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Abstract

Constructing large soflware systems is not merely
a matter of programming, but also a matter of
communication and coordination. Problems arise
because many people work on a joint project and
use each other's programs. This paper presents an
integrated development and maintenance system
that provides a controlling environment to insure the
consistency of a software system at the module
interconnection level. It assists the programmers
with two facilities: Interface control and version
control. Interface control establishes consistent
interfaces between software modules and maintains
this consistency when changes are made. Version
control coordinates the generation and integration
of the various versions and configurations. Both
facilities derive their information from an overall
system description formulated in the module
interconnection language INTERCOL. A
demonstration system is sketched that runs under
the UNIX time-sharing system.

1. Introduction

Constructing a large software system is not
merely a matter of programming, but also a matter
of communication and coordination. Communication
and coordination problems arise because of the
complexity and size of software systems. Size
makes it necessary lo work with many people
rather than with a single programmer or a small
team]. This introduces all the difficuities inherent
to human interaction. With many people working on
numerous, interrelated parts, it becomes extremely
difficult to ensure the consistency of these parts.
In addition, the
development aclivilies and the mass of information
human capabilities to

retain a clear picture of the actual development

the asynchronous nature of

involved quickly exhaust
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stage of the system. As anolher example for the
need of communication and coordination consider
the phenomenon of continuing change2: All large
and widely used systems are subject to an endiess
stream of correclions, improvements,
customizations, and diversifications, because it is

usually cheaper to modify them than to rebuild them

from scratch. However, continuing modification
means conlinuing communication of the overall
system structure, design decisions, and

implementation details to the and

continuing control to avoid (or slow down) the

modifiers,

deterioration of the system into unfixable

unstructuredness.

Current research in programming methodology,

programming lanqguages, specification and
verification techniques takes a different view: The
main goal is to reduce the complexily and size of
software systems to

manageable dimensions.

However, no matter how successful these
approaches are, computer applications are subject
to the Parkinsonian !cw that their scale will expand
to meet the limits of technology. Thus, we shall
always be faced with
systems and shall have to solve the communication

and

building large, complex

coordination problems inherent to their

development.

This

integrated software deveiopment and maintenance

paper presents the prototype of an
system, whose. goal it is to control the development

of large software products by addressing the

communication and coordination problems outlined
above. Its facilities can be viewed as guaranteeing
the integrity of a software system at the module
interconnection level3. At this level, a software

system appears as an organized collection of
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modules which interact with each other through
interfaces. Our system provides two facilities at
this level: Interface control and version control.
Interface control establishes consistent interfaces
between modules and maintains this consistency
when changes are made. Version control performs

version selection and automatic (sub-)system

generation (or regeneration) in a muiti-version/

multi-configuration system.

Both interface control and version control derive
their information from an overall sysiem description,
formulated in the module interconnection language
INTERCOL. Such a descriplion specifies a software
level. It

system at the module inlerconnection

indicates how the various modules and their

versions are grouped into (sub-)systems and how
they INTERCOL
specification is separate from actual program code.

interface with each other. An

Although INTERCOL? is not a subject of this
paper, we need to introduce a few of its notions in

the following section. In section 3, we present a

careful analysis of the mechanisms  for

inter-compilation type-checking, because
type-checking across compilation units is the most
important facility of interface control. Then we

discuss our methods of interface control and
version control in sections 4 and 5, respectively.
Finally, under the

UNIX time-sharing system is described in section 6.

a pilot implementation - running

2. Terminology

A resource is any entity that can be declared
(e.g.,
variables, constants, procedures, generics, type-

and named in a programming language
definitions, etc.). A subresource is a resource that
is part of another resource (e.q., a field of a record,
an operation of an abslract datla type, etc.). The
type of a resource deternines the ways in which
the
Type-checking verifies that the resource is used in
only .those ways.

inspecting the program, rather than by executing

resource may be used in a program.

Type-checking is done by
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it*
A module consists of program text,
documentation text, test data, and status

information. An exported or provided resource of a
module is a resource that is declared in the program
text of the module and may be used in the program
text of other modules. An internal resource of a

module is declared v the program text of that
module, but may not be used by another module. An
imported or required resource of a module is one
that is not declared in the module, but may be used
in it. The set of a module’s provided resources
together with the set of ils required resources

constitutes the interface of that module.

A system consists of a collection of components,
viz. modules or other syslems, plus documentation
text, test data, and status information. Thus, a
difference between systems and modules is that
there is no program text associated with a system.
A system also has an interface of provided and
required resources. However, since there is no
program text, a system's provided and required
resources are in turn provided and required by its

components.

3. Inter-Compilation Typo-Checking

Type-checking verifies the type-correctness of
programs. We would like to stress that we consider
type-checking across module boundaries to be more
important than type-checking inside a module, for
the following reasons. We assume that a module is
the responsibilily of a single programmer or of a
small, closely

implement a

order to
resources,

interacting team. In

module's provided the
programmers will usually declare some other, more
primitive internal resources. One can assume that

the programmers rarcly make type-errors in using

these resources, since they are dealing with their

own creations. However, programmers working on

different modules cannot interact as closely. In

’Wo do not wish to give a more specific definition of the latter two
torms, in order to keep the discussion indeperdent of a particular
programming language. Clearly, wo have ‘algoli¢’ languages in mind, like
PASCAL, ALPHARD, or ADA,



particular, the implementors of a resource exported

from a module are not identical with the

programmers using them. Experience shows that
misunderstandings at module interfaces are the rule
We believe that
type-checking can delecl many of these errors.
The module
boundaries has been confirmed with the use of the

MESA-systemS' 6,

rather than the exception.

value of type-checking across

There is a small number of language systems
which provide for inter-compilation type-checking,
most notably SIMULAS77, PL1SS8, and MESAS. The
following
techniques
scheme is

paragraphs the various
that they

based on

classify
The classification
that the
strategy in which compilation (i.e., code generation)

use.
the observation

is performed can be decoupled from the strategy in

which interfaces are checked. The compilation

strategies we wish to distinguish are as follows:

1. Monolithic compilation, i.e., no
separate compilation;

2. Incremental compilation, i.e.,
compilation units  are  processed
according to some partial ordering,
such as hottom-up;

3. Independent compilation, i.e.,

compilation units may be processed in
any order.

Inter-compilation type-checking can be categorized
using the same attributes:

1. Monolithic type-checking, i.e., no
type-checking across compilations;

2. Incremental type-checking, i.e., the
interfaces of the compilation units are
checked according to some partial
ordering, such as bottom-up;

3. Independent type-checking, i.e. the
interfaces of compilation units may be
checked in any order.

Combining the two categorizations results in an
We
have entered a few example systems into the grid.

array of nine possibiities, as shown in Fig. 1.

Xy

We shall discuss each column of the array in the
following paragraphs.

monolithic {incremental lindependent
monolithic | PASCAL
27 SRR S )
FORTRAN |} SIMULA67 ;
incremental | PL/I + ALGOL6SC !
libraries : :
b e m -~ 1
I3 N )
FORTRAN | PLISS || CLU- !
independent] PL/I tYPe“. ¢ library
checking ' MESA '
linkers || '

Figure 1: Inter-compilation type-checking

3.1. Monolithic Type-Checking

Any language system that does not provide for
fits [1.1]
(monolithic compilation, monolithic type-checking).

separate compilation into square
The square [3,1] is the most densely populated
one, language systems today offer
separ'ate compilation, but pass the responsibility for
inter-compilation the

programmers. These systems do not offer any more

since most

type-checking on to

help even if one restricts the development to an
incremental, bottom-up order (square [2,1]), in
which the necessary information for type-checking
For example, ALGOL-libraries

are compiled before they are used, so that the

is always available.

types of the library entrjes are known. However, it
is still the responsibility of the programmer to make
sure he is using the library routines correctly.

3.2. Incremental Type-Checking

Let us first look at square [2,2], incremental
compilation and type-checking, which is applied in



SIMULA677 and Algol6sc 0.
module M that, for

Compilation of a
instance, defines a class C,
results in object code and symbol table information.
The symbol table information is stored in an
auxiliary file and can be used by the compiler at a
later time. When a module N is compiled which
contains an external declaration of class C, the
type specifications describing class C are read into
the symbol table for module N so that full interface
checking can bhe performed (see Fig. 2). Thus, a
bottom-up compilation order must be observed. The
Algol68C system has a similar arrangement, except
that it is

processing-order: The separately compilable units

best used with a top-down
are nested blocks, which can be inserted at a later
time. This is transmitting

symbol-table information from outer blocks to inner

implemented by

blocks through auxiliary Tiles.

odule
declare
Class C

Y
Type-Specs
class C

Médule M)
code

odule N
external

ass

Voau
code

A
Type-Specs

Figure 2: Incremental compilation / type-checking

Refining the idea of the =xtracted symbol table
information leads
compilation in any order,

type-checking in an

to a technique that allows
but performs the
incremental fashion
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(square[3,2]). It incremental

compilation order in that a resource may be used

differs from the
before its type is in the auxiliary file. [n that case
the type of that resource is derived from the usage
site (if possible) and tentalively enlered into the
it will

type (see Fig. 3).

later be matched with the
The PLISS-system®,
based on PL/i, uses that approach. A disadvantage

auxiliary file.
actual

is that the type-checking of a module's interface
may be delayed until long after the time the module
is compiled.

that allow for

perform

There
independent

are some systems

compilation, but the

type-checking across compilation units at link-time.
This is an extreme case of incremental checking. It

has the serious disadvantage of delaying the

checking until integration time, long after the

programmer is done with implementation.

Moduie N
use
Class C

derived
type of C

Module N
code v
Type-Specs
class C
(Modlle M|
declare
Class C
ctual
type of C

Module ™M
code

Figure 3: Independent compilation, increm. check



3.3. Independent Type-Checking

Let us consider square [3,3], fully independent
compilation and type-checking., The characteristic
of independent type-checking is that the interfaces
between the modules

are explicit. They are

designed in the form of type-specifications and
entered into a data base before any program code
is written. That may seem like an undue restriction
but in fact it

programmers can start wriling separate modules: If

at TJirst sight, is the only way

there were no precise specifications of the
not
With
machine-readable form, it

interfaces, they could program with each

other’s resources. the interfaces in
is a straight-forward
matter for the compiler to pick up the necessary
information before checking a module. in the
MESA-systemg for instance, the data-base of type-
definiticns consists of a set of definitions files.
Each of these files contains the resources provided
module in
The

described in terms of definitions files: One for the

by a particular
specifications.

the form of {t{ype-
interface of a module is
and zero or more for the

provided resources,

required resources. The compiler simply reads
these files before processing the module (see Fig.

4a).

So far we have only discussed cases where

interface-checking occurs at the same time as
compilation, or laler. Square [2,3] represents a

case where type-checking is performed before
actual code-generation. As an example where this
is desirable, consider inline procedures. An inline
procedure is a restricted form of a macro in that its
body
semantics as a reqgular procedure. Suppose that an
inline

modulas.

is expanded in-line, yet it has the same

procedure is called in several different
If the of that
available (for example in a definitions file), we can

header procedure is
type-check all calls to it, but we cannot generate
code since its body may not be programmed yet.
This compilation be solved with a

problem can

two-phase translation. The first phase generates
intermediate code which contains pseudo-calis to
inline procedures. This phase also checks the

interface and can be executed fully independently

33

Type-Specs Module N

class C

use
Class C

code

Module M)
declare
Class C

MGdule ™
code

Figure 4: Independent compilation/type-checking

(like the MESA-scheme).
generates the final code. However, this phase has

The second phase

to be delayed until the bodies of the needed inline
procedures are available. This we can implement
with an incremental scheme similar to the SIMULAG7
system. We shall return to this problem in a more
general framework when we discuss version control
(section 5.4).

We have not considered the squares [1,2] and
[1.8]. They are of litlle interest since they deal
with monolithic compilation.

4. Interface Control

In practice, it turns out that it is difficult to
establish and maintain consistent interfaces among
the various components of a large, evolving system.
However, such a consistency is absolutely crucial
for the correct functioning of a system. Interface
control is designed to guarantee this consistency.
It helps to establish correct interconnections
between componenls by checking their interfaces

in an INTERCOL description of the overall system



structure.
description to ensure that the various programmed

It also extracis information from that

modules adhere to their interface specifications:
First, module
resources

each must the

that are expected from it. Second, the

really provide

types of the

specified.

provided resources must be as
Third, no module may use more required
resources than specified.

Fourth, all required

resources must be used correclly with respect to
their types. The checking of these four conditions
is implemented with inter-module type-checking,
discussed in the following subsection. We also
describe how the scope for interface errors can be
limited with information hiding techniques, and how
the problem of interfacing system parts written in
different languages can be handled in a type-safe
way.
the

components change.

Finally, we discuss the actions necessary if

interconnections between the system

4.1, Inter-Module Type-Checking

In the previous 'section we have characterized
the various separate compilatlion and type-checking
mechanisms.

Now we specify and motivate our

choices.

Ciearly, for individual modules we would like to
have completely independent mechanisms, so that
the various programmer teams need not wait for
each other. The
mechanism requires that we specify the module

independent type-checking
interfaces in some way. We noted already that this
is not a severe restriction -- in fact, it is the only
way in which different teams can use each other's
programs. As for the compilation mechanism, we do
not want to exclude inline procedures and generics,
which means that we have to use some mixture of
and

independent incremental

mechanisms.

compilation

To speed up compilations, we may also want to
translate pieces of modules separately, for example

single routines. However, we cannot use an

independent type-checking mechanism  here,
because the interfaces between module pieces are
implicit -- in fact, it would be quite a nuisance to

specify the evolving interfaces between module
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incremental
the
As for the compilation

parts. Therefore, we chose an

type-checking mechanism which derives
interfaces automalically.
mechanism, we chose the incremental one as well,
because the

independent one would require a

facility to derive type-specifications from the

usage of resources, which is in general impossible.

We have marked our choices of mechanisms in
Fig. 1 by enclosing the corresponding squares with
a dashed line. In the remainder of this subsectlion,
we describe our implementation of the independent
INTERCOL.
(The incremental/incremental mechanism for module

inter-module type-checking based on
parts can be implemented in a way similar to the
SIMULAG7-scheme and will hot be discussed here.)

Consider the following INTERCOL-program

describing a fragment of an (unrealistic) parser.

system PARSER

module IO
provide
function SrcChar : char;
const lineln;
type Line = record { lineNum : int;

lincBuf : array{l.lineLn] of char; %
procedure ListLine(outlinc : TlLine);
end 10

modulo LEXAN
provide
type Lexeme = (Keyword, Operator, ldentifier);
function NextlLex : Lexeme;
require \
SrcChar, lineln, Line.{lineNurm,lineBut}, ListLine
end LEXAN

end PARSER

The system PARSER consists of the module 10
(for input/output) and the module LEXAN (for lexical
analysis). 10 provides

the following resources:

function SrcChar for reading source characters,
procedure ListlLine for printing a line on the listing
medium, a conslant indicaling the length of a listing
line, and the line.

Module LEXAN implements Nextlex, a function that

internal representation of a
delivers the next lexeme. It makes repeated calls
to SrcChar. LEXAN is also responsible for generating
the listing; hence it needs the definitions of Line

and the procedure LislLine. Note that we have



the
require-clause of LEXAN. (In general, types need to

omitted the type-specificalions in

be specified only once, usually in the module where
they originate.) We have also omitted the origin of
the required resources; they are contained
implicitly in the structure. This enables us to reuse
LEXAN in

resources may come from different places.

other systems, where its required

Note that the
processed before we can start compiling either 10
LEXAN. INTERCOL
results in a set of environments,

above piece of text must be

or Compiling an description
one for each
module. Such an environment consists of a pair of
preludes, one containing the required, and one the
provided resources.

obtain the following preludes:

For the above example, we

I0.require:
<empty>

10.provide:
forward function SrcChar : char;
forward const lincln;
type Line = record { LineNum : int;
lineBuf : array[l.lineLn] of char; %
forward proceduro ListLinc(outline : TLine);

LEXAN.require:
extern function SrcChar :
extern const lineln;
type Line = record { lineNum : int;
lineBuf : array[l.lineLn] of char; };
extern procedure ListLinc(outline : TLine)

char;

LEXAN.provide:
type Lexeme = (Keyword, Operator, Identifier);
forward function NextlLex : Lexeme;

Now let us examine how LEXAN is compiled. Its
program text contains a compiler directive that
indicates its identity:

::module LEXAN::

As soon as the compiler encounters that directive,
it will corresponding preludes.
LEXAN.require contains the types of the external
resources, and their use can nhow be type-checked.
LEXAN.provide specifies the types of the provided
This
has two effects: First, if the prcgrammer forgets to

read in the

resources in the form of forward declarations.

implement one of these resources, the compiler will
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complain about an undefined forward declaration.
Second, if the programmer makes a type-error in
the implementation of one of the resources, this will
be noted as an

inconsistency wilth a forward

declaration. This makes sure that a module really
provides the resources that are expected from it
and that their types are correct.* Note further that
the type-definition for Line has been transported

from 10 to LEXAN.

If the compilalion of a module succeeds, the
programmer has the guarantee that ils interface will
fit into the rest of the system. This is verified at
the same time as the internal type-consistency of
the moduie, and completely independently of the

status of other modules.

4.2, Information Hiding

INTERCOL makes it possible to apply the principle
of minimal privilege at module interfaces: No module
must be given more resources or access rights than

it actually needs. This is achieved with
heterogeneous interfaces, name control and
write-protection.

Heterogencous Interfaces: Different modules

may access different subsets of a common module's
resources.

module A provide a, b, ¢
module Bl require a, b

module B2 require b, ¢

No matter how large the system is in which these
three modules are embedded, they will hot be able
to use any other rescurces besides the ones
specified in their require-clause. This compares
favorably with the usual programming environments,
where every module has unrestricted access to the
complete name space of the system.

Name Control: Suppose moduie A provides
resource x wilh subresources x1 and x2. Each

module can be given access to exactly those

.The keywords forward and oxtorn are not ossontial; thoir offects
can be achieved with compiler directives as well,



subresources that it needs:

module A provide type x = record { x1 : int; x2 : real; };

module B require x.x2

The require-prelude of B will indicate that only x.x2
can be accessed. This can be accomplished with a
record definilion containing an opaque field, i.e., one
that
referenced:

cannot be named and therefore not

type x = racord { int; x2 : real; }

Write Protection: Some programming languages
specify write proteclion as parl of the declaration
of data-resources (variables, parameters, record
fields, etc.). This is 10 protect global variables from
accidental still
parts.

modifications, while allowing

With
INTERCOL, this can be controlled explicitly at the
(The

variables and record fields are read-only.)

read-access in other program

interfaces. default is that all imported

il :int; -- read-write
i2 1 int; -- read-only

module A provide variable
readonly

module Bl require i1, i2 -- rcad-only

module B2 require #il, #i2 -- # means read-write

B1 has read-only access to resources i1 and i2.
Module B2 has read/wrile access to i1, but the
specified write-access to i2 is in error, since that
variable is exported as read-only. Finally, A has
read-write access to both i1 and i2, since they
originate in that module and presumably need to be
modified there.

All three of the above facilities have been

proposed as programming language features before.
Although some of the proposed mechanisms are
adequate, we think that it is
burden the languages for programming—in-the-smaila

inappropriate to

with them. Information hiding local to a module does
not make sense - why should a programmer hide
hand,
interconnection

something from himself? On the other
information hiding at ihe module
level can be used to improve system flexibility”. it
follows that global information hiding principles

should not be implemented at the detailed level of
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program code. Instead
they

interconnection leve!

they should be specified

where are needed: at  the module
{Neveitheless, features like
opaque record fields and write-protection must be
supported by the lanquages themselves so that a
compiler enforce the

can restrictions on the

required resources.)

4.3. Muitiple Languages

Suppose modules can be implemented in a
number of different programming languages. How

does interface control work in those cases?

INTERCOL is
languages used. Even the sublanguage for type-
specification in INTERCOL itself can be replaced.

independent of the programming

(We have chosen a modified PASCAL in the previous
Let wus that
customization of for

examples.) assume use a
PASCAL type-
specifications, and PASCAL, ALGOL, and assembler
as the programming languages. For modules written
in PASCAL, we generate preludes with extern- and

forward-declarations as before. For modules written

we
the

in ALGOL, we need to translate these preludes into
equivalent ALGOL-declarations. Thus, we need a
source-to-source translalor or "decoder", that
maps PASCAL-declarations to ALGOL. Of course, this
mapping must be restricted to compatible language

constructs (for example, primitive data types,
procedures, functions, and value parameters). For
assembler, we could develop a decoder that

generates special
calling sequences, record nffsets, etc.
our PASCAL
assembly language. In that case, there is no need

macros defining the correct
But now
suppose compiler translates to
to write a special decoder at all -~ we can use the
existing compiler itself.

low-leve! as
assembler is used for some modules, there is little

Of course, if a language as

interface consistency that INTERCOL can
guarantee. In particular, if there are no types in a
language, no automatic type-checking can be

expected. On the other hand, closely related
languages, or languages belonging to a family can

be interfaced with a high degree of type safety.



4.4, Propagation of Interface Changes

An
management of interface changes. With our system,

important problem in large projects is the

these can be processed aulomatically, because all
the needed informaticn is coatained in the INTERCOL
description. Changes of imerfaces are recorded by
This
will usually destroy the glohal interface consistency

modifying that description and recompiling it.
established before. The minimum action to be taken
inconsistent
modules cannot be used until they are updated. For

in this case is to make sure that
minor modifications (like changes to constants or
lay-out of records), recompilations can be started.

Before the

going through with a modification,
designher could also be informed about how much will
have to be recompiled or reprogrammed, so that he
can estimate the impact of a proposed change.
More: still,

documented precise way and automatically

important the changes can be

in a
sent to the programmers of the affected modules
(by putting messages into mailboxes, for instance).

After an interface change, we first have to

determine the affected modules. Given the

preludes described in a previous section, this can
be
simple comparison of the old and new preludes

implemented in a straight-forward manner: A

reveals exactly which module-interfaces were
changed. Of course, the comparison can be refined
to take into account whether a required resource
was actually used in the implementation; changes
make no difference for required resources that
were not used. Once the inconsistent modules are
isolated, the version control system can deicle
ohsolete, precompiled start
gencrate change notices for

modules that need to be revised.

versions, some

recompilations, and
In this fashion,
simple change-requests as well as major design

revisions can be managed efficiently and reliably.

§. Version Control

System maintenance in

projects

large  programming

is complicated by the proliferation of
different versions and configurations.

system is

Even if a

planned to be available in a single
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version, we nevertheless end up dealing with it in a
number of versions internally: There is last week's
version, a stable version, an experimental version, a

testing and debugging version, programnser A's

temporary version, e¢lc. Other versions arise due to

tailoring to individual - user groups, functional

enhancements, changes to the hardware and

operating systems, reorganization, and last, but not
12 The

nuinerous  versions creates

least, error repair management and

maintenance of the
serious problems. Version control is designed to
relieve the progranun:r from the tedious and error-
prone task of organi7in\j such a vast collection of
More version control

components. specifically,

automates the following:

~V/ersion Selection, With a st of rules

and the INTITRCOL dascription, version
control determines which versions of
which components should be combined
to create a particular version of a
particular confiquration.

-Construction. Version control embodies

detailed knowledge about the various
construction processors that need to
be invoked to generate a runable
program.

-Space/Time Tradeoff. Version control
maintains a data base of source text
and the derived versions like object
modules, parliaily linked subsystems,

elec. It lries lo oplimize the space/
time tradeoflf of stloring derived
versions or regenerating them on
demand.

-Reconstruction. I a hew source
version enters the data base or if
interfaces change, version control
determines which pre-constructed
subsystems are obsoletle.  They will

be reconstructed on demand.

in order to describe multiple versions and
INTERCOL to

accommodate these notions. ach module or system

configurations, we lave expanded

in an INTCRCOL description is nhow viewed as a
family, whose members are the various versions.
The description can then be exploited to automate



the above functions. (For a different approach, the
interested reader is referred to Coo;>ri(ier13.)

5.1. Module Familics

We distinguish three orthogonal kinds of members
of a module family.

1. Implementations. lmplementations of a
module family are the actual source
prograimns. They the same
interface and abstracl specificalions,
butl may be implemented differently, in
different languages, or tailored to
different environmoents, operating
systems, or usar groups, For example,
a program ‘that runs  under two
different operating systems may have
two different versions of the module
that provides the idealized operating
system environment.

share

2. Rovisions. Fach implementation exists
as a sequence of revisions that
succeed each other in the
development history. Each revision is
a modification of the previous one, For
example, fixing a bug in the latest
revision of an implementation
generates a new one. All revisions of
an implementation are linearly ordered
by their creation time. Although the
number of revisions can be quite
large, the idea is that normally one
deals only with the top few, for
example the experimental, the stable,
and the backup revisions.

Derived versions
automatically from
revisions of implementations.  For
example, each revision of an
implementation wrilten in  portable
Bliss can be compiled into a program
that runs on a PDP-11, a PDP-10, or a
VAX (given that. po machine-
dependent features of [Bliss-16,
Bliss-36, or Bliss-32 are used). Other
derived versions can be produced by
a compiler that generates optimized or
non-optimized code, code with or
without run-time checks of array-
bounds, with or without debugging and
instrumentation hoo<s. The versions

3. Derived Versions.
are generaled
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that can be gencrated by different
settings of condilional compilation
switches fall in this class too.

5.2, System Familics

A system family consisls of a series of
compositions. Cach composition is a list of
components which are olher module or system

families. Thus, each composilion represents not only
one, hut a whole set of family members, depending
on how rich the families of its components are. A
specific member of a companent can be selected
by indicatling implementation, revision, and derived
version of a by indicating
composilion and componenls of a system family.

module  family, or
This leads to a recursive description, which can be
simplified considerably with defaults.

Example. and M2 are module
families, M1.1 and M1.2 are implementations of M1,
and M2.1
8.81 = { M1, M2 } is a composition of a system
family S,

Suppose M1t
and M2.2 are implementations of M2. if
then the following

examples represent
three member of S:

S.51(M1.1:79 06 _14:0pt, M2.2:79_04_22:0pt)
S.S1(M1.2, M2.2)
S.S1

The first example indicates explicitly which
implementlations, revisions (by date), and derived
versions (optimized)

suppresses

are  desired. The second

example revisions  and  derived
versions; in this case, the newest revisions are
selected.

exist already,

If precompiled derived versions of these

they will be used regardless of
whether they are optlimized or nol; otherwise, non-
The
third example does not mention implementations at
all; in this case, the default implementations .of M1

and M2 are selectled.

optimized derived versions will he generated.

5.3. A Complete Example

We
primitive parser as
that

and

now present our carlier example of the

a system family with two
members

machines

can execute on two different

under two diffeyent operating



systems.

system PARSER

module 10
provide
function SrcChar : char;
const lincln;
type Line = record { lincNurm : int;
lineBuf : array[l.lineln] of char; };
proceduro ListLine{outline : “Line);

implementation HYDRA.bliss
implementation TOPS.bliss
end 10

module LEXAN
provide
type Lexeme = (Keyword, Operator, Identifier);
function NextlLex : Lexeme;
require
SrcChar, lineln, Line.{lineNum,(lineBuf}, ListLine
end LEXAN

composition CMMP = { LEXAN, IO.HYDRA }:Target.POP11
composition PDP10 = { LEXAN, 10.TOPS } :Target.PDP10
end PARSER

10 has two one for the
HYDRA-operating syslem running on C.mmp, and one
for TOPS10, an opercting system for a DEC-PDP10.

The implementation of LEXAN need not be mentioned

implementations,

since there is only one; let us assume, the default
language is compatible BLISS. By pairing LEXAN with
the TOPS10-implementation of 10, and compiling for
the PDP10 as the target machine, we obtain a
version of PARSER for a PDP10. By pairing LEXAN
with I0.HYDRA and compiling for a PDP11 target, we
can generate a version that runs on C.mmp (a
multiprocessor constructed out of 16 DEC-PDP11s).

5.4, System Generation

The INTERCOL description is used to set up a
data base that stores the various components. The
revisions of an implementation are maintained in a
stack similar to SDC'4 and sccs1S,
versions

Derived
integrated
This poses a classical time/space
One can either consume
machine time by regenerating derived versions on

are constructed and
automatically.

optimization problem.

demand, or one can save that time by storing them
on disk. cannot be
determined statically, because system generation

Unfortunately, the optlimum
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activities fiuctuale. For example, the modifications
to a particular subsystem may (o through cycles of
high and low aclivily. As the subsystem approaches
a stable state, it is appropriate to partially
integrate it and store it for later use. However, if
the subsystem is not needed for a long time, it

wastes space.

As a simple, semi-aulomatic solution we propose
the following: The version contlroller maintains the
latest each module

requested. It

derived version of and
that is the
programmer's responsibility to delete some of these

(sub-)system was

in order to conserve space. The only time that the
version controller deletes derived versions is when
they becowe
changes or new revisions. Re-generation occurs on
demand only.

obsolete because of interface

When a programmer is lesting and debugging a

module, the wversion controller can optimize the

re-integration time for the test system in which the
moadified module is

embedded. The typical work-

pattern is that the programmer repeatedly goes
through a cycle of modification, compilation,
integration, and execution. Assume that the

programmer is working in an experimental area (a
sub-directory for instance) which contains a copy
of the module M he is updating. Suppose that
system X is the testbed for M. Whenever he issues
the command to re-inlegrate X, he indicates that he
wants tolsubstilute the newly moadified M. The first
time he issues that command, the version controller
also generates a partially integrated system X with

only M unbound. In all subsequent integrations of X,

only M has to be linked in. This saves the
re-integration of X f{rom scratch for every
modification of M.

The above is a simple cache scheme which

shaortens the integration time for recently used
subsystems. Combined with time-outs for deletions
from the cache, it should take care of most of the
space-management for program development and

maintenance.

In the previous sections we discussed how the
various family members are selected. System



generation is performed with the compile/

integration scheme. There may be several

interleaved phases of compilation and integration.
This INTERCOL describes
only logical interfaces. A logical interface contains

is due to the fact that

enough information 1o perform the first compilation
phase, namely syntaclic and semantic checking and
the generation of intermediale code. However,
there is not enough inforimation to generate final
code because physical properties of the interiace
elements are missing. Examples are values of
constants, array bounds, record sizes, field offsets,

bodies of inline procedures, and generic definitions.

One could decide to make the logical and

physical interface identical and include them fully in
interface specilications (lhis approach was
the MESA-system).
undesirable because the designer of the overall

the
taken in However, this is
system structure may be unable to provide enough
detail to do the physical binding. Furthermore, this
would severely restrict the ways different versions
can be constructed. For example, if the bodies of
inline procedures were prescribed in the interfaces,
then all revisions of ali implementations of a module
family would have to funclion wilh the same inline

body.

A more complicateéd compilation/integration

scheme, which avoids these problems, works as

follows: The first compilation phase performs
complete type-checking of « module and transiates
it into intermediate code in which the physical
interfaces of required resources are still unbound.
This phase also extracts the physical interfaces of
provided resources and stores them in the data
Next,

interfaces of

base. the phase collects the
physical

resources, once for each configuration in which the

integration

the module's required

module is used. Note that the origin of the required
resources is needed to determine which physical
interfaces to use. This is derived from the
interconnections specified in the INTERCOL program.
Finally, the last phase uses the physical interfaces
to generate machine code, again once for each

configuration.

Clearly, there is substantial bookkeeping involved
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in this task.
totally hopeless to perform that task by hand; only

In any realistic software project, it is

machines can handle it efficiently and reliably.

6. Status (Juno 1979)

We have implemented a demonstration system to
test and refine our ideas. The system runs under
UNIX on a PDP11/40
interface control

and currently implements
Its
main components are compilers for an early version
of INTERCOL programining languages
c?6 ana 7¢t?. 1Cis a strongly typed variant of C,
supporting

structures

as described in section 4.

and for lhe

opaque  and partially opaque data

as well as write-protection for data.

Write-protection is safe in the sense that it is
impossible to gain wrile-access to write-protected
data (For

example, passing parameters, creating or returning

except through address arithmetic.

pointers, dereferencing, accessing records and
arrays, and even type-breaching are all checked
for potential protection violations.) C and TC differ
enough to show the feasibility of interfacing closely
related languages. We chose TC as the type-
specification sublanguage for INTERCOL. Of course,
strong type-checking and write-protection can only
in TC.

simplification, we do not make a dislinction between

be guaranteed for modules written For

logical and physical interfaces at the moment.

Implementation of, and experimentation with, the
INTERCOL,
especially with respect to the representation of
system families. Reimplementation including version

earlier version qreatly improved

control is planned.

7. Conclusions

software
development and maintenance environment that
guarantees the structural
programmed system
interconnections

We have described an integrated

consistency of a
with respect to

and version integration.

Summarizing, its facilities are as follows:

Interface Control guarantees the consistency of
the interfaces between the system components. It

ensures global type-correctness by performing



inter-module type-checking. it implements
information hiding with detailed name control and
write-protection. It detects the inconsistencies
caused by interface changes and takes appropriate

action. Muitiple languages can be accommodated.

Version Control performs automatic system

generation in a multi-version/muiti-confiquration

system. It ensures structural consistency by

selecting versions correctly., [t performs flexible
version integration by handling logical and physical
interfaces. It manages a data base of numerous
components and oplimizes the space/time tradeoff
of storing/regenerating subsystems. It responds to
changes by inconsistent and

detecting deleting

obsolete versions.
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