Distributed Configuration Management
via Java and the World Wide Web

James J. Hunt, Frank Lamers, Jirgen Reuter, and Walter F. Tichy *

University of Karlsruhe, Karlsruhe, Germany

Abstract. The introduction of Java has been heralded as a revolution
in network computing. Certainly, machine and operating system inde-
pendent applets flittering through the Internet promised to jazz up web
surfing; but could they be used to advantage for distributed comput-
ing? The authors had encountered substantial problems in implementing
a distributed revision control system, called WWRC, based on passive
Web browsers. Java seemed to offer solutions to these problems. To this
end, the authors have developed WWCM, a successor to WWRC written
in Java. WWCM extends the concepts of WWRC to distributed config-
uration management by using CME—a new configuration management
API. WWCM demonstrates that most of the design difficulties encoun-
tered with WWRC can be solved with Java. Furthermore, WWCM offers
a test bed for a configuration management paradigm called template reg-
ulated alternative development.

1 Introduction

There has been a flurry of development pertaining to the Internet in the last
few years. Two innovations have led to this surge of interest in the Internet: the
World Wide Web (WWW) and Java. The WWW provides a means to access
information easily from anywhere on the net. Java allows programs to run any-
where on the net. It is now significantly easier to distribute information on the
net than it was just two years ago.

The authors have been investigating the application of the WWW to software
development for a similar period of time. Though systems exist for distributed
revision control, e.g. ClearCase[3], the WWW offers a “lightweight” alternative
to such systems. To this end, the authors developed a WWW based revision
control system, called World Wide Revision Control (WWRC[21]).

WWRC provides revision control over the WWW. In order to access an
archive on a remote machine, one need only install a Web browser such as
Netscape™ and a small helper application. WWRC uses the HTTP basic au-
thentication scheme, so the user need no system access beyond the HTTP con-
nection with the server. WWRC demonstrates that the WWW can be used as
a distribution base for software management tools.

* The authors addresses are (jjhl|lamers|reuterj|tichy)@ira.uka.de respectively

Like all prototypes, WWRC was designed to prove a concept. It illuminates
not only the strength of using the Web for such tools, but also its weaknesses. The
authors will demonstrate that many of these weaknesses can now be eliminated.

Based on the experience with WWRC, the authors have built a new system,
called World Wide Configuration Management (WWCM). By combining the
strengths of the WWW, Java,™ and a new configuration management API, the
authors will show that practical distributed software development tools can now
be produced that are independent of the underlying hardware and operating sys-
tem. Specificallyy, WWCM provides distributed configuration management over
standard Java capable Web browsers.

2 New Kid on the Block: The Problems

Though the concept behind WWRC is sound, its implementation has significant
drawbacks. Since WWRC was written before Java was widely available, it relied
on HTML to describe the entire user interface. In addition, to test the concept
quickly, the server for WWRC was written as an inetd client. Furthermore, the
scope was limited to revision control, rather than supporting full configuration
management. These decisions proved to be too restrictive.

2.1 Static Format for Dynamic Information

HTML was designed to display relatively static data. On the other hand, the
WWRC server must provide dynamic data each time the user makes a request
that affects his view of WWRC. The server could only do this by generating
a new HTML page for each request. The constant interaction between browser
and server has two negative side effects. The first is that a response from the
server is required for each and every action, so the system becomes unusable
for connections with long round trip times to the server. The second is that the
user’s browser fills up with pages, many of which have become invalid due to
subsequent operations. Thus the normal forward and backward commands in the
browser are virtually useless. To solve the second problem, a page time-stamp
scheme needed to be implemented to prevent the user from accessing pages that
have become invalid.

2.2 Passive Interface

Since the browser can only act in response to user requests by sending a command
to the server, a helper application is needed to assist the browser in file transfer
for check-in and check-out. Though Netscape has a facility to upload and down-
load files to and from a server, these could not be used. They would have required
the user to manually specify from whence the file should be read or to where
the file should be written. No additional processing could be done. Even with
a helper application, the multi-part message protocol needed to be abused in
order to start the helper and still be able to give a response to the user. Since

the server can only provide one response to a request from the browser, the first
sub-message was used to start the helper application and the second to notify the
user of the result returned by the helper application via the server. This means
that the second part could only be sent after the helper was finished. Extra delay
must be inserted between parts of the message. This delay could lead to timeouts
on slow connections and/or large data transfers. Even though the authors had
full control of the server, they could not alleviate these problems, because Web
browsers are not designed to accept unsolicited messages from Web servers.

2.3 Platform Dependent

The WWRC server was implemented as an inetd client. Though an inetd imple-
mentation was quick to implement, it had three main deficiencies: portability,
efficiency, and coordination. Since inetd is Unix specific, the server would need to
be modified to run under other operating systems. In addition, a new server pro-
cess is spawned at each request, so its response time is relatively long. Separate
processes for each request also make it more difficult to communicate between
different instances of the server. This communication is essential for the coordi-
nation of the helper application and the browser. Each request interacts with the
server over its own HTTP connection, hence through a different process. How-
ever, the information generated from the browser/server pair is needed by the
helper/server pair and vice versa. Therefore, a simple but slow file based inter-
process communication scheme was implemented. Though this server succeeded
in demonstrating the feasibility of the general approach, it is unsatisfactory for
more than just a prototype.

2.4 Revision Control vs. Configuration Management

The last limitation of WWRC had more to do with the tools at hand than with
WWW. WWRC supports just distributed revision control and not configuration
management. This decision arose from the fact that the authors had developed
an appropriate API for revision control in the form of the Revision Control
Engine (RCE)[13], but had not yet extended it to configuration management.

3 A Browser’s View

Most of the shortcomings of WWRC have been solved with the help of Java
and an extension to RCE called the Configuration Management Engine (CME).
Combining CME with a new Java based server and browser side applet goes
a long way towards solving the shortcomings of WWRC. These changes are
not just internal. Rather, they are immediately apparent to the user as well.
Before diving into the details of the implementation, a quick overview of the
user interface is in order.

As in WWRC, the first page one sees is the login page (figure 1). WWCM
relies on the basic authentication scheme provided in HTTP for validating users.

WWCM Project Index

‘Welcome to WWCM
‘World Wide Configuration Management

If you are a registered user, click here.
I not, youmaybe interested in a short overview over the architecture of WWCM.

WINCH ~ bosed on REE/2 0 and CME(L0 o
Documant areared by Jurgen Reurer, Lest wpdenad: Nov-21-95

[omen] mew.| Revesn] e |

Automazically createdon. 21 Nov 1995 14:16:52 6MT
WWCM-HTIPDA.0ad

Fig. 1. Log into WWCM Fig. 2. Selecting a Project

[RCE support functions ﬂ

7.1.1997 05:31

= p—)=
todditional features & Bugfixes ﬂ
e -

Fig. 3. Manipulating a Project

But the similarity ends there. The entire paradigm of WWCM is different than
WWRC.

From the user’s perspective, there are two main concepts that extend CME
beyond RCE, and by extension WWCM beyond WWRC. CME defines projects
and working sets to organize files into a larger context. These two concepts
provide a structure for organizing the archives of RCE into a single repository.

After password verification, the user encounters the project selection page
depicted in figure 2. This is the last page displayed in the browser. All the
rest of the interaction occurs over dialog boxes generated by the applet that
accompanies the project selection page.

Here the user is confronted with choosing a project. In WWCM, a project
is a collection of files that belong together for implementing and documenting a
particular end product or system. CME uses a tree structure to help organize the
various parts of the project, just as a user might organize her personal workspace.

Once the user has selected a project (rce in the example), the first dialog
appears. In the upper left corner of the dialog is a field for selecting a working
set. An example is depicted in figure 3. Working sets are defined by users or
administrators to provide two functions. They are used to define subsets of the
project and to set check-in and check-out policies. Filtering is done by listing files
or subdirectories of interest. Along with each entry, there is a policy selection to
go with it.

The user can select from the list of working sets or from the entire project.
The contents of the project or selected working set is listed in the large selection
box on the left hand side of the dialog. The right hand side gives summary
information for the last file or revision selected on the left. The user can browse
through the project, look at individual revisions, select a working set, and mark
elements of interest. The working set operations are available through the pull-
down menu at the top of the dialog. Working set operations include check-in,
check-out, and get-read-only. One can also edit the contents of the project and
the working sets with the project operations.

In the case of check-out, one first selects the working set or a subset thereof in
the dialog. Then one simply selects the “check out” option in the file pull-down
menu. A new dialog then appears so that one can specify information about
the versions being checked out such as their state, a new alias, and commentary
describing the intent of the check-out. The comment can be amended or extended
at check-in time. It is important to keep in mind that the main operations
are performed on groups of files at once, whether they be the entire project, a
working set, or a subset thereof.

Other operations are implemented analogously. Together, the dialogs act like
a local application that simply accesses the remote store. The project manipula-
tion dialog remains active until the user presses the close button or the browser
is exited. This means the user is free to use the browser for other things.

4 Behind the Scenes

Behind the user interface, the situation is a bit more complicated. Though the
combination of CME and Java makes WWCM much more powerful and cleaner
than WWRC, there are still some stumbling blocks. The most difficult problem
that still remains is the inability to communicate directly from the applet to
local store. All this interaction must be diverted over the server to a helper
application on the client machine. Despite this, CME and Java have brought
some important capabilities to WWCM.

4.1 Beyond RCE: Distributed Configuration Management

The check-in and check-out interface of RCE alone are not sufficient for a con-
figuration management system. For this reason, the authors developed the CME
APT to complement RCE. RCE supports file based archiving with the ability to
manage alternate lines of development via branching. In addition, RCE has a full
APT and templates for tracking work in progress. CME extends RCE by provid-
ing a means of maintaining a collection of files—a project. CME also leverages
the template concept of RCE to offer a means of managing alternative lines of
development—Template Regulated Alternative Development (TRAD).

4.1.1 Structure CME provides basic structures for configuration manage-
ment. Project elements are stored in a hierarchic list. Working sets are provided
to manage interesting subsets of this list. Access control lists are available to sup-
port user roles. Finally, element names are managed with an internal numeric
registry for managing renaming.

It is often convenient for the developers in a project to arrange the elements of
the project in a hierarchic structure. CME maintains the elements of a project as
a list with hierarchic names for each element. This structure was seen in the last
section. When checking a project out of its archives, CME fills out a directory
subtree in the user’s work area which reflects the hierarchy of the project name
space.?

One seldom needs the entire project at one time. As mentioned above, CME
provides working sets to simplify the manipulation of just the elements in the
project that are pertinent. Any operation that one could perform on the entire
project can also be performed on a working set.

Access can be set at any levels of a configuration from the entire project
down to individual archives. There are three level of access: read, write, and
administrative. This is based on the access rules of RCE. CME extends these
rules to the configuration as a whole.

To help organize these structures, CME assigns a unique number to each
element in the project list. This number is an internal unique identifier for the
project element. The user should never see this number. Each number stays

2 CME also supports user mapping for when a particular user or application requires
some other view.

with its node or archive regardless of how often the node or archive is moved
or renamed. With this simple mechanism, the project itself can be versioned.
Files that appear in a previous version of the project can be found no matter
what they are called in the current version of the project. By maintaining a
“graveyard” directory for old files, the system can even locate files that have
become obsolete for the current version of the project.

4.1.2 Templates CME’s main task is to coordinate the states of all the
archives for the files in a project. This task becomes interesting in the face
of multiple developers working on the same data. There are two main strategies
for handling this problem. The first is reserved check-out. Locks prevent more
than one person from working on the same file simultaneously. The second is
unreserved check-out. Free access is allowed to all revisions with the proviso
that the first one finished wins the slot on the main branch. By making use of
RCE templates, CME can go beyond these models to provide a flexible policy
for coordinating check-out and check-in.

4.1.3 Basic Templates When a user checks a file out of an RCE archive, an
empty revision is added to the archive. This revision holds information about
who checked the file out, when this happened, and to where in the file system it
was deposited. A second user can check the same revision out, but his template
will start a branch. Enough information is contained in the template to ensure
that when a user checks a file in, it goes into the correct template. The system
always has a record of who has what checked out.

4.1.4 TRAD—Template Regulated Alternative Development The au-
thors wished to provide a mechanism for private check-pointing in CME. This
is for maintaining version control on code that is not ready to be shared with
other users. The result is a system that distinguishes between public revisions
and private revisions. Public revisions are those that have been released to other
developers. Private revisions are those that should only be accessible to a single
user. A private revision forms an alternate to the main line of development and
to that of other users. One would like to ensure that all released revisions in a
project are consistent with one another. One would also like to prevent one user
alternate from superseding that of another accidentally and to support recon-
verging policies for promoting revisions back onto the main line of development.
TRAD was designed to do just that.

TRAD takes the RCE template mechanism a step further. Each user receives
his own branch when he checks a file out. If the revision being checked out is
the last revision on a public branch, a place holder template will be created on
the public branch before the user’s branch is created with his private template.
The user’s login name will then be used to tag the template. Users continue to
work on their private branch until they are satisfied that their code is ready to
be released to other developers. At that point, the system can use the template

Fig. 4. Parallel Development

Fig. 5. Merge Resolution

information to determine if the user can take over the place holder template on
the public branch. If not, the system can generate the necessary merge.

4.1.5 Example In figure 4, two users—wft and jjh—have been working on
their private branches. The template 1.4 is the place holder. Each user has his
own respective template 1.3.wft.3 and 1.3.jjh.3. In this state, wft decides to check
in his changes back onto the main branch. Since the parent of the place holder
template (1.3) is an ancestor of his template (1.3.wft.3), the system knows that
his template can be checked into the place holder template (1.4) safely. When
jjh tries to do the same thing, the system notices that it is not safe to check his
revision into the place holder template (now 1.5). This is because the parent of
the place holder (1.4) is not an ancestor of his template (1.3.jjh.3). In order to
remedy this situation, the system spawns a new branch for jjh from 1.4 (1.4.jjh.1)
and fills it with the merge between 1.4 with 1.3.jjh.2. When that is reviewed and
tested, he is in the position to check his version into a public branch. It is
important that the parent of this new branch is 1.4 and not 1.3, so that the
conflict testing works properly. Merge links are set from 1.4 back to 1.3.wft.2
and from 1.4.jjh.1 back to 1.3.jjh.2 to capture the merge relationships.

By looking across the entire project, CME can prevent mismatched alternates
from appearing on the main branch without first being examined together on
a private branch. The criteria for promoting an alternative line of development
must be met by all elements of the project before the promotion can take place.
Piecewise promotion is not used, because changes in one file can require changes
in another file. It is important that the versions the user tested are all put onto
the main branch together, not just some of them. Of course, files that where
not changed have no bearing on the promotion. The point is to insure that the
collection of current revisions on the public branch forms a consistent, tested

set. Using templates, the system can always place new revisions back into the
proper place in the tree. Furthermore, the system can always determine what
merges must be made to bring a developer up to date.

It is important to note that TRAD allows different promotion and merging
policies to be implemented. Thus, not only can one insure that a proposed pro-
motion onto the main branch is allowed for all files involved before the check-in
onto the main branch can occur, one can also prioritize the promotion of private
branches back onto the main branch. Each user may have his own set of check-in
conditions with regards to other users. For example, a user of low priority would
not be allowed to promote his variant to the main branch if any user had the
default revision checked out. This is useful for difficult changes, that should not
be checked in without merging all other development streams first. The opposite
condition, where one has the highest priority for check-in, is useful for expedit-
ing a particular change. How exactly this will be handled is a topic of ongoing
research.

4.2 A Stitch in Time: Threads in a Java Based Server

In order to provide a more portable and standard basis for WWCM, the server
of WWRC needed to be rewritten. Before embarking on writing a totally new
server, the authors examined what was available. Though there were some servers
available that were customizable, none appeared sufficiently flexible to support
WWCM. In the end, a different approach was taken in writing the WWCM
server. It is now a multi-threaded server written in Java.?

The new server solves all the problems of the WWRC server. It is much more
responsive than the WWRC server. Threads can communicate with one another
through a blackboard. The server is also, thanks to Java, fully portable.

Two things differentiate the WWCM server from other Web servers. It has
built-in classes for configuration management and it has a hierarchic configu-
ration mechanism. The RCE and CME APIs are made available to the server
through Java native methods. These are internally wrapped in classes such as
Archive, Revision, Project, Working Set, etc. Both APIs support object linking
to provide fast reference between API handles and wrapper classes. The hier-
archic configuration mechanism of the server enables one to control directory
access on a case by case basis. Attribute inheritance keeps simple cases simple.
This structure allows fine control of access to the server’s disk store. Thus the
same server can act as Web Server and as WWCM server without sacrificing
security.

4.3 Three is a Crowd: Browser, Applet, and Helper

The use of Java applets in the browser has made a world of difference on the
client side of WWCM. The entire interaction with the server takes place on two

3 There is now another similar server called Jigsaw[29] that could have been the basis
for WWCM had it been released somewhat earlier.

Web pages: a login page and a project selection page. All other information is
obtained through Java dialogs. Though a helper application? is still needed to
support check-in, check-out, and the selection of files to be added to the archive,
the protocol between the three is cleaner.

The client interface for WWCM behaves as one would expect any GUI to
behave. Since there are only two independent Web pages for the interface, no
page time stamping is necessary. Browser forward and back commands can no
longer cause inconsistency. In fact, once a project has been selected, one could
even page through other Web sites while using WWCM.

The applet controls most of the interaction with the user. The server need
only be contacted when more information is needed or a revision transfer is to
take place. The applet caches as much state information as possible.

The applet is a win in another way as well. It can initiate the start of the
helper application and contact the server at the same time. This means that
the server need not abuse the semantics of multi-part messages in order to start
the helper application and also refresh the user’s view on completion. Unlike the
multi-part message hack, the applet will not automatically time out waiting for
the completion update.

The helper application is still needed because, as of this writing, there is
no secure way to give an applet access to the local file system. The helper ap-
plication is the single biggest impediment left in WWCM. When secure local
access becomes available, the protocol can be made much simpler. As mentioned
above, there are three cases where the helper application is needed: by check-in,
by check-out, and by adding a new file to the project. The first two cases are
depicted in figures 6 and 7, respectively. The protocol for the last case is essen-
tially the same as for the first. It varies only in the data that is transmitted and
what the helper application actually does.

4.3.1 Check-In From the point of view of the protocol, check-in is the simpler
case. The helper is needed to send the files to the server for check-in and to delete
the files from local store when the check-in is successful, but it need not process
additional information from the server. It just has to wait for completion.

The most difficult aspect of this protocol is getting the helper application
started with the proper information. The difficulty lies in the fact that the helper
application interface was designed to let a browser call another program to dis-
play information from a server that it can not interpret. This means that only
a message from the server can start a helper application. The problem is, in
WWCM, the applet needs to drive the request based on the user input it re-
ceives. The path to do that is quite circuitous, because it must involve the server.

After the user has selected the working set to be checked in from the project
list, the applet needs to start the helper application to collect the files and send
them to the server. However, to do this, the applet must first send a “show doc-
ument” request to the browser with a URL requesting a check-in. This message

* The helper application is also written in Java for portability.

ih% Post T1 ?Ahﬂ Post T1
 Rey | Rey]
- e e
—— Post
— Post ‘\ T3
I e N
Reply
Ack .
L o Ack
\
Helper Ack - Helper Ack]
4—'//_ 4—/
Browser Applet Server Browser Applet Server
Fig. 6. Check-in Protocol Fig. 7. Check-out Protocol

is used to instruct the browser to request the server to initiate the helper appli-
cation. This is the only way to get the server to send a packet of information
to the browser causing it to start the helper application. The message contains
a unique token that is used to identify the request for coordinating the various
connections needed to carry it out.

In response to the “show document” from the applet, the browser performs
a “get” from the server over a special URL. This starts a server thread (T2),
whose sole task it is to send the helper application start request back to the
browser, after which the thread exits. The content type is set to a special value
that causes the browser to finally start the helper application.

The helper application collects the files to be checked into the server and
posts them to the server. This starts another server thread (T3). When the
server is finished processing the files, it sends an acknowledgment to the helper
application. The helper application then does any necessary clean up and exits.

As soon as the applet finished sending the “show document” to the browser,
it posts a completion notification request with the list of files to be checked in
and the afore mentioned token to the server. This also starts a new thread in the
server (T1), which actually starts before the two described above. This thread
has the sole task of collecting information from the other threads and notify
the applet of completion status when all processing is finished. Before the third
thread (T3) exits, it sends a message to this thread (T1) indicating that it is
finished. The first thread updates the applet status and exits.

4.3.2 Check-Out Check-out is similar except for two points. Again, the
helper application is needed for file operations. The complication comes from

the fact that the main information flow is in the other direction.

Theoretically thread T3 could do the check-out and send the files to the
helper via a reply to the helpers “post” message. It then would have to wait
for an “acknowledge” message from the helper application before sending the
confirmation to thread T1. However, this would be slow.

Instead, thread T1 started by the applet actually checks out the requested
material. It then passes this information to thread T3 when it is started by the
second check-out request from the helper application. One can think of this as
a prefetch for the third thread (T3).

5 Related Work

There are several other approaches to distributing configuration management.
They range from the simple use of a distributed file system such as NFS, AFS,
or SMB, to the distributed repository approach of NUCM][2] and the distributed
workspace model of the MultiSite tool[1] from ClearCase. In between there are
the change propagation paradigm of the MISTRAL tool[7] in the ADELE system
and the central archive access over remote procedure calls as in DRCS[18] and
DCVDI[12]. WWCM shares the central archive approach in so far as the user
communicates with a central store over the network. However, it differs from all
other methods above in level of support required. The user need have no access
to the server machine to access the archives and the client side is lightweight.

6 Conclusion

The authors presented a system that uses Java and the World Wide Web to pro-
vide a portable distributed configuration management system—WWOCM. This
system is based on their experience with WWRC and improves on that system
significantly. The system now fully conforms to the HTTP specification. This en-
sures better interoperability and enables the system to take advantage of more
existing facilities invocation.

The inclusion of CME makes WWCM a full configuration management sys-
tem. Though CME is still in the prototype stage, it provides all the basic require-
ments of configuration management over an API. CME uses TRAD, a paradigm
for resolving conflicts between developers working on the same project, to sup-
port parallel development. It provides a means of experimenting with reconverg-
ing policies for personal variants.

The use of Java applets enables the system to be more robust and respon-
sive. It allows the WWCM server to provide better feedback without breaking
the semantics of HTTP. One would like to avoid having a helper application
altogether. Unfortunately, this is not possible at present. Most browsers forbid
applets to access local disk store. The result is that all communication between
local store and the applet must be carried out over the server. One would expect
that some future browser policy would allow access to local store for authorized

applets (or applets from authorized URLs). Perhaps signed applets will provide
a means of solving this shortcoming.

The roundabout communication path for accessing local store is the biggest
impediment to a truly efficient implementation. For this reason, though perfor-
mance is acceptable, it can not compete with other distribution techniques on a
performance basis. The setup time for operations such as check-in and check-out
is high. Still, for applications that require lightweight access to a central archive,
WWCM provides a viable alternative to traditional approaches.

7 Future Work

There are three main directions for future work. The first is to develop the
system further to take better advantage of the network, e.g. design a proxy
server that can share archives with the main server. The second is to expand on
the concepts of CME to provide process control, perhaps including support for
build management and external tools. Finally, one would like to have some real
performance analysis for WWCM.

References

1. Larry Allen, Gary Fernandez, Kenneth Kane, David Leblang, Debra Minard, and
John Posner. Clearcase multisite: Supporting geographically-distributed software
development. volume 1005: ICSE SCM-4 and SCM-5 Workshop Selected Papers,
pages 194-214. Springer Verlag, 1995.

2. Dennis Heimbigner André van der Hoek and ALexander L. Wolf. A generic peer-

to-peer repository for distributed configuration management. pages 308-317. IEEE

Computer Society Press, March 1996.

Atria. ClearCase Concepts Manual, 1992.

4. David H. Crocker. Standard for the format of arpa internet text messages, august
1982.

WWW. http://www.cis.ohio-state.edu/htbin/rfc/rfc822. html.

5. Jacky Estublier and Rubby Casallas. The adele configuration manager. In Wal-
ter F. Tichy, editor, Configuration Management, pages 99-133. John Wiley & Sons,
1994.

6. R. Fielding. Relative uniform resource locators.

WWW, June 1995. http://www.cis.ohio-state.edu/htbin/rfc/rfc1808.html.

7. Christophe Gadonna. MISTRAL User Manual. de Génie Informatique, Genoble,
May 1995.

8. Gamelan. Earthweb’s java directory.

WWW. http://www.gamelan.com/index.shtm.

9. James Gosling and Henry McGilton. The java language environment.
WWW, 1995. http://www.javasoft.com/documentation.html.

10. N. Haller. The s/key one-time password system.

WWW, February 1995. http://www.cis.ohio-state.edu/htbin/rfc/rfc1760.html.

11. Samuel P. Harbison. Modula-3. Prentice Hall, 1992.

12. T. Hung and P. F. Kunz. Unix code management and distribution. Technical

report, Stanford Linear Accelerator Center, Stanford, California, September 1992.

@

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

James J. Hunt and Walter F. Tichy. RCE API Introduction and Reference Manual.
Xcc Software, 1997.

James J. Hunt, Kiem-Phong Vo, and Walter F. Tichy. An empirical study of delta
algorithms. Lecture Notes in Computer Science, 1167:49-66, 1996.

Javasoft: For developers.

WWW. http://www.javasoft.com/nav/developer/index.html.

J. Linn. Privacy enhancement for internet electronic mail. Part I: Message encryp-
tion and authentication procedures.

WWW, February 1993. http://www.cis.ohio-state.edu/htbin/rfc/rfc1421.html.

N. Freed. N. Borenstein. Mime (multipurpose internet mail extensions) part one:
Mechanisms for specifying and describing the format of internet message bodies.
WWW, September 1993. http://www.cis.ohio-state.edu/htbin/rfc/rfc1521.html/.
B. O’Donovan and J. B. Grimson. A distributed version control system for wide
area networks. September 1990.

J. Poste. Media type registration procedure.

WWW, March 1994. http://www.cis.ohio-state.edu/htbin /rfc/rfc1590.html.

K. Sikkel R. Bentley, T. Horstmann and J. Trevor. Supporting collaborative infor-
mation sharing with the World-Wide Web: The BSCW shared workspace system.
In Proc. of the 4th International WWW Conference, Boston, MS, December 1995.
Jirgen Reuter, Stefan U. Hénfigen, James J. Hunt, and Walter F. Tichy. Dis-
tributed revision control via the world wide web. volume 1167, pages 166-174.
Springer Verlag, 1996.

R. Rivest. The md5 message-digest algorithm, april 1992.

WWW, April 1992. http://www.cis.ohio-state.edu/htbin /rfc/rfc1321.html.

M. Rockhind. The source code control system. Number SE-1(4), pages 364-370,
December 1975.

M. McCahill T. Berners-Lee, L. Masinter. Uniform resource locators (url), decem-
ber 1994.

WWW. http://www.cis.ohio-state.edu/htbin/rfc/rfc1738.html.

Walter F. Tichy. RCS: A revision control system. In Integrated Interactive Com-
puting Systems. North-Holland Publishing Co, 1983.

Cern httpd.

WWW. http://www.w3.org/pub/WWW /Daemon/.

Http - hypertext transfer protocol.

WWW. http://www.w3.org/pub/WWW /Protocols/.

Hypertext markup language (html).

WWW. http://www.w3.org/pub/WWW /MarkUp/.

Jigsaw overview.

WWW. http://www.w3.org/pub/WWW/Jigsaw/.

This article was processed using the ITEX macro package with LLNCS style

