
Poster

ProNat: An Agent-based System Design for

Programming in Spoken Natural Language

Sebastian Weigelt and Walter F. Tichy

Karlsruhe Institute of Technology (KIT)

Email: sebastian.weigelt@kit.edu, tichy@kit.edu

Abstract—The emergence of natural language interfaces has
led to first attempts of programming in natural language. We
present ProNat, a tool for script-like programming in spoken
natural language (SNL). Its agent-based architecture unifies deep
natural language understanding (NLU) with modular software
design. ProNat focuses on the extraction of processing flows and
control structures from spoken utterances. For evaluation we
have begun to build a speech corpus. First experiments are
conducted in the domain of domestic robotics, but ProNat’s
architecture makes domain acquisition easy. Test results with
spoken utterances in ProNat seem promising, but much work
has to be done to achieve deep NLU.

I. INTRODUCTION

User interfaces have been growing in complexity for

decades. While the command line was sufficient in the sev-

enties, graphical user interfaces appeared in the eighties, web

interfaces in the nineties, and touch screen interfaces in the

last decade. The next generation of interfaces will handle

unrestricted text and speech as input. Examples where talking

to computers is reality today are navigation devices, Apple’s

Siri [1], Google’s Voice Search [2], and several translation

services. Thus, programming in natural language is within

reach. It would enable anyone to program PCs, phones, or

any programmable device. Therefore we propose programming

with spoken natural language (SNL) to ease programming

for layperson, a matter originally raised by Jane Sammet in

1966 [3], but no breakthrough was achieved since then. To

promote programming with natural language we have designed

ProNat. It unifies deep natural language understanding (NLU)

with a novel software design. An agent-based architecture

enables us to create agents for any NLU task, such as co-

reference resolution or named entity recognition (NER), inde-

pendently. Thus, we can use both rule-based and probabilistic

approaches. Furthermore our evaluation-driven development

process allows quick integration and evaluation of agents. In

contrast to existing approaches ProNat aims at interpreting

longer and more complex spoken utterances. The system

design also allows multi-modality (written texts, gestures).

The domain is modeled in an ontology. First experiments

are conducted in the domain of domestic robots, where we

teach new skills to the household robot ARMAR-III [4]. The

ARMAR-III robot has a broad set of basic skills such as

moving around, grabbing things, and so on. New skills are

ARMAR, getting 
orange juice from 
the fridge means: 
Go to the fridge, 
open its door… 

ProNat 

get(orangeJuice, fridge) 

locate(fridge) 

goto(fridge) 

locate(fridgeDoor) 

grasp(fridgeDoor) 

open(fridgeDoor) 

Fig. 1. Spoken user utterance to ARMAR-III state chart

composed of basic skills in combination with control structures

(see figure 1 for an exemplary transformation).

II. RELATED WORK

Since Sammet’s proposal progress has been slow. A first in-

fluential contribution was NLC developed by Ballard and Bier-

mann in 1979 [5]. NLC allowed matrix calculation in written

natural language. Even though its vocabulary was restrict to the

domain and functionality remained limited, NLC showed that

programming in natural language is possible. Other approaches

use fixed domains, but made progress concerning expressive-

ness and functionality [6][7]. Liu and Lieberman claim that

the expressiveness of natural language (English) is sufficient

for programming. Their prototype Metafor creates classes and

method stubs from user stories, but leaves the implementation

to human developers [8]. Even though Metafor produces only

stubs, it indicates that natural language could indeed be used

as a programming language. In prior work we demonstrated

generation of UML diagrams from textual specifications [9]

and script-like programming in written natural language [10].

Intelligent assistants such as Siri, GoogleNow or Cortana can

deal with spoken utterances but answer questions or interpret

single commands [1][2].

III. DESIGN PRINCIPLES

Agent-based: An agent-based design allows continuous

integration of new functionality. Internal processing of an

agent is independent and transparent to other agents and may

be probabilistic or rule-based. Furthermore, agent performance

can be evaluated individually. A shared data-storage serves

as interface between the agents. All other system elements,

such as input processing (automatic speech recognition, ges-

ture recognition) and ontology connection, are integrated as

modules.

Evaluation-driven: An evaluation-driven development im-

plies continuous evaluation of the system or parts of it to



ensure progress. The effectiveness of this approach can be

enhanced by using realistic examples. We therefore started to

collect speech utterances. The utterances that build our speech

corpus comprise complex instructions for a household robot.

With test sets from the corpus we are able to benchmark

continuously. Moreover, we may encounter new challenges,

opportunities and problems by working with realistic exam-

ples.

Knowledge-based: The use of knowledge resources makes

deeper NLU possible, especially regarding disambiguation.

ProNat offers connections to world-knowledge databases

(KDB) such as Cyc [11] and WordNet [12]. The target domain

is modeled as an ontology, which enables the use of domain

knowledge for NLU.

Domain independent NLU: ProNat has the ambition to

make most of the NLU processing domain independent. The

advantage is that new domains can be acquired more easily.

Domain knowledge is only accessed through its well-defined

ontology representation. If the domain changes, only the

content of the ontology changes, while the structure remains

the same. This behavior leaves domain dependent NLU agents

unaffected.

IV. ARCHITECTURE

The architecture of ProNat, as shown in figure 2 is centered

around a graph-based data storage. The graph acts as a) rep-

resentation of the spoken utterance and b) shared data storage

for NLU agents. Results produced by agents are made visible

to other agents by graph transformations. Input recognition is

encapsulated in modules. Thus various off-the-shelf automatic

speech recognizers (ASR) can be integrated easily. Speech

input is processed in a lightweight shallow natural language

processing (NLP) module. It builds an initial graph from part-

of-speech, chunking, and semantic role labeling information.

If the ASR offers alternative transcriptions, multiple graphs are

created and processed simultaneously. The domain ontologies

are connected via a shared interface. Domains specific features

are added through the usage of adapters. Note that only a

new adapter has to be implemented for each acquired domain.

The ontology connection module serves as interface for agents

requesting domain knowledge and also as interface for code

generation.

–

Agent A 
content of 

dialog 

Agent B 
context 

analysis 

Agent C 
timeline 

correction 

Agent D 
control 

structure 

analysis 

Agent E 
corefer-

ence 

analysis 

Graph Framework 
Ontology-

Connection 

A 

B 

C 

Knowledge 
Database 

Interface A 

Text-
Editor 

Gesture-
Recog-
nizer 

Dialog-
Man-
ager 

Alice 

 

ARMAR-III 

openHAB 

 

WordNet 

Cyc 

deep 
NLP 

Gesture-
Inter-
preter 

NLU 

Knowledge 
Database 

Interface B 

Agent F 
disam-

biguation 

ASR 
Automatic 

Speech 
Recognizer 

SNLP 
shallow 

NLP 

Code 

Generation 

Code 

Generation 

Code 

Generation 

Fig. 2. Architecture of ProNat

V. CONCLUSION AND PROSPECT

We propose an agent-based system design for deep NLU. It

offers a combination of probabilistic and rule-based methods.

We concentrate on spoken input in the domain of domestic

robotics, but both input and target domain may be replaced.

The goal is to extract processing flows and control struc-

tures from spoken utterances that can be mapped to pro-

gramming constructs (classes, methods, loops etc.). World

and domain knowledge are integrated for disambiguation.

An evaluation-driven development with realistic benchmarks

ensures progress. First experiments show that the approach

works well if the ASR word error rates are low. Domain

dependent training data is needed for the time being. Although

we have begun to build a speech corpus we must deal with

word errors first. We hope to compensate such flaws through

intensive context analysis and disambiguation with the help of

domain and world knowledge. We can do so since we consider

multi-sentence utterances.

REFERENCES

[1] J. R. Bellegarda, “Spoken language understanding for natural interaction:
The Siri experience,” in Natural Interaction with Robots, Knowbots and

Smartphones, J. Mariani, S. Rosset, M. Garnier-Rizet, and L. Devillers,
Eds. Springer New York, 2014, pp. 3–14.

[2] C. L. Ortiz, “The road to natural conversational speech interfaces,”
Internet Computing, IEEE, vol. 18, no. 2, pp. 74–78, Mar 2014.

[3] J. E. Sammet, “The use of English as a programming language,”
Commun. ACM, vol. 9, no. 3, pp. 228–230, Mar. 1966. [Online].
Available: http://doi.acm.org/10.1145/365230.365274

[4] T. Asfour, K. Regenstein, P. Azad, J. Schroder, A. Bierbaum,
N. Vahrenkamp, and R. Dillmann, “ARMAR-III: An integrated hu-
manoid platform for sensory-motor control,” in Humanoid Robots, 2006

6th IEEE-RAS International Conference on. IEEE, 2006, pp. 169–175.

[5] B. W. Ballard and A. W. Biermann, “Programming in natural language:
NLC as a prototype,” in Proceedings of the 1979 annual conference,
ser. ACM ’79. New York, NY, USA: ACM, 1979, pp. 228–237.

[6] V. Le, S. Gulwani, and Z. Su, “Smartsynth: Synthesizing smartphone
automation scripts from natural language,” in MobSys’13, vol. 2, no. 3,
2013, p. 5.

[7] R. Knöll and M. Mezini, “Pegasus: first steps toward a naturalistic
programming language,” in Companion to the 21st ACM SIGPLAN

symposium on Object-oriented programming systems, languages, and

applications, ser. OOPSLA ’06. New York, NY, USA: ACM, 2006,
pp. 542–559.

[8] H. Liu and H. Lieberman, “Metafor: Visualizing Stories as
Code,” in IUI ’05: Proceedings of the 10th International

Conference on Intelligent User Interfaces. New York,
NY, USA: ACM, 2005, pp. 305–307. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1040830.1040908

[9] M. Landhäußer, S. Körner, and W. Tichy, “From requirements to
uml models and back: how automatic processing of text can support
requirements engineering,” Software Quality Journal, vol. 22, no. 1, pp.
121–149, 2014. [Online]. Available: http://dx.doi.org/10.1007/s11219-
013-9210-6

[10] M. Landhäußer, T. Hey, and W. F. Tichy, “Deriving timelines from texts,”
in Proceedings of the 3rd International Workshop on Realizing Artificial

Intelligence Synergies in Software Engineering, Jun. 2014, pp. 45–51.

[11] Cycorp Inc., ResearchCyc, 31.07.2014. [Online]. Available:
http://www.cyc.com/platform/researchcyc

[12] G. A. Miller, “Wordnet: a lexical database for english,” Commun.

ACM, vol. 38, no. 11, pp. 39–41, Nov. 1995. [Online]. Available:
http://doi.acm.org/10.1145/219717.219748


