 21066 
Alpha workstations (233 MHz, 64 MB memory). 
All Alpha machines are running Digital Unix 
3.2c. The third cluster consists of two Intel PCs 
(120 MHz, 40 MB memory) running Linux 2.0. 

5. Performance evaluation 

The evaluation described in this section covers 
three different scenarios. The communication and 
synchronization benchmarks provide information 
about the raw performance of ParaStation. 
Although we call this 'raw performance', these 
benchmarks reflect application-to-application per- 
formance measured at the hardware abstraction 
layer. Second, we present the level of performance 
that can be achieved at ParaStation's different soft- 
ware layers (see Section 4.2). The third scenario di- 
rectly deals with application performance, namely 
run time efficiency. 

Process 1: 
measure start-time; 
DO i =  l,k 

send(message) 
receive(message) 

ENDDO 
measure stop-time; 
calculate latency and throughput; 

Process2: 
measure start-time; 
DO i =  1,k 

send(message) 
receive(message) 

ENDDO 
measure stop-time; 
Calculate latency and throughput; 

Algorithm 1. Pairwise Exchange codefragment 

5.1. Communicat ion  benchmark  

To measure the end-to-end delay, we imple- 
mented a Pairw&e Exchange  benchmark (see algo- 
rithm 1) where two processes send a message to 
each other simultaneously, and then receive simul- 
taneously. Unlike a Ping-Pong  benchmark, the 
second process does not wait for receipt of  a mes- 
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Table 1 
ParaSialion performance at the hardware abstraction layer 
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Message size (bytes) Alpha 21(/64A, 275 MHz Alpha 21066, 233MHz 

Time per iteration Through-put Time per iteration Through-put 
([as) (Mbyte/s) (~as) (Mbyte/s) 

Intel pentium, 120 MHz 

Time per iteration Through-put 
(~s) (Mbyte/s) 

g~, 'd trcm,~;/er 
1 2.52 1). 794 2.39 0.978 1.75 1.143 
2 2.51 1.592 2.40 1.957 1.75 2.272 
4 2.48 3.228 1.94 4.108 1.76 4.545 
8 3.24 4.939 2.58 6.188 2.26 7.080 

Bh>ck tran,~'lor 
4 3.54 2.260 3.62 2.205 2.93 2.730 
8 4.27 3.739 4.13 3.860 3.22 4.969 
16 5.71 5,596 5.39 5.921 4.09 7.824 
32 8.69 7.358 8.25 7.956 5.72 11.189 
64 14.56 8.772 12.90 9.894 9.29 13.778 
128 26.40 9.693 22.74 11.238 17.25 14.772 
256 50.31 10.227 42.45 12.019 33.25 15.366 
5(18 95.90 10.506 81.43 12.450 65.05 15.592 

sage before transmitting. This is a more practical 
scenario for two processes exchanging messages. 

The following table contains the results from 
the Pairwise Exchange benchmark, while varying 
message size from 1 to 508 bytes. 3 Transmitting 
larger messages can be done by fragmentating 
them into several smaller packets. To get accurate 
timing information, we measured run time of one 
million iterations (k - 10 ~ in the above code frag- 
ment) for each packet size. For very short message 
sizes (word transfer), we use specialized routines 
with less overhead than the general block transfer 
routine. 

For small message sizes (see Table 1), ParaSta- 
tion achieves transmission latencies (sending and 
receiving a message in user-space) as low as 2.5 Ixs 

508 bytes user data is the maximum packet length of the 
ParaStation interface. 

on systems with the 21064A processor, 1.9 ~ts on 
systems with the 21066 processor, and 1.8 p,s on 
Pentium machines. For larger message sizes, with 
decreasing overhead per byte, we get a total 
throughput of  up to 10.5 Mbytes/s (21064A), 
12.5 Mbytes/s (21066), and 15.5 Mbytes/s (Pen- 
tium) respectively. The performance differences 
are due to the location of the PCI interface. The 
Alpha 21064A is using a board-level chipset 
(21072), where as the Alpha 21066 benefits from 
its on-chip PCI interface. Furthermore,  the Alpha 
processor has a write buffer which is capable of 
combining writes to the same memory addresses. 
As the ParaStation communication interface is im- 
plemented as a fifo buffer, we had to insert mem- 
ory barrier (MB) instructions after each write to 
the fifo to overcome the write combining problem. 
The MB instruction itself waits for all outstanding 
read and write operations and thus limits the per- 
formance on these two architectures. Although the 
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Pentium system uses a board-level chipset (Intel 
Triton), this system shows the best performance 
because there is no write combining problem. 
The Alpha 21164 processor has a write memory 
barrier instruction (WMB), which prohibits write 
combining but does not interfere with outstanding 
read operations. Early measurements on an Alpha 
21164 system (300 and 500 MHz) show quite the 
same performance as a Pentium system. 

5.2. Synchronization benchmark 

As mentioned above, SPMD-style parallel pro- 
grams often need barrier synchronizations to keep 
their processes in synchrony. The following code 
fragment (see algorithm 2) was used to measure 
the performance of our hardware-supported syn- 
chronization mechanism on ParaStation. 

To get accurate timing information, we mea- 
sured run time of  one million iterations (k = 106) 

of the given code fragment. To compare our re- 
sults to conventional methods, we also implemen- 
ted a logarithmic barrier synchronization using 
standard operating system calls. 

The performance improvement of  our hard- 
ware mechanism shown in Table 2 is so over- 
whelming that no further explanation is needed. 
The results were measured on the 21064 cluster; 
the 21066 and Pentium clusters are about 17% 
faster. 

Process I : 
measure start-time; 
DO i =  1,k 

sync0 
E N D D O  
measure stop-time; 
calculate timing; 

Process2: 
measure start-time; 
DO i =  1,k 

sync0 
E N D D O  
measure stop-time; 
calculate timing; 

Algorithm 2. Synchonization code fragment 

5.3. Per~rmance of  the protocol hierarchy 

Switching from single- to mult iprogramming 
environments often suffers from a drastic perfor- 
mance decrease. In Table 3, performance figures 
of  all software layers in the ParaStation system 
are presented. 

To support  a true mult iprogramming environ- 
ment, our system layer (ports) only adds about 
10 gs (8 ~ts on the PC) additional latency to com- 
munication calls, and the loss of  throughput com- 
pared to the hardware abstraction layer on the 

Table 2 
Synchronization performance 

Number  of  ParaStation 
stations 

Ethernet 

Runt ime per iteration Synchronizations per Runt ime per iteration Synchronizations per 
(gs) second (~ts) second 

2 1.6 625.000 576 1739 
4 1.7 588.000 1223 818 
8 2.3 435.000 1856 539 
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Table 3 
Performance of the protocol hierarchy 
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Protocol Alpha 21064A, 275 MHz Pentium, 120 MHz 
layer 

ParaStation OS/Ethernet ParaStation OS/Ethernet 

Latency Band-width Latency Band-width Latency Band-width 
(~s) (MB/s) (~ts) (MB/s) (p.s) (MB/s) 

Latency Band-width 
(~s) (MB/s) 

Hardware 1.24 10.5 0.87 15.6 
Rawdata 4.15 9.6 3.05 13.6 
Port 10.7 8.9 8.9 10.8 

Socket 11.4 8.8 283 0.99 9.2 10.7 
P4 108 7.5 344 0.95 
PVM 129 6.7 539 0.84 102 7.7 

Socket (self) 6.4 85 195 33 4.82 88 

159 1.08 

388 0.86 

288 30 

Alpha system is within 15% (30% on the PC sys- 
tem). The results justify our decision to maintain 
the rawdata port which is more than twice as fast 
in latency than regular ports and the loss of  
throughput drops to 8.5% (13% on the PC system) 
compared to the performance of the hardware ab- 
straction layer. 4.15 ~ts (3.05 las) latency of the raw- 
data port is even less than 4.5 las (3.9 las) for a null 
system call on the Alpha (PC). 

The performance difference between the hard- 
ware abstraction layer (HAL) and the rawdata in- 
terface is due to the guarantee of  mutual exclusion 
and correct interaction between competitive pro- 
cesses. Applications using the HAL as a communi- 
cation interface assume exclusive access to the 
ParaStation network. Only one application per 
node is allowed to interface to the hardware at this 
level, so there is no need to regulate any interac- 
tion between processes. Typically the HAL is only 
used by the ParaStation library and not considered 
as a user programming interface. The rawdata in- 
terface too, is limited to one application per node, 
but ensures correct interaction between applica- 
tions using upper layers such as ports or sockets. 
Thus, several critical code regions (interaction with 

the hardware while sending or receiving a message, 
updating global information, etc.) are locked by 
semaphores. Furthermore and in contrast to the 
HAL interface, the rawdata layer supports auto- 
matic fragmentation and reassembly of large mes- 
sages (>500 bytes), receiving messages only from a 
particular node (and not just the next packet as at 
the HAL level), and it uses a larger protocol head- 
er than the H A L  (8 vs. 4 bytes). All these opera- 
tions are responsible for the additional latency at 
the rawdata level compared to the HAL. 

The performance difference between the raw- 
data interface and upper layers (ports, sockets) is 
mostly due to the enhanced functionality of  the 
port and socket layer. First of  all, the upper layers 
provide a multiuser and mult iprogramming envir- 
onment. As a consequence, the protocol has to 
maintain the relationship between incoming mes- 
sages and associated processes. This is done in a 
step of demultiplexing incoming messages within 
the library. To ensure mutual exclusion and correct 
interaction between competing processes, the li- 
brary is forced to lock critical code regions at a finer 
granularity than at the rawdata level. This main- 
tains fairness and good interaction possibilities 
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between multiple processes, but causes higher la- 
tencies. 4 Furthermore,  the intermediate buffering 
of incoming messages in the common message pool 
is responsible for the performance degradation (see 
Section 4.2.2). 

The real advantage of ParaStation becomes ob- 
vious when comparing its performance to that of 
regular operating system calls. ParaStation socket 
calls on the DEC Alpha are about 25 times faster 
in latency than the regular OS calls while offering 
the same services. Similar results are measured 
on the PC system where ParaStation is about 17 
times faster in latency than equivalent operating 
system calls. Throughput,  however, is not compar-  
able because the ParaStation network is much fas- 
ter than Ethernet. Even the relative loss in 
throughput is not comparable because it is much 
harder to interface to a fast network than to a 
slower one. We did not try to fill the empty areas 
of  Table 3 - which would in fact be especially in- 
teresting because our approach heavily relies 
on the superior functionality of  the ParaStation 
hardware, which is not present within common 
network adapters such as (Fast) Ethernet, FDDI ,  
and ATM. 

Another interesting insight is the additional 
overhead caused by the programming environ- 
ments, P4 and PVM. Within ParaStation on the 
Alpha system, these environments add an over- 
head of factor 9.5 (P4) and 11.3 (PVM) to the la- 
tency of our system layer. Even in the standard 
operating system environment, P4 adds about 
21% and PVM 116% overhead. Similar results 
are measured on the PCs where PVM adds an 
overhead of factor 11 to the latency and an over- 
head of 144% to the regular operating system, re- 
spectively. PVM even decreases throughput when 
built on top of the ParaStation sockets by 24'7, 

on the Alpha system and 28% on the PC system. 
This shows that both packages are not well de- 
signed for high-speed networks. 

Finally, we measured the performance of a 
socket-to-socket communication within a single 
process, where network hardware is not needed 
at all. This test aims to measure the protocol per- 
formance for local communication in the absence 
of process switching. Local communication on 
ParaStation is optimized and enqueues the sent 
message directly into the receive queue of the re- 
ceiving socket. Thus, the presented 85 Mbyte/s 
(88 Mbyte/s on the PCs) reflects mainly the mere- 
c o p y  performance of the system. The TCP/IP 
implementation within both Digital Unix and Li- 
nux seem to optimize local communication be- 
cause a throughput of 33 MBytes/s (30 MBytes/s 
on the PC) is achieved with this benchmark 
test. 

5.4. Application pe@)rmance 

Focusing only on latency and throughput is too 
narrow for a complete evaluation. It is necessary 
to show that a low-latency, high-throughput com- 
munication subsystem also achieves a reasonable 
application efficiency. Our approach is twofold. 
First, we took a heat d(tyusion benchmark to test 
application performance on our proprietary inter- 
face. Second, we installed the widely used and pub- 
licly available ScaLAPACK 5 library [18], which 
first uses BLACS ~ [19] and then PVM as commu- 
nication subsystem on ParaStation. 

All ParaStation application benchmarks were 
executed on the Alpha 21064A (275 MHz) cluster. 

The heat diffusion benchmark starts with an 
even temperature distribution on a square metal 
plate. On all four sides different heat sources and 

4 Semaphores are expensive, especially on the Alpha proces- 5 Scalable Linear Algebra Package. 
sor. 6 Basic Linear Algebra Communication Subroutines. 
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Table 4 
Heat diffusion on ParaStation 
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Problem 1 workstation 2 workstations 4 workstations 
size (n) Runtime (ms/iter) 

Runtime (ms/iter) Speedup Runtime (ms/iter) Speedup 

8 workstations 

Runtime (ms/iter) Speedup 

64 1.5 0.99 1.5[ 0.9 1.66 
128 6.0 3.5 1.71 2.3 2.61 
256 22.3 12.0 1.86 7.5 2.97 
512 89.2 46.7 1.91 26.4 3.38 

1024 424 217 1.95 113 3.75 

2.0 0.75 
3.4 1.77 
7.0 3.19 

17.2 5.19 
57.3 7.40 

heat sinks are asserted. The goal is to compute the 
final heat distribution of the metal plate. This can 
easily be done with a Jacobi or Gauss-Seidel itera- 
tion by calculating the new temperature of  each 
grid point as the average of its four neighbours. 

Parallelizing this algorithm is simple: we use a 
block distribution of rows of the n x n matrix, so 
during each iteration, each process has to ex- 
change two rows with its neighbouring processes. 
To visualize the progress, all data is periodically 
collected by one process. Table 4 shows the effec- 
tive speedup for different problem sizes. Each ex- 
periment was measured with at least 5000 
iterations~ visualizing the result every 20 itera- 
tions. 

As expected (see Table 4), the execution time 
on uniprocessor and multiprocessor configura- 
tions quadruples as problem size is doubled. This 
is obvious, because the asymptotic work of a Ja- 
cobi-iteration on a n x n matrix is O(n2). As 
shown, we achieve a reasonable speedup for rele- 
vant problem sizes on all configurations. Taking 
the last line as an example, the efficiency of two 
workstations is close to its maximum. In the four 
and eight processor configurations, we achieve an 
efficiency of 93.75% and 92.5%, respectively. The 
reason for the decreasing efficiency when using 
more workstations is due to visualizing the pro- 
gress every 20 iterations, which is inherently se- 
quential. In general, there are only two points 

where performance decreases when switching to 
the next larger configuration. But this only hap- 
pens for problem sizes where parallelizing is 
doubtful. 

The second application benchmark for Para- 
Station - xslu taken from ScaLAPACK - is an 
equation solver for dense systems. Numerical ap- 
plications are usually built on top of standardized 
libraries, so using this library as benchmark is 
straightforward. Major goals within the develop- 
ment of ScaLAPACK [18] were efficiency (to run 
as fast as possible), scalability (as the problem size 
and number of  processors grow), reliability (in- 
cluding error bounds), portability (across all im- 
portant  parallel machines), flexibility (so that 
users can construct new routines from well-de- 
signed parts), and ease of  use. ScaLAPACK is 
available for several platforms, so presented results 
are directly comparable to other systems. 

Table 5 confirms the scalability of  perfor- 
mance while problem size as well as the number  
of  processors increase. The efficiency of the two, 
four, and eight processor clusters are 94%, 87%, 
and 77%, respectively. It is remarkable that we 
get more than a G F L O P  for the 8-processor clus- 
ter. These are real measured performance figures 
and not theoretically calculated numbers. The last 
line shows the performance one can get using 
ScaLAPACK configured with standard PVM 
(Ethernet). The best performance in this scenario 
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Table 5 
ScaLAPACK on ParaStation 

Problem 1 workstation 2 workstations 

size (11) 

4 workstations 

Time (s) MFIop Time (s) MFlop Time (s) MFIop 

8 workstations 

Time (s) MFlop 

1000 5.0 134 3.36 199 2.95 226 
2000 3,-1.4 155 20.8 257 13.6 394 

3000 109 165 62.3 289 39.2 459 
4000 138 309 84.0 508 
5(100 152 547 

6000 251 573 

7000 
8000 

Ethernet n --. 3000 165 n 4000 232 n -  6000 320 

2.74 244 

9.80 545 
27.9 647 

54.6 782 

96.4 865 
157 920 

234 978 

334 1022 

n -  8000 261 

is reached at a problem size of  n = 6 0 0 0  on a 4- 
processor cluster. Using more processors results 
in a drastic performance loss due to bandwidth 
limitation on the Ethernet. For ParaStation, we 
see no limitation when scaling to larger configura- 
tions. It is even possible to further improve the 
ParaStation performance by optimizing the li- 
brary hierarchy below ScaLAPACK (ScaLA- 
PACK BLACS PVM ParaStation sockets 

Hardware). 
In general, using various application codes such 

as digital image processing and finite element 
packages, we achieved relative speedups of 3 5 
on ParaStation over regular PVM or P4 on our 
4-node and 8-node ParaStation clusters. In all of 
these studies, we used the same object codes, just 
linking them with different libraries. 

6. Conclusion and future work 

The integrated and performance-oriented ap- 
proach of designing fast interconnection hardware 
and a system library with a well-defined and well- 
known programming interface has lead to a work- 
station cluster environment that is well-suited for 

parallel processing. With low communication la- 
tencies, minimal protocol, and no operating sys- 
tem overhead, it is possible to build effective 
parallel systems using off-the-shelf workstations. 
While ParaStation is still a workstation cluster 
rather than a parallel system, presented perfor- 
mance results compare well to parallel systems. 
ParaStation's flexibility, scalability (from 2 to 
100+ nodes), portability of  applications (providing 
standard environments such as PVM, MPI, P4 and 
Unix sockets), and the performance level achieved 
have led us to market  ParaStation. 7 

In future, we will work on next-generation 
hardware, ports to other platforms and support 
for various programming environments. Current 
issues for a new network design are fiber optic 
links, optimized packet switching, and flexible 
DMA engines to reach an application-to-applica- 
tion bandwidth of about  100 Mbyte/s. Second, 
due to the PCI-bus interface, the ParaStation sys- 
tem is not limited to Alpha or PC platforms. Cur- 
rently, we are working on a port to Alpha 

7 For further information, see http://wwwipd.ira.uka.de/ 
parastation or http://www.hitex.com/parastation. 
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machines running Linux, and Pentium PCs as well 
as Alpha workstations running Windows NT. 
Ports to other platforms (e.g., Sun/Solaris, IBM- 
PowerPC/AIX, SGI/IRIX) are possible, but not 
yet scheduled. Finally, we plata to support MPI 
as a future standard as well as PVM directly within 
the ParaStation system layer. This will give PVM 
and MPI applications a performance boost  over 
a socket-based implementation. Besides MPI and 
PVM, Active Messages and Fast Messages, respec- 
tively are considered as add i t iona l  interfaces to the 
system layer. 
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