Purdue University

Purdue e-Pubs

Computer Science Technical Reports Department of Computer Science

1983

A Model for Coherent Distributed Systems

Robert L. Brown
Peter J. Denning
Walter E Tichy

Report Number:
83-430

Brown, Robert L.; Denning, Peter J.; and Tichy, Walter ., "A Model for Coherent Distributed Systems" (1983). Computer Science
Technical Reports. Paper 353.
http://docs.lib.purdue.edu/cstech/353

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for

additional information.

http://docs.lib.purdue.edu
http://docs.lib.purdue.edu/cstech
http://docs.lib.purdue.edu/comp_sci

A MODEL I'OR COHERENT DISTRIBUTED SYSTEMS

Rovert L. Brown!
Peter J.Denninql
Walier F. Tichy

Computer Sciences Departmenl
Purdue Universily

Abziraci: A model of a complele operaling svslem for muliij-
machine compuler systetns is presented. The class of syslemz
modeled is “'eobereul” beecause na funclion depends on Lhe physi-
cal localien of objecly; the class is *“fault-Lolerant” because Lhe
lailure cf a sisgle machine will net deprive the syslem of [unclicon.
The model demonstrales Lhal a hieravchy of objecl-anagin: lov-
els ¢an be wsed Lo organize Uhe fanctijons of o disLributled syslem,
thereby exlending Lhie “servers maodel” studied exlenzively i dis-
Lribuled systent prolotypes. The model tncerporales new
approaches Lo eapabilities, direelories, and exlended types. 1L
sieke efficiency through simplicily, cconomy al mechanism, and a
verificalion principle.

January 1983

C3D-TR-430

This paper has been submilled to Lhe 10th Symposium on
Operating Systems Principles, to be held in October 1983,

Authorz' eddrerres: Robeit L Browin, Compuicr tienees Dennstnweal, Purdowe Unjversity

1 ey,

1.
Yo Lafayelle, JM 47607 (et addie 2 pltn spusdues); Poier L Dennie, Comuie Seiciices
rumenl, Purdue didversig, Vest Ialagct 10 99067 (et addren s deauig spardaek;

nier MOV, Compuiar Do duparimuead, Pwcdoe Universicy, West Lifeyeloe, iN
ALY (oot eddregn Lciyopurduc),

1. INTROLUCYTION

In this paper disiribuled system means a collection of compulers connected by a local com-
munication 1'1|3L"|.’|mr'k.2 The compulers and network are intended to form a syslem with personal-
ized working environments, easy communication among users, easy access Lo special services
such as mail and printing, conlinued operalion despite failures of individual compulers, and the
ability Lo extend Lhe power of Lhe syslem in modest steps by adding new computers. A coherent
distribuled system is one in which all system [unclions are available al any worlstation and do
nol require Lhe user Lo know Uhe phyzical localions of objecls wilhin the sysLem. A fauli-telerant
disiribuled syslem is one in which major componenls are replicaled so Lhetl the [ailure of a sin-
gle machine does nol deprive Lhe system of funetion.

iMfany di:sl.ribl{LLed operaling syslems do nol weel these poals. Somw are nothing more Lhan
tradiliona designs wilh long-haul netwark software added cn, as ulilities, lo manaze communica-
tion with olher machines. The niachines are aulonomous and Uie nelwork is vizible in Lhe user
cuvironmernl. Users may have Lo know Lhe locations of files, Lo move files aunong machines using
file transler protocols, Lo arclive files and colleel garbage on cach machine, Lo use remole login
prelocols Lu gain aceess Lo services nol available on a given machine, and Lo use machine names
as comporenls 'u[file names and mail addresses. Such sysleins are faull Lolerani but nol
echerent.

Other distribuled eperaling systems wre ne Lhing more than a Lraditional design adapled by
pulling importanl flunclions on dedicated machines, called “servers,” and using Lhe gelwerls to
sunulale procedure calls Whal invoke them. Lxamples inelude name servenrs, file servers, mail
servers, lesin servers, aulhenticalion servers, and prinler servers. Such systems hide Lhe

machites end Lhe nelwork Lul Lhe failure of o server can deprive Lhe whole system of an imper-

Leal Tonelion. These syslems are coberent bul not faull Lolerane.

LRI Ot e e b 2 AN G . o) e st Lo s L voes bor g rallel lewzmd Lhe
Sttt ceteneiiey worobien Loy, Bl dhas 7B L oenelics eui e le s oo by
R “led Lore o o iproceasons sandnarg Awemery. Tiese clesues of Jia-

Conerent Distributed Sysiems -

[y
1

Brown-Denning-Tichy

The goals of distribuled systems cannol be met withoul a redesign of the operating
system's archilecture. Various projecls have studied picces of Lhe prcblem, nolubly Medusa
[OusS80], SLar0S {JonC79], Lthe Xerox Slar system [Smil82), Grapevine [BirL8z2], the Cambridge
Ring [WiN79], I’'SOS [Neuid80), and LOCUS [PopW81]. The Grapevine and LOCUS projecls are the
mosl significanl ameng working prololypes in achievinyg Lhe goals of co]:mrence and fauli {oler-
ance withoul sacrilicing performance. The PSOS projeel ix Lthe mosl general bul has noi been

implemnoenled,

Thie purpose of Llix paper is Lo sel lorth a model for Lhe architeclure of coherent, faclt
Lolerant distribuled systems Lhal may coulain diflerenl lypes of machines. The mode] will be
prescinled as a sel of funclional levels Lhal are managers ol Lhe various objecls within Uie sys-
Lem. We will cinplasize e conceplual [ramework rather than delails. The new aspecls are:

- 1. An cll‘icit-.'nL implemenlalion of capabililies for dislribuled syslems,

2. Placement of reliabje process-lo-proeess comimunication in a middle leve] of Lthe

desizn hicrarchy.

J. A global name space Jor Ppermanent objeels, implemented with distribuled direclories.

4. An eflicient approuch Lo data Lype exlension [or distributecd syslems.

2

lulegralion of a larpe bedy of seienlifie worl: on syslenus archileeture within a single
model.

The “levels medel,” discussed here, diffors {roin the “servers model” underlying syslems
lilke Aledusa, SLaros, Cambr:’d-gu ling, Xerox Slar, and Grapevine. The levels model focuses ¢cn
LEe incremenlal lli;ling ol the network and can accommodate syslems cenlaining dedicaled
cervers. I is guided al all levels by twa prineiples:

L ILjficdency. Buch componenl should be simple and cconsmicul. A program Usal dees

nel use o piven Tunclion should expericnce no overlioud lrer Lhal Tunclion's presence
_ in Lhe syslem. Mor exomple: procedure calls should ineur eost iur validaling capabili-

Lies only when capubilitics are cxpecled; basie system types (e, fes, dircetorics,

’

Coherent Distributed Systerns -3- Drown-Denning-Tichy

and user proccsses) should be implemented using standard methods and not type
exlension; aceess Lo local objeels should be morc eflicicot Lhan Lo objects on olher !
maclines; and Lhe checks for a given error should not be repcaled in many levels of

Lhie syslem.

2 Verificaiion. Reasonable sleps have been taken to verily Lhat each level of Lhe operalt-
ing syslem mecls ils specificalions. Run time checks need be included in system pro-
cedures ouly for condilions thal cannol casily be verified a pricri. Thus, sysiem pro-
cedure calls must verify Lhal expected capabililics are prescnl because Lhe user pro-
grams Lhal invelce Lhemn niay be unverified: but mappings, from capability idenlifiers to
objects can be handled dircelly by system programs wilhoul a cenlrai meelanism,

These principles are not independenl, Uicrarchical design makes verificalicn casicr; verificalion

reduces the need for run Lime clieeking and thereby inereases elficiency,

<. OVERVIFY OF A HULTILEVLL CPERATING STSTIET

The principle ol dala abilraclion -- hiding away Lhe details of managiag a class of objects
izside a medule Lhat Las o simple, high-level interface witl ils users — was recognized carly as an
essenlial Lool for mainlaining consutency of resource allocalion slate iciorinalion. (See
[LenVGE].) The principle can yicld an integraled view of an eperaling syslem as a hicrurchy of
abslrecl nachines from Ui Luse hardware Lo Lhie user interfuce. The i instonce of a mul-
Litevel eperaling syslem vwag reporied by Dijlistra in 1980 [DIjkGE). The Provably Secure Upcrat-
iz Byslem (PSOS) 1s Uie first com:plele layered system reporled and ferially proved correct in

Le epen literature [Neuli20].

Tobde 2.1 s an overview of o Le-level design Uhal will be used in Lhiz pajper as & basis fer dis- !

closing cencrent dislribuled Syl Uiia model fils Uhe pregeanningeg covircngienl prineiples

er LB ALY 4] in o iraueward: bhe PS05. A LricT sulimary ol Lhe levels os miven below. For Lhe

Cohierent Distributed Systems -4 - Brown-Denning-Tichy

moment we will assume thal Lhe distributed syslem of interest is a collection of machines run-

ning copics of Lhis eperaling sysiein.

Level Namme Objuecls Example Operalions

1 Lleetronie Clreuits Regislery, gales, cicar, transfer, comnplement,
buses, cle, aclivaic, ete,

2 Instruetion Sel Bvaduation slack, load, slere, wiLep, bisLop,
microprogram inlerpreler, branch, array_ref, ete.
scaiar dala, array deta

3 Procedurcs Procedure segments, marlk, call, return
Call stuck, displey

1 Inlerrupts lault handler programs inveke, maslk, unmask, retry

] Primitive Processes Primilive process, suspend, resume,
senaphores, reedy list wail, signel

G Gepabllilies Capabifiticy create, valideie

7 Local Secondary Store Dloelks of datq, recd, write, zllocate, irce
disk device drivers

4 Virtual Memory Sepmenls read, write, felch

0 Communicalions Chonnels apen, close, recd, wrile

10 Dircelories Vireelories creale, oltach, delach,
searcil, list
i1 ile Syslem Files open, close, read, writc
12 Devices Lxziernal deviees and opern, close, read, write
peripherals sireh as
prinker, display, leyboard
z Jser Processes User proceus forls, quit, kil,
susped, resame
1: bxtended Types Ftended Lype obiccty craale ivne-inerly,
Urom programming lanpuape) creile object, delete objeet,
validate
13 Glell User projramming environuent stalements m shell languape
]

TABLIZ T a0 Operating Syclem Desien Hicirarely.

I Coherent Distribuled Systems -5 Brown-Denninpg-Tichy

Eacl level in Table 2.1 is Lhe manager for a sct of objects of given type; it provides opera-
tions for crealing, deleling, and changing Lhe sluies of objecls. Levels 1-B implemenl hardware- 5
managed objecls on each machine. Levels 9-14 implement Lthe princi}:;al software objeclts pro-

vided by the operaling system; most arc sharable among all machines of Llie syslem.

The levels musl conlurm to Lwo general rules:

L. Iierurchy. Loclh leve! adds new operalions Lo Lhe machine and Lides more primitive,
lovicr-level operalions. The scl of operations visible al a given level form Lhe instrue-
Lion sel of an abslracl machine thal can be used Lo program operalions al thal level.
Hencee, programs can inveke visible operalions of lower levels but no eperations ol
higher levels.

2. Information Hiding. The delails of how an objecl of given Lype is represented or
where il 1.; stored are hidden inside the level responsible for Lhal type. Hence, ne
informalicn can be moved inlo or oul of an abjecl excepl by applying an authorized

operalion to il.

Levels 1-8 are called “single-ciachine levels' because their operations are weli understood
from single-machine operaling systemns and require litlle modificalion for mulli-maeliine aporat-

i) syslems. The capabilily mechanism (Level 6) is an exceplion Lo this statement.

Levels 1-4 provide a basic machine willh procedure calls and an inlerrupt mechanism.
Lirterrupt siprals Lriprgrer uuLu-umLiu procedure calls on hundler roulines. .
Level 5 implements primitive processes, which are simply Uhe abslraclions of processors. IL .
handles mulliplexing of availuble processors aruony ready processes. 1L implerments semaphores
onel Ll wuil wnsd signal vperatious. i receives sipoals [rom exlernal devices and gates Lhen Lo
Poivete selphores ol device drver processes, (Phis level bas a simple hardware implementa-

dse | DerDEL]) Primilive processc: are analorous Lo syslent processes” in FSUS and

Coherent Distributed Syste.ns -G- Brown-Denning-Tichy

“lighlweighl processes’” in LOCUS. They are nol to be confused with user processes at Level 13,
which are Lhe virtuatl machings conlaining user programs in execulion,

Level 6 implements capabilities, which are object-pointers protected by the hardware. This
level allows capabililies to be read, but not altered, and ensures they can only be presented as
parameters Lo procedures of the proper level. Each object created by Levels 9-14 is addressed
by a capability issued by the creale procedure ol Lhe level for Lhat type. Using a validate opera-
tion, procedures of Lhis level verily that capability paramelers af expecled types and access are
present on entry. The implementation of capabililies proposed here difflers from olhers because
there is no central mechanism for mapping poiniers Lo their associaled ebjects. Delails appear
in Seclicn 3.

Level 7 contains the device drivers used to manipulale transfers of blocks of ml'ornatlon
bulween main and SLCOIldd.I"}’ memory on a given machine, These Arivers provide a standard
inlerface whereby higher lovel brocesses may inserl block-move requests in a work quene for the
device and be awakencd when the transler is complele [DenDB81). A device driver can be realized

as a primitive process running in the device driver code,

Level 8 is a slandard segmented virtuz-ll memory. A segment pointer is pretected, cither by

lagging or by being slored in read-only tables. When we write
seg = OP{paramelers),

we mean Lhat Lhe operation relurns o psinler Lo o semnenl containing Wio resuwli. Svminenls can

be shored aony address spaces v Lhe seme inuchine but nol differenl machinos.

Cohercent Distributed Systems -7~ Brown-Denning-Tichy

2.2. The Hulti-Tlachince Lovels: 515

Levels 9-15 are called “mulli-machine levels'” because they manage objecls that can be

shared amonyg Lhe machines. Operalions lamiliar [rom single-machine operaling systems must

Le carefully evaluated for exlension Lo mulli-machine syslems.

Hiding the maps Lelween names and objeels is a cenlral principle in many third generation
operaling systems. [L is responsible for Lthe nachine independence of Llic user environment. To
extend Lthe principle for mulli-machine systems, Llwe design must hide the localions of ail shar-
able objeels (channelks, direclories, files, devices, user precesses, and extended types). This
requires Lhe saolulion of three problems: reliable exchange of information belvreen processes on
difierent maclines, global naming of objecls, and eflicient aceess Lo objects. The first problem is
solved by Lhe communications level, Lhie second Ly Lhic direciories leve!l, and Lhe Lhird by disiri-
buitng the interpreiation of cupabilities. These selulions will be summarized below and studied

in laLer scclions,

Level 9 provides a single mechanism, Lhe channcl, for reliably exchanging informalion
belween processes, independenl of whether they are on Lhe same or different machines. A chan-
nel appears Lo ils uzers as a queue ol memery segmenls; a read operation waiis unli! at leasl one
sevmnenl has been wrillen inlo e clluunc.l. Channels Lhave properlies similar to pipes in UNIX
[RiLT74] and porls in iBAX [KahCU81}. Level 9 is Lhe lowesl level at which Uhe communicaticns
level has access Lo Lse funelions of the hosl machine necded Lo mcel ils reliabilily requircrnents
[DenBa3d, Corned2). Details are given in Seclion 4.

Level 10 provides a global direclory tree slruclure and a mechanisn for ensuring Lhal por-
Livns encoclied al cach macline are consistenl, Lach cnlry of a direclory contains a name,
aceess lisl, and o cupabilicy. This Tevel ecan find o dircclory given a direclory capabilily, bul is
Lol respousible for lucaling ciy olher objecl. Details are friven in Seelion 4.

Loevel (1 ds a ille system eotended so bhiol i@ can cpen (ites Ul may be stored on olher

comrnbincs, Lovel L2 previdens octias Le ghlor devices scels us pritilers, plollers, terminal key-

brvrds, and Lernninul disploys; it entended Lo use chaunels Lo conneet Lo deviees oo oiher

Coherent Distributed Syslems -3- Orown-Denning-Tichy

machines. A slandard interface for opening, reading, writing, and clesing all flles, devices, and

channels is described in Scction 6.

Level 13 implemenls user processes, which are virtual machines conlaining progrems in
cxeculion. A user process includes a primitive process, a virlual memory, a current direclory
poinler, and paramelers passed on invocalion. User processes should not be confused with

primitive processes (Level §). User processes are deseribed in Seclion 7.

Level 14 is an extended Lypes manager. 1t creates prolected type-marks and inslances cf
objeels of each Lype. Because it allows Lhe saime capabilily validalion mechanisim as in Level G, a
procedure call is ne more expensive for extended type objects than for other syslem operaticns.
Details are given in Seclion 8. Unlike Hydra [WulL81] or PSOS [NeuB80], our model places Lype
exlension close to the user level. This is because ol the e(liciency principle: since we de nol have
Lo deal with the most gencral case deep inside Lhe operaling system, we can uvse standard imple-
mentalions of common syslem objecls. The level slructure is a lierarchy of lunclional
specificalions. The purpose is Lo impose a ligh degree ol modularily and enable inerecmental
veriflcalion, installalion, and lesting of Lhe sollware. A program at a given level may direclly call
unly visible operalion of a lower level; no inlormulion flows Uwough any inlerinediale fevel. The
level slruclure can be complelely enforeed by a compiler, which inserts prcccdui'e coils or
expands funclions in-line [Habl™76]. IL has been used in, among olhiers, an cllicient operating
syslein, XINU, lor a small distribuied syslem based on LS] 11702 machines [CemeBd?2].

The level struelure discussed liere should nol be confused wilh the layer structwre of net-
work prolocaols ['l'atinUlj. In nelwork prolocols, informalion is passed down Lhirough all Lhe layers :
en Lhe sending machine and back up Lhrough all Lhe layers on Lhe receiving machine. Each layer
adds overhead Lo a dala Lransmission, whether or ot Lhal overhead is required. Models [or
lonz-haul network prolecol slreclwre may nol be efficienl i o local netvorls [Pop¥WiiL],

No ane level is copablie ol eificienlly Indoee Lhe locaticns of all ebjeets in o dictribuled sys-

Lot Poe exomngde, Lhoile dyaten must ooy whethier amven file is local oe pel Lo be able Lo

poerform Lhe most elficient read and wrile eperations. The device level mesl kpow Lhe mackine

- Coherent Distributed Systerns -9- Broewn-Denning-Tichy

Lo which a given device is connected. The user process level must know whether a given process
is Lo be spawned on Lhe current machine or anolher. A single cenlral mechanisin cannol do all
Llvs efiicienlly. Accordingly, we are led Lo the principle Lal cach level is responsible for hiding
Lhe Jocalion of Lhe objects il manares. In Lurn, Lhis leads Lo Lhe principles of distributed capabil-

E]

ilies Lhal will be defined and illuslraled in Lhe next sec Lions.

3. DISTRIBUTED CAPABILITIES
There are four generic requirements on capabilities [DenVG6, Fabr?4, WilN77, WulL81]:
1. A copability acts like a general, virtual address [or an objecl.

2. The lolder of a capabilily is presumed Lo have permission Lo access an objeci as
enabled by access rirh(s o Lhe cupability.

3. Capabililies are a low-level Lool for implementing data abslraction. They are not visi-
ble in user enviromnenls, bul are images of synlaclic structures expressible in the
programming languagc.

4, [lardware musl prevenl capabilities [romn being alterced and must assure Lhat only Lhe
aullorized operalions are applicd Lo objects denoled by capabilities.

All previous implementations of capabilitics Lale advanlapge of Lthe sharcd memory in a single-

machine operaling system. They are Lased on w cenlral mechanism Lhal maps a capabilily Lo

Liie descriplor bloek of Lhe object it denoles, The mrappings cen be iuplemenled by exlensions

ol virlual merary addressing sclienies [Denn?a).

The cencepl of a central utapping schicme iz incompalible wilh a distril:uled system whose
componcenl mechines may fuil. Ve need instead o melliod thal allows dislributing bolh Lhe
ehjecty and Lhwe ability Lu nierprel cepabilities peinting Lo Liwenn Disirivuled interpretalicn is

welieved by ellovae: cuclt level Lo read Uie cenlenls of validaied purarcler capalilitics. Distri-

Coherent Distributed Systems -10 - Brown-Denning-Tichy

buled ebjecls are achieved by eslablishing scarch rules whereby a machine can find a nenlocal

object. These aspects are discussed in the next Lwo subseclions.

3.1 Distribated Capabilily Slructure and Julerpretation

Our melhod ol distribuled inlerprelation is inspired by the Morris medel of sealing and
unsealing objeels [Morr73] and Uie Dennis model of prolecling capabilities wilh a lagged archi-
teelure [Denn@0]. Thie Morris medel requires no cenlral conlrol; the Dennis model requires no
changes in compiler Lechnology.

A basic capabilily consisls of Lhree parts: {type, access, identifier). Il is slored in a
memory word whose Lag field is sel Lo “cap”. The simplest form of tag is a single bil: 1 denotes
“cap”, O denotes all olher Lypes. The Lype field indicates Lhe Lype of object; Lhe Len Lypc-marks
discussed laler are listed in Table 3.1, We will use the notalics **T.cap” (c.g. file_cap) Lo denote a

capabilily of Lype **I"* where “'I* is one of Lhe abbrevialions in Lhe table.

l.evel Type mark Abbrevialion
9 chaunel ch

open ehannel op_ch

16 direclory dir

11 lile file
open lile opile

12 deviee duev
open deviee op_dev

156 kel process up

14 Lype type
exlended Lype exL

TABLE 3.1: Capability Type KMarks and their Abbreviations

The aeceus field defines whicih operalions of Lie objecl's lovel uay be apphied Lo Lhe objecl.

wre Lype wanagers Tor alyeels Lnown e the system: Weir represenlalious are sceessible only Lo

Coherent Distributed Systems -11- Brown-Denning-Tichy

the procedures thal compaese Lheir Lype managers. Additional user-defined types are managed
by Level 14. The melhod of known-Lypes increases ciliciency by circumnventing Lhe generality of

the exlended lype manager when Lhese objects are manipulated.

A capabilily can be issved only by a creale-object precedure, using the CR.CAP instruction
to be described belew. The type-mark comes frem the program status word (PSW), which is set.
Irom Lhe procedure descriptor by Lthe call inslruction. Only Lhe create-object procedures have

non-null type-marks in their procedure descriptors. The general form of the creale-object call is
T cap = CRI().

The create procedure aliocales space [or a new objecl of type T, puts a descriplor block for il in
2 heap of descriplor blocks owned by Ui T-objecl manager, and relurns a T-capability whese
idenlifier can be mupped Lo Lhe deseriplor block.

Figure 3.1 iflusirates Lhese principles with an abjecl manager authorized Lo creale objecls
ol Lwo Lypes, T1 and T2. The fil¢ systemw is an example: il can ereate capabilities for fles
(Mecap) and [or open files (opdile_cap). The figure shows Lhat the objecl x1I is in Lhe local vir-
Lual memory and the abject x2 is in a segmenl in Lhe local secoqdary slore. The object x3 has no

desceriplar, whicl means it is nol local aud mest Lbe searched for on another machine if someone

presenls a capabilily loril.

Lecause Lhe hardware prohibits allering a capability, and because the objecl descriplors
are privale Lo Lhe objecl manaper, Lhe holder eannot aller a cupabilily or use il Lo locale an
objecl. A user propgram may exlrucl Lhe felds of a capabilily but Lhey arc of litLle use unless a
capabilily or Lhe segmenl containing Lhe deseriplor bloeks is availuble. Normeally, this segment .
cupabilily iz privale Lo Llie objeel manager.

The helder can preweat @ capabilily Lo e prevedure in Lk sbjeel manager, whicn will per-

leitr an cperolicn v Le sbject denoled. Caorresponding o cacl parameler expeceled Lo be a
Capibility, Lhe catted proceduer: contains o VaLIDATE inslructon (deceribed below), which chiecls

Liel Lhe welual parawceler is a copability of U required Ly pe owd ils acecss field aulhorizes Lhe

tag Lype acc id

cap | T1| &l x1
cap | T2 § A2 x2
kap Tl [A3 x3

CREATLE T1 CREAIE_IZ or{r:T1}

Level i
cos «s« Procedures
lieap of
Descriptor
%x1]local x2' local Blocks
primary secondary
I i
/ !

sepuent

Virtual

Hemory

block §
Local on disk i
S-:condary 5
Store '

FIGURI 3.1: Principles of distributed capabilities.

Coherent Distributed Systems - 12 - Brown-Denning-Tichy '

call. The procedurc in the the object handler can then use the various fields of the capability
(e.g. the identifier field) directly as it mighl use the elements of an aggregate dala Lype. Fer

cxample, a read eperalion on a file is programrned as
sog = KEAD{op_fiie cap);

using Lthe verily operalion, Lhe RIEAD procedure cheeks Lhal the parameler is an open (le capa-
bility wilh read access and, il so, copies Lie conlenls of the dle inlo a segmnenl in the caller's
address space.

Once the Lype and aceess fields of Lhe capabilily have been validaled upon procedure entry,
they need nol be checled again because Lhe procedure is presumed certified by prior

verification.

3.2 Lisiribuled Objesis

Each object in Lhe system referenced by a capabilily has a descriplor block assceciated with
it. The create procedure of a level allocates slorage for a new instance of a descriptor block in a
heap owned by t-haL level on Lbe hosl machine. IL then gencrales a unique idenLit_ler and updales
an idaniﬁcr-I.u-ilc:scripl.or inupping table so Lhal olher procedures in Lhe level can locale the
deseriplor quickly when given Lhe capabilily. Our model does not, specily the organizalion of Lhe
mapping table or deseriplor block lieap. These slruclures niey be oplimized dificrenily in vacl
level of Lhe systermn.

On cach valid enlry Lo a-pruccdurc in afevel, Lhe idenlilier field of cach capability parame- :
Lers mesl be mapped to a local deseriplor bleck address. 1 Ue mapping procedure caunsit ind
@ deseriplor block lecally, il iniliales a poll to ind enellier machine Lhat doos, Eventually, Lthe [
ovjeel iz locoted und ean be used resolely o moved Lo Lbe local macliie.

The most conunon iszlavce of muppioe failwe will ceeer during the spen eperalions [or

ciiannels, des, or deviees - cilher Le ubjecl docs nol existanywhere i Ui system or il is

Coherent Distribuled Systems

locked by a process on another machine. Programs must, following standard programming prac-

tice, contain appropriate checks for failures of cperalions that may apply to remote abjects.

-13- Brevn-Denning-Tichy

3.3 Implemenlation of Capability Opcralions

Figure 3.2 shows a [ull encoding of capabililies. The idenlifier field is refined to {1, m, x) for
local bil """, inachine number “m”, lecal index

global unique identifier among all types; hence,

level of each machine.

x". The combinalion of (type, I, m, x) acts as a

indices x can be generaled as needed within each

IF'erm of call

Effect

Leep := CRCAP(id,Jocalbit)

VALIDATE(p, n, (T1,a1),...,(n,an))

cap = ATTENUATE(eap, mask)

If the type-mark in the current PSW i non-null,
creale a new capebility with type field sel to that
marlk, maximum aceess code, loeal bit set Lo the
given value, and the identifier set Lo the given id.
This operation is net available abuve user
processes, Level 13.

Verily the capabilily addressed by p'. This capa-
bility musl be tagged as “cap™. Tor al least one
i=1,...n the following must be 1ruec: The canability
contains “Ti" in jts type field and vermits cecess
al leasl ag greal azs “nd™. 1T the locaf bib i Use cg-
pability is gel, then the “macline' field must cogn-
titin the iachine ideotifier of the local syslenn
{Fuils 0T thess conditionz are nol me L)

Return:: a copy of Liwe given capabiiiy willr Lhe az-
cang ficld replaced by the bitwise A1D of “mask”
ad Lhe access field Irom “eap.

TALLIL 3.2: Specilicalion of Capabilily operalions..

Table 3.2 shows Lhe basic operalions implemented by Uhe cupabilily level. The create-
capabilily instruclion can: be exceuled only by creale-objecl procedures, who
non-null Ly e-rarks. The VALIATL instruclion is vsed Le ch

cupabilily ot tiven Lypes and wecess:, The cornpiler of a precedure generales one VALIDATE

se PoW's contain

celt thal a given peraweler is a

Global

Unique Identifier

A
' N\
cap T A 1 m X
liachine Type Access Local MNachine Local
Tag Bit ho. Identifier

FIGURPLE 3.2:

Format of basic capability.

Coherent Distributed Systems -14- Brown-Denning-Tichy

inslruclion for each capabilily paratmeler. 1 the local bit is scl, Lhis instruelion also checks Lhat
Lhe value of Lhe machine field malches Lhe local machine number., Figure 3.3 shows an example
of a procedure heading in a high level language and Lhe VALIDATE instruclions generated by the

compiler. The ATTENUATE inslruclion permits reducing Lhe privilege conlained in a capability.

High Level Language Generated Blachine Inslructions
procedure example{cl,c2, x) example: welidate cl, 1, (t1,READ)

Ll_cap ¢l allows READ: velidate c2,1, (L2, WRITE)
t2_cap c2 allows WRITE: .

integer x;

Gegin

end return

FIGURL 3.3 Compiler Gencrated "validate™ Instructicns

The local bit in Lhe capability, when cn, denoles thal Lhis capability can only be used
correclly by procedures exeeuling on the machine identified in Lhe machine field. When a global
capability is converled Lo a local capabilily (c.g. by an vpen procedure), Lhe object is moved (if
need be) Lo Lhe requesling machine and a deseriplor block for the object is created on that
machine. The loeal capabilily Uien relerences Lhis descriplor block. Some capabilitics always
have Lhe local bil set (c.g. Lhe segment capabilily).

The eflicieney principle is salisficd by Lhis model because vach level in Lhe syslem reserves
responsibilily for Ll.1<.- maintenance ol ils deseriplor blocles. Tlhe Lype managers can oplimize Lhe
organizalion of Lhic deseriplors and mappig from capability indices Lo heap locations using stan-

duard teehniques. No overhead is incurred williin Lhe Lype managers afler Lhe validale inslrue-

tion has been performed becawse riglils are nol ehecked al cuch aceess Lo Lhe abjeel; presram

verificolion compensales for any leus of correeiness Uhis niay ioply.

Cohereni Distributed Systems -15- Brown-Denning-Tichy

4. THE CORIMUNICATIONS LEVEL
The comnmunicalions level provides a single meehanism [or exchanging information between

Lwo processes, independent of whelher Lhey are on the same or difierenl machines.

The exlernal inlerface presenled by Lhe communicalions layer is suggested by Figure 4.1,
which shows Process | sending a sequence of segments Lo Process 2. The sequence is moved
across a channet, which is an objeel crealed and managed by Lhe communicalions layer. When
Lhie Lwo proeesses are on Lhe sute machine, Lhe queue of seginenls is in shared memory,
whereupon Lhe READ and WRITE operations reduce Lo Lthe [amiliar “send'” and “‘receive’ [or mes-

sage queues [Brin73].

Figure 4.2 illustrales what happens when the two processes arc on difTerent machines. The
communications layer musl implemenl the nelwork prolocels required Lo move information reli--
atly between machines, These prutocols can be greally sinplified compared Lo leng-haw! prolo-
cols because congeslion and routing conirol are nol needed, packels cannot be received cut of

order, [ewer error Lypes are possible, and errors are less common [PopW8B1]

Specilicalions for six channel operalions are oullined in Table 4.1. There are commands to
creale and delele channels, A chonnel capabilily can be passed Lo another macliine (over an
cxisting open channel) for laler use by a companion process on Lhal machine; a channzl capabil-
ily can also be lisled in the dircetory Licrarely, whereupon Lhe ehannel becomes aceessible
Lhroughout Lhe syslem. Tliere are connmands Le open anud close channels: Lhe sender and
receiver musl cach open Lhe chunnel; al mosl one sender and one receiver are allowed. And

Lhere are read and wrile commands for moving a segenl of inforinalion across Lhe channel.

I Lthe sonder an.d recciver are on differenl machines, a conneclion prolocol assures the
censistency of Lhe two open clianiel conlirol bloeks and a nolwork prolecol manages infermalion
Lransfer. 1§ Lhe sender and receiver are on Lhe same machine, Lthe sepmenls cun be cxchanged
L puasiey puinlers in shared weroey wilhout Lhe everbead of nelwork proloccls, The open

crunnel curlral Llock Lels Le a0 wnd SREE operalions whiclt case applies.

Communications
Level

CHAKKEL
{sequence of segments)

FIGURE 4.1: VUser's view of a channel.

Commnunications
Level

WRITE

HACIIRD A

-

MACIIIKE B

T

queue of
segment
pointers

Send

message
chunlks

Frocess

packets

l.etworic
Protocol

FIGURL 4,2:

queue of
Segment
pointers
A
message
chunks
Receive
Process
M
packets
hetwork

Protocol

Internal view of communications level.

Coherent Dislributed Systems -16- Brown-Denning-Tichy

Form of call Effecl

checap = CRCLH() Creates a new chauncl and returns a channei
capabilily for it; i the coller then stores this
capability in a dircctery entry, the elanmnel
becomes available throughout the syslem.

DELETE_CH(clLcap) Undoes a create channel operation.

opchcap := OPEN(chcap, rw) Opens the clhannel named by the chanoel ca-
pubility; relurns an open chamel capability
with write permission enabled if rw="write"
and read permission enabled il rw="rcad",
(Fails if the chennel is already open for writ-
ing when rw=""write" or reading when
rw="rcad'") ¥ both scnder and recciver are
on the same machine, the open channel con-
trol block will indicate that segments can be
transferrcd directly from sender Lo receiver.

CLOSE(op—ch cap) Undces Lhe open channel operation. (Uses
the writc/read permission bits in the capabili-
ty determine which open operation to unde.)

WRITE(sep, op_ch_cap) Causes the scpment named by the given seg-
ment te be tronsmitted over the given open
channel. (Fails if Lhe open cliannel capanility
doves not conlain wrile permission.)

scg = READ{op_ch cap) Wails vdil Lhere is o segment in the cliannel
Lo receive, Lhen relurns a poinler Lo jt.
(l'ails if the open channel capability does not
contain read permission,)

TADLE 4.1: Speecificalion of Communication Level Inlerfzce.

Because usor processes are defined al a higher level, it is nol possible Lo open & connection
dircelly Lo anolher user process. 1L is also nol normally possibie Lo open a cenncelion dircctly Lo
a primilive process. Lhey are shorl-lived and nol lisled in the diree Lory hierarcly.

It is powsible Lo slore a capabilily in a segmenl and send Uial segmenl over a channel Lo
arether machine. I ke capabilily is of a Lype thal can only be interpreted locally (i.c., on Lhe
iachine Lhat izsued ily, e olher macluaes misl reluze Lo inlerprel il For example, o segmert

cr epen-chunnel capulbility defined un oae nweliing does nol map Lo o meanir:iul ebjzel on
[[S a

Coherent Distributed Systems - 17 - Brown-Denning-Tichy

anolher machine. This requircment is casy to implement in a machine's hardwarc because capa-
bililies contain Lhe identifier of Lhe issuing machince and a local bit; Lhe READ and WRITE opecra- .

lions do not check whelher capabilities are in segmenls senl over channels.

If Lhe design hierarchy were allered Lo allow tlobal segments, channels would slill be neces-
sary: a communications layer would be required for reliable updating of direclories on all
machines and for synchronizing a sender and recciver. (The direclory updale problem will be

described in Lhe next seclion.)

5. THE DIRECTORY LEVEL

The direclory level imnplements a syslemwide directory structure that permils tree path-
names Lo be used as global names lor any permancnl object. Pirure 5.1 shiows Lhat each cntry of
& dircctory conlains Name, Access, and Capabilily ficlds [or cach object listed. The feasibilily of
a capabilily based direclory syslermn has been demenslraled in CAP [WilN79, NeeB77). A direc-
Lory conlaining only Ll soll and parenl enlries is considered templytt.

Only capabjlilies for permanenl objects may be placed in a directory. In Lhe hierarchy of
Table 2.1, LEds includes channels, direclories, files, devices, user precesses, type-marks, and
cxlended Lypes; il oxcludes segmenl pointers and capabililics for open channels, opea (les, and
open devices, which have meauning only on the machines Lhat issued them. Informalion abaout
objeel allribules, suel as ownership or time of lasl use, is kept in Lhe objeel descriptor blocks
mainlaired by Lhe objecl manarsor levels.

The direcloery luyer simply slores global capabililies but does not alleimpi Lo inlerprel
Lhem. The respensibility for iappiag a cupabilily {o en ubject lies wilh Lhe level Lhat Manuges
Lhat Cype ol ohjecl. The directory level cannol locale any object exeepl o dueclory. |

the doreaury layer also Lis e respunsibilily fer cnsuring el Lhe direelory hierarely is

coitsislent acrous ull machines of Lie syslenn. Vs can be acconiplishied Ly meihods for

Ilame Access Capability

parent | _~—— cap for parent directory

self” | ——— cap for this directory

| ———— cap for object "

FIGURE 5.1: Tormat of a directory.

Coherent Distribuied Systems - 18- ' Brovmn-Denning-Tichy

replication in a distributed dalabase syslem [Seli®0]. To conrtrel the number of update messages
in a large syslem, the [ull dircelory dalabase weuld be kept on only o small subsct of machines
(c.g., Lwo or three) implementing a “'stable store' . Copies of the views of Lhe directory database
being aceessed by a given user can be slored locally in a workslalion afler thal user logs in.
Uperalions Lhal modily an entry in a nonlocal direclory must send updates Lo Lhe slable-slore

machines, which relay Lhem Lo affecled worlislalions.

A speeificalion of Lhe exlernal operalions of a direclory level is given in Table 5,1. The
specifications allew higher levels Lo ereale objecls and store capabilities for them in directories.
The ATTACI operalion is used Lo ¢nter an object capability inlo a directory under a given name;
Lhe DETACH operation undocs Llis. If Lhe affected direclory is nonlocal, bolh Lhese operations
must nolily Lhe slable store so Lhal changes beeome effeclive Lhroughout the syslem. Unat-

Lached objecls will nol be relained aller Lerminalion of Lhe user process Lhal created Lhem.

The ATTACH opcraticn allows ils caller Lo specily an access code thal will apply to Lhis enlry
and may reduce privilepes cnabled in Lhe éapubility's access feld. An access code can be com-
plex, like Access Conlrol Lists in Multics, or simnple, like owner-group-publie bils in UNIX. The
access {ield of the capabilily relurncd by a SEAKRCH operation will be Lhie AND of Lhe access code
perlainiog Lo Lie ewner of ils caller and Lhe access feld already in Lhe capabilily.

The ATTACH and DETACI operalions are more complex when the objecl being allached is a
direclory. On crealion, a direclory capability is "local” and can be inlerpreled only on Lthe
crealing macline. User processes can build direclory sublrees rooted or a local direclory; the
ATTACH eperalions mnvolved dlu nol nolity olher machines. When a local direciory is allachad Lo
a nonlocal direclory, ATTACH musl traverse Lhe enlire (loeal) subtree rooled al Lhe {lozal) direc-
Lery and nolily Lthe elher maehines; in su doing it inust convert direclory capavilities conlained

Lherein Lo nonlocal foru.” The ATYACH operabion nrust also deline Lhe parent of Lhe newly

)

Thisnivieey incues po eeddiGomzl et celilive Lo acsbeangey thal notics ether eaehises as
Lecirenory womaede o direelory, G G sl o noldicalions must be lssued fooier or
P

LT L S

Coherent Distributed Systems -19- Brown-Denning-Tichy

T'erm of Call LEcct

dir—cap = CRDIR{access) Allocate an empty directory with its permis-
sion bits set lo the given acecess code. Re-
turn a capability for it. (This directory is not
attached to the directory tree.)

DELETE_DIR{dir_rap) Remove the given direclory. (Fails i the
directory is nonempty.)

ATTACH(obj cap, dir—cap, access, name) Make an entry of the given namne in the given
dircelory, store Lhe given objecl capability and
given access code in il. ([adls if the mame
alrcady exists in the given direclory or if the
vbjeet is a directory whose parent is defined.)
If the piven directory is nonloceal, notiy the
updaie proccsses in other muochines of the
new enlry for the given object. IF the given
object is & local direclory: mark it &s nonlocal
and notify the updale processcs cn other
machines of {he entlire subtrec rocted al this
dircelory.

DETACH(dir_cap, name) Remove ihe entry of the given neme from the
given dircclory. (Fails if the name does not
exicl in the pgiven direciery of if Liie named
object is a nonempty directory.} If the given
directory is nonloczl, nolify the update
processes on other machines.

objeap := SEARCH(dir_cap, name) Find Lhe entry of the given name in the given
dircetory and relurn a copy of the capability
slorad therem., Sel Lhe access Leld in thiy
capability to Lhe minimum privilege cnahled
by the access ficlds of the direclory catry
and Lhe capabilily, (Fails if the name does |
nol exist in the given direclory.)

sepr = LIST{dir—cap) Return o copy of Lhe contenls of Lhe directo-
rv. (A uzerlovel progrum can interropale Lhe
olher levels for other mdorination cbout the
objeels lisicd in the direclory -- e, date of
Tust cliange.)

TAULL 5.1: Specificalion of a Direclory Manager Interfoce.

altached direelory; ATTACH fatly il a pareul ts already defined.
The DIETACH operalion oily removes eotrices leam direelories; it does not delete Lie object

Lo which Lhe capabilily pomtzs. To delele an objeet, Lhe DELEYE operalion of Liw level Lthal

Coherent Distributed Systcms -20 - DBrown-Denning-Tichy

manages Lhal lype of abject musl be used. T'o minimize inadvertent delelions, DETACH and
DELETE operalions fail if applicd Lo noneinpty direclories.

The SEARCH cperation relurns the capabilily slored with a given name in a direclory; a
search usually precedes other eperalions on an object, e.g., opening and reading a file. The LIST
operalion provides Lhe raw dalu used by a [ormatling program Lo prepare a summary of the
objeels lisled in o direcltory.

The specificalions in Table £.1 are nol intended Lo be o complete sel of opcralions [or a
direclory manager. (lor example, we speeified no comniand to change Lhe access field in a
direclory enlry.} The purpose is Lo illuslrate Lthe possibility of replicaling Lhe direcbory structurs

consisiently among several machines.

6. IMLES AND DEVICES

The simplest model of a fike syslem asswnes that a file musi be epened to be read or writ-
len, a file may be open by at miesl one process al a lime, read operations return a copy of Lhe
enlire file in a segment, and wrile operalions replace the file willi a new version coulained ic a
segmeni. (This is parl of the “version model” of objecls in many distribuled database syslems
[Ree38C].)

Likewise, a sitnple modcel of deviee managemenl assumes thal a device musl be opened to
be read or wrillen, ol moesl oue process can open ¢ device al a Lime, a device driver for a read-
able device relurns Lhe resulls of read operatious in sepments, and a device driver for wrilcable
devices assumes each portion of cutpul is conlained in a segment.

Because of the sumilarity of Lhe channel, file, und device niodels. il is possible Lo define a
singie, peneric interface for Uiese Lhree Lypes of objectls. A specilicalion eppears in Table G.1. A
peneric inlerface i aquporlanl becawse il permils Lhe Uree Uypes of objecls Le be connecled

izierchongeubly Lo u precess. & pregrammer need nol know whelher Ue inpul (oulpul) slream

Coherent Distributed Systems -21- Brown-Denning-Tichy

¢l a program comes from (goes Lo) a channel, file, or device. By achieving independence from
the medium Uhirough which inpul and culpul slreams flow, the interface helps make many pro-
grams look like soltware parls usable in many conlexls. This properly, called input-ouiput

independence, is crilical Lo Lhe success of UNIX (Rt T74].

IForm of Call Kilecl

oplecup := OPBEN(Icap, rw) Open a conmeclion to ihe objecl of type T for
reading (il rw="read"} or writing (if
rw="write"). Relurn a jocal ezpability poinl-
ing Lo the open connection. The nccess code
in ithe open conneelion capability is set to the
+ value of rw,

CLOSE(op-T_cap) ’ Close Lhe conncetion specified by the piven
open conncclion capability,

seg = READ{op_T_cap) sitore a copy of the stele of the given, open
’ objecl il o sepmenl and relurn a pointer to
it. (Paiis if the given upen connection cepa-

bility dous net enable reading.)

WRITE(op_T cap, sep) Sul Lhe slule of the given open objecl to the
value contained in the given scgment. (Fails
il the given open contection capebility does
nol enable wriling.)

TABLE G.1: Speciliealion of o Generic
Channel, File, and Device [nterface.

In a mulli-machine syslem, Lhe file and deviee levels must deal wilh a problem not present
in single-machine syslems: nentocal objecls. Suppoesce a process opens a conneclion Lo a file
lccaled on a different machine. What happens? There are Lwo allernaljves:

L. Open a pair of channels Lo a process on Lhe file's home wachine; Llie read and write
corumand are relayed via Lhe forward channel Lo Lhal surrogale proeess for remole
exceulion; resulls are passed buck over Lhe reverse ehannel,

2. wove Lhe {ile from its current nweline W Uhe machine on which the file is being

upened; Lhierealler all read and wivite vperalions are loeal.

' Coherent Distributed Systems - 22 - Brown-Denning-Tichy

Both melhods are feasible. An instance of the first is in Lhe Berkeley Version 4.2 UNIX system
[JoyC82). An inslance of Lhe second is the Purdue STORIC file syslem |[Par162].

Shnilarly, suppose a process opens a coennection tc; a device on a different machine. What
happens? Ilere, Lhe second allernalive Tor files is nol open because devices cannot migrale.
Only the firsl iz [casible.

The apen éonncc lion conlrol block [or a channel, file, or device indicales whether READ and
WRITE aperalions can be performed locally or must inleracl willy a surrgrale process on another
machine through an open-channel capabilily embedded in that control bloclk. Because Lhe
cpen-connection eapabilily is local, Llie READ and WRITE operalions do 1iol have to deal with the
problem of finding a nonlocal ebject; they simply access Lhe objecl through the centrol bleck.

Figure 6.1 illustrales Ui Lypes of capabilities generaled and used during a Lypical session,
ediling a file. Capai.ii]iLi_e:s arc shown in abbrevialed formal {cup, type, access, idenlifier). The
lile sysleni's heap conlains deseriplor blocks for local file %, nonlocal file x', local open file y, and
nonlocal open file y°. The deseriplor Tor v conlains an open-channel capabilily Lo a process on
Lhe machine on which Lhe file resides. The sleps in Lhe ediling session are:

1. Oblain a capabiliLly ¢1 = (cap, file, W, x) for the (ile by searching a dircelary.

2. Open Lhe file for reading, oblaining Lhe capabilily €2 = (cap, cplle, IR, y) :=

OPLEN(e1, read).
3. Open the file lor wriling, oblatning the capabilily ¢3 = (cap, op_file, W, y) :=
OPLN(c], wrile).
4. Read Lhe file, oblaining o seginent poinler 5 = {seg, BW, z) := READ(c2) to a copy ol Lhe

vihwle file,

5. Ldit Llic conlents of Lhe semnent.
o. Using an operation WRITE(ed, s}, replace the file with Uie conlenls of Lthe edited sefa-

nienlk,

5 segment

cap| file] ®Y X

capjop_file| R | 'y seg | RY -

cap|op_£file] U ¥

Files
QOPEK READ - WRITE CLOSE
| Heap
of -
file Lil file x_'l file
I desco local nonlocal
| Tiptors
y - 31 op_ch
| open file open file cap})
local nonlocal [
\
N\
- ~—--n-n~uh““
Directories
581 ARCII
FIGURE 6.1: Tllustration of an editing session,

Conerent Distributed Systems -23 - Brown-Denning-Tichy

7. Closc Lhe {file. Delele tlic capabilities and Lhe segment.

The basic file syslem operalions can be inproved in two ways. One is to allow multiple
readers and writers. Anolher is to retain different revisions of a file using a version control sys-

tem [TichB2].

7. EXTIENDED TYPES

The exlended Lypes level supports uscr-defined, abstract data types. Level § provides capa-
bilitics Lhat efficiently prolect a small set of basic types known Lo Lhe operaling syslem. Level
14 exlends Lhese capabililies.

Extended capabililics have Lhe same requirements as listed in Section 3. They act like pro-
teeled, virluul addresses Tor shared objecls., The objecls are ercaled and manipulated by
sollware paclapes :sl.urt-ed in libraries. While we are willing Lo assume the operalions conlained in
Lhose packages are verified, we are nol willing assume user programs will call them with the
proper access righls or Lhe proper paramelers. Type and access crrors cannol be prevented
oulside extended-lype paclupges because mosl programming languages lack lacililies to express
such reslriclions -~ and becausce language syslems do nol usually enforce these restriclions
riporously, even il Lhey can be speeificd. Therefore, extended-lype operalions musl check Lypes
and access rights of capabilily paramelers.

Our approach lakes 2 middle ground beiween a pure compile-litne check as proposed in
[JonL7G] and a pure runtime cheek, as implemented in lydra [Wull81} or CAP [WilN79). Purc
coernpie-Llinee cheeking is ulu'{..:.‘.:li:sl.ic because mosl languages and language sysleins in use Leday
do nol supperl uceess conlrols on Lyped objects. Al known implementalions of pure runlime
chiecking are Loo expensive. Our muodel is lunguape independent and can be implemented with
adequate cificieney. 1L aszues Lhal a packoge bas been verified before use, and Lhel a package
monapring vbjeels of a certain Lype s the ouly prorraim Lhal may generale eapabilities for Lhal

Lype.

cap T A id BASIC

Hachine Type Access Global Unique Type
Tag O Tdentifier Extension
cap ext & id XT

FIGURL 7.1: Tormats of basic and extended capabilities.

EXTEKDED

Coherent Distributed Systems - 24~ Drown-Denning-Tichy

Figure 7.1 compares basic and extended capabililies. The only difference is Lhat the
extended capability has a Lype exlension field Lhal stores a Lype-marlk (XT). The original type

field 1s sel Lo “'ext” Lo indicale Lhe presence of an extension field.

Form of call EAecl

lype_cap = CIACAPRQ Create a new capabilily with the type field set
to “Lype", an empty accecss field, and o
unique jd derived from Lhe machine number
and the clock.

cxl cap = CRXCAP(type_cap, locolbit) Creale a new extended capabilily with a
unique identifier derived from the given local
bit, the machine number, ond the clock. The
type extension field is idenlical Lo the
idcnlifier conlained in the given type-
capability. The access field permils mazximum
ACCCSS.

XVALDATE(e, type—rap. a) Verify the extended capability addressed by

“c". This capability musl be tapged as
“cap", conlain “‘ext™ in the tiypc fizld, contain
lype_cap.id in the type exiension field, znd
perinit gceess at leasl es greal as “e". Fails
il these conditiens are nol met.

exleap = XATTENUATE(ext—cap, mask) Return & copy of Lhe pgiven extended capabili-
ty wilh lhc access field rcploced by the bit-
wise AND of “mask® and the access field fram
"exlcup™.

TABLE 7.1: Ixlended Capabilily Operalions

The interface presenled by Lhe exlended Lypes level is given in Table 7.1. The function
CRICAPR reluens o Lype-capabilily. 1ls Lype leld is =el Lo “"type” und ils idenlifier field conlains
v unique Lype-mmark. s access bils are irrelevanl.

The funelion CRXCAPR generales an exlended capobilily. IL sels Lhe Lype Lo "exl”, slores
e identificr of Uie given Lype-capabilily intu the extension feld, and construels o new idenlifier
oul of Lhe siven lecal bil, Lhe macline nwnber, and a unigue number derived from Lhe clock:.

CILKCAR should enerypl the clock value oz an addilicnal measure of proteclion apainsl atlemplts

Coherent Dislributed Syslems -25 -~ rown-Denning-Tichy

to forge capabilities by Lampering with the clock. {Encryplion makes it extremely difficult to .

delermine whal clock value produced a given identifier.) . .

The functlions X VALIDATE and X ATTENUATE work like VALIDATE and ATTENUATE, respec-
Lively, axcepl thal Lhey operale on exlended capabilities. X VALIDATE is used to check capability
paramelers in Lhe satne way as VALIDATE (see Figure 3.3). For fast execution, it should be imple-

mernled as a machine instruclion.

A programmer whe decides Lo male a new package publicly available must obtain a unique

Lype-capabilily and register iU in a slundard directory. For example,
ATTACH(CRTCAP(), " /type”, access, *T'")

creales a new Lype-capabilily and slores it with name “T" in Lhe direclory ** /Lype".

The creale opuralien in a package for an exlended type musl first allocate a new object and
its descriptor block. Then il issues an ex lended-lype capabilily with Lthe proper type-mark by

execuling
cxl-cap := CRXCAP(SEARCH(* 7type", “T"), local.bil).

Finally, it reads the idenlifier from Lhis new capabilily and enters it into a hashtable to define a
mapping from e capabilily to the corresponding descriplor bloclk. If the local bil is off, Lhe
programmer musl provide addilional soflware Lo help otlier procedures of Lhe paclkage lool up
capabilities on olher machines.

This medel assumes Lkal a pauckage is a Lrusted subsyslem which has been verified Le han-
dle ils objecls according Lo specificalions and does not collaborate wilth olher packages Lo cir-
cumvent Lhe checking: of capabililies. The model does net permil slrong seolulions Lo Lhe mutual
suzpiction problem, Lhe modification problem, or the confinement problem [Wull81]. Hewever,
Lhe usswinplion Lhat verilied packuges cun be Lrusted is reasonable in praclice. Wilhir Lhis i
msedel, capabilities need be eliceked ouly ul provedure entry, Lhereby permilling an eflicient

implemenlalion of exlended Lypoes.

cap | up

params = (...) Invocation parameters
cap | dir) Current directory
cap |op.t Open connection, input i
cap [op t' Open connection, o;tput
cap | up Parent process capability

signal Signal variable of parent

Primitive Process Index Primitive Process
Address Space Index Segment Table Pointer

count Fo. Childr. Signal from children

FIGURE E.1: User Process Descriptor Block,

Coherent Distribuled Syslems -27 - Drown-Denning-Tichy

SOURCE is cither a readable device (e.g., a keyboard) or a file. The SINK is either a writeable
device {e.g., a display) or a file. The shell oblains capabililies for the cemponents of the pipeline

by a sequence of commands:

¢l = SEARCH(dir_cap, “SOURCE");
¢z = SEARCL(dir_cap, “I");

ed = CR.LCH{):

¢t = SEARCH(dir_cap, "G");

et = CRCLH{);

c6 = SEARCII{dir_cap, “H"};

¢7 := SEARCH({dir_cap, *SINK");

F

where ¢3 and c§ are capabililics for channels between program pairs (I',G) and (G,H), respec-
tively. The shell then ereates and resumes user processes thal execule Lhe threc components of

the pipeline, and awails their complelion:

RESUME(FORK(c2, -, cur_dir, OPEN(el, rcad), OPEN(c3, write), signal);
RESUME(FORK(ed, -, cur_dir, OPEN(e3, rcad), OPEN{c5, write), sipnal);
RESUML(FORK(cG, -, cur—dir, OPEN{c5, rend), OPEN(c?, write}, signal);

JOIN(signal, 3);

Finally Lhe shell can delete these processes and acknowledpge completion of the cntire command

Lo Lhe user (by a “prompl" character).

3. CONCLUSION

We have shown Lhat the levels moedel can be used Lo describe e functions ol a multj-
machine operaling system. Syslems confirming to Lhis model will be coherenl because the phy-
sical localions of objeels ure hidden by Lhe levels Lkal manage Lhem. They will be faull Lolerant
bucause caclr user 1.11ut.-11im: contuins a full copy of the uperaling cyslem and a subsel of Lhe

clbjecls,

Coherent Distributed Systems -28 - Brown-Denning-Tichy

Two important assumptions underlie the model. The verificalion principle holds that rea-
sonable steps have been taken a priori Lo establish that all operating system cornponenls, and all
extended type packages, meet Lheir specifications. The efliciency principle holds thai all fune-
Lioens should be simple and compact. Verificalion supports efliciency by reducing e amount of
runtime checking needed. Eflicicnicy supports verificalion by reducing Lhe complexity of system

components. i

The mosl significanl new aspecls of the mode] are ils approaches Lo object management,
capabilities, and directories. Each level of Lhe Syslem is Lhe manager of a set of objects; it has
full responsibility for mapping object identifiers Lo objecl instances, for relocating objecls in the
storage hierarchy of its machine, and for finding objects stored on another machinae, Dijstribut-
ing the responsibilily for object management in this way greatly improves the potential for
clliciency because each level can use standard algorithms, dala structures, and oplimizalions
and does not have to use a cenlral inopping service. Distinguishing local from nonlocal objects
permits the efflicient methods of sharcd-memory operaling systems to be used when possible;
Lhe netvork is searched only when needed. To support remole searching and object use, the

network communications level is placed below all Lhe levels implementing sharable objects.

Capabililies are important because Lthey obviate most runtime checks. They must be refor-
mulated for multi-machine syslems. The aulhorizalion for a process to hold a capability is
cliecked once, when the capabilily is issued. The procedures of a level validate capability param-
elers once, on enlry, by compiler-generated instruclions; no lurther checking of capabilities is
needed inside the level. Allhough hardwarc protecis capabililies [rom alleration, it allows them .
Lo be read. This leads Lo a great simplificalion of mechanism whose reduced sceurily is compen-

saled by Lhe presumed verificalion of programs autharized to use Lthem.
A shord form of capabililies can be used for system objcets known a priori {Levels 9-13).

The full generalily of long capabililics is required only in the cxlended Lypes level, which can be

silualed very close Lo the user inlerface.

Cohereni Distributed Systemns -29- Drovm-Denning-Tichy

The direclory hierarchy, which is visible on all user machines, provides a unilortn name
space for all sharable syslem objeets. The direclory [unclion can be generalized cleanly [rom its
Lradilional role by sloring capabililies ralher Lhan file idenlificrs in direclory colrics. No user
miachine has a [ull cepy of Lhe direclory slruclure; it only encaches e view willy which it iz
currenlly worling, The Tull sbruclore is mainloained by o siiail sel of “sicbic slore™ machinns,

The mmodel can handle a helerogencouns syslein conzisling of peneral purnesc wser
machines, sucll s worksialions, and apecial purpose macliines sueh as sluble sloroes, nle servoers.
and supereotupulers. Unly Lhie user machines conlain Lhe Full operaling syslein, The speciai
purpose maclines require only a simple operaling syslem capable ol inanagine local Lasks and of

communicaling en Lhe nelwork,

10. ACKNOWLEDGEMENTS

We are prraleful Lo many persens [or their advice and counsel while we formulated and
refined this medel, These inelude B, Dijlistra and N. Habermann fer carly inspiralions aboul
hierarehical clraclure; [T Levild, H. delior-Smilly, and Po Newimann Jor nemercus discussions
aboeut PLUS; DL Cower fur corrboraling, in We 50NU opgeratiug syslain, our inwuiduns uboul plac-
i network commmuniceiion in Lthe widdle levels; and D Dennars For advies on ceegss conlrel,
capubilily sysuens, and vorilicaden. Ve are also pratelul to tiwe Natioral scicincee Foundabier,

vl sepporied part of Lus vecls Lhwoush sranl Ogus-diiedelu sl iPerdee Caiveroiby,

Coherent Distribuled Systemns -30- Drown-Denning-Tichy :

1i. REVERENCES

BirL82.

Brin78.

Brin73.

Comed?2.

Denn7é.

DenD81.

DenGES.

DenViGa.

Denndd.

DijkGy.

Fabr?4.

Iabl76.

llear?8.

Jenl?i,

sl

e

Birrell, Andrew)., Roy Levin, Roger M. Needhain, and Michael D. Schroder, "Grapevine:
An xercise in Distribuled Compuling,” Communications of the ACH Z5{4) (April 1882),
pp. 260-2'74.

Brinch Hansen, Per, "Distribuled Processes: A Coencurrenl Proprramming Concepl,”
Communications of the ACM 21(11) (Novemnber 1978), pp. 944-941,

Brineh Mansen, P., Operating System Principles, Prenlice-Hall, bnglewood ClilTs, NJ
{1973).

Corer, Dougtles I, "KM A eal-Lime Operoling System for biicros,™ Lippubiisie:d
wanuwal, Purdue Universily {(April 1942).

Benning, Peler J., "*aull-Toleranl Operuting Systems,” Compuling Surveys 8(4)
(December 1976), pp. 359-389.

Denning, Peler I, T. Don Dennis, and Jeflrey A. Brumfield, "Low Coulention Sema-
phores and Ready Lisls,” Communicalions of the ACH 24(10) (October 1981), pp. 8687-
699,

Doning, Veler J, snd Jobert 1. Brown, "Should Di:tribuled Syslems be lidden?,” £SD-
TI-428, Pardue Universily, West Lalayelle, IN (1943). i

Dennis, J. B, and K, C. Vvan Horn, "Programming Sewmanlics [or Mulliprogrammed Com-
pulalions,” Communications of the ACM 9(3) (Marcl: 1968), pp. 143-155,

Dennis, T. Don, "A Capabilily Architecture,” Ph.D. Thesis, Purdue University, West
Lalayelle, IN (1980).

Dylsstra, Jalsgee W, "The Struclure of Lhe THY-Mulliprogramming Syslem," Cormnuni-
caions of the ACA 13(0) (May 1908}, pp. 24 1-34G. :

Fabry, . 5., "Capability-Based Addressing,” Communicaiions of the ACH U777} (July
19°%4), pp. 403-912.

Habermann, A. Nico, Lawrence Flon, and Lee W. Cooprider, "Modularizalion and Hierar-
chy ina Family of Operaling Sysies,” Communicaiions of thw ACA 10(8) (Riay 1674),
np. 26G-273.

Hoore, C. AL IR, "Cuiumuni(:.zl.in;: Scquertlial Processes," Cominuniceiions ufi the ACH
21(8) (August 1974}, pp. GOL-677.

v Al [end Uoocbara 1L Lisi ov, A Livigraiese Bxbewsion far Cous rotligg Accoen: Lo !
shured Dila” IEEE Fronseeiions v Sojiwere Epiaeering FR2(4) (Leeember 1976),
TR LTy

TR LT OO 1Y FTRUt R L YOO R T TR YT SR YEY I YT [P PR AP v o1 Mhes gl
B B L Y 5 N U7 1 T B TRRRTIE T LTI coder Tyl e Jor Lhie Lgpemarn o Yo roeco;,'t :
PR CLnLL L S Gy WL Tl N IO LIV Pt L dman G Eiaettt o i, L oetm ey '

Coherent Distributed Systems -31- Brown-Denning-Tichy

JoyCEB2.

Kah(C81.

Morr?3.

NeeB77.

NeuB80.

OusS80.

ParT83.

PopWB1.

Ree380.

RitT74.

Selig0.

Smild2.

Taned1.

TichBz.

Fi1lN70.

1979). pp. 117-127.

Joy, William, Eric Cooper, Robert Fabry, Samuel Leffler, Kirk McKusick, and David
Mosher, "4.2H3D Syslem Manual," CSRG Manual, University of Califlornia, Departmeant
of BECS, Berkeley, CA (September 1982),

Kahn, Kevin C., William M. Corwin, T. Don Dennis, Herman D'Hocge, David E. Hubka,

Linda A. Hulchins, Jolhn T. Montagus, [red J. Pollaclk, and Michael R. Gifkins, "IMAX: A
Mulliprocesser Operaling Syslemn [or an Object-Based Compuler,” Proceedings of the
fighth Symposium on Operaling Systems Principles, (Decemnber 1981}, pp. 127-1386.

Merris, James H. Jr., “Proleclion in Programming Languages,” Cormmunications of the
ACH 16(1) (January 1973), pp- 15-21.

Needham, . M. and A. D. Birrell, “The CAP Tiling System," Proceedings of the Sixzth
Sympositum on Operating System Principles, (November 1977), pp- 1-10.

Neuwnann, Peter G., Hobert 3. Boyer, Richard J. Feiertag, Karl N. Levitt, and Lawrence
Reobinson, "A Provably Secure Operating System, ils Applications, and Proaois,"” CSL-118
(2nd edition), SRI Internalicnal, Menle Parls, CA (May 7, 1980).

Ousterhoul, John K., Donald A. Scelza, and Pradeep S. Sindhu, "Medusa: An Experi-
mernt in Ristribuled Operaling Syslemn Slruclure,” Communicaiions of the ACM 23(2)
{February 1900), pp. 92-105.

Paris, Jehan-Francois and Walter . Tichy, "STORK: An Experimental File System [cr
Computer Nelworks Based on Migralion,” [EEE INFOCO#, (1883), (Lo appear)

Popek, G., B. Walker, J. Chow, . Ldwards, C. Kline, G, Rudisin, and G. Thiel, "LOCUS: A
Networl Transparenl, High Reliability Dislribuled Syslem,” Proceedings of the Fighth
Sympostum on Operating Systems Princioles, (December 1981), pp. 169-177.

lteed, D.P. and L. Svobodova, "SWALLOW: A Distribuled Data Storage System ior a Lecal
Networls," pp. 365-374in Local Nelwonrbsfor Compiider Communicatine, ed.
P. Janscn,Norlh-Holland, Amsterdam (Augusl 1980).

Rilchie, D. M. and K. L. Thompson, "The UNIX Time-Sharing System," Communicaiions
of the ACH 17(7) (July 1974), pp. 365-375.

Selinger, P. .. "Replicated Dala,” pp. 223-231 in Dislribnled Data PDases ed. F. ‘
Poole,Cambridge Universily Press, Cambridge, England (1980). :

Srmith, David C., Charles leby, Ralpl Kinball, and Eric Harslem, "The Slar User Inter-
face: An Overview," Froceedings of the AFIPS Nalionel Compuier Conference, (1982}, !
pp. 915-5248. |

Tauenbaum, Andrew 5., Computer Networks, Prenlice-1all, Engleweed Cliffis, NJ {(1981).
Tiehy, Waller I, "Desion, Implemenlalion, and Evaluulion of a evision Conlrel Syz-

Lem,” pp, BE-67 in Lracecdings olihn Gl Internalional Covlereners py i
Spllworelosineceing, 23, ACMH, [EELE, NBS (Seplember 1982). .

Willes, AL V. cod R AL Needbum, The Curnbridge CAF Compuler und Is Lperating Sys-

Coherent Dislributed Systems -32- Brown-Denning-Tichy

temn, Blsevier /North-Hellang Publishing Co. (1979).

WullBi. Wall, Williawn A., Roy Levin, and Suinue] P.

Harbison, [TYDRA/C.mmp, An Frperimental
Computer System, McGraw-11ill {1981).

	Purdue University
	Purdue e-Pubs
	1983

	A Model for Coherent Distributed Systems
	Robert L. Brown
	Peter J. Denning
	Walter F. Tichy
	Report Number:

