Association for Ubiquity, an ACM publication
Computing Machinery
May 2014

Ubiquity Symposium

The Multicore Transformation

Opening Statement

by Walter Tichy

Editor’s Introduction

Chips with multiple processors, called multicore chips, have caused a resurgence of interest in
parallel computing. Multicores are now available in servers, PCs, laptops, embedded systems,
and mobile devices. Because multiprocessors could be mass-produced for the same cost as
uniprocessors, parallel programming is no longer reserved for a small elite of programmers
such as operating system developers, database system designers, and supercomputer users.
Thanks to multicore chips, everyone’s computer is a parallel machine. Parallel computing has
become ubiquitous. In this symposium, seven authors examine what it means for computing to
enter the parallel age.

http://ubiquity.acm.org 1 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
May 2014

Ubiquity Symposium

The Multicore Transformation

Opening Statement

by Walter Tichy

Chips with multiple processors, called multicore chips, have caused a resurgence of interest in
parallel computing. Multicores are now available in servers, PCs, laptops, embedded systems,
and mobile devices. PCs with a single core are hard to find, while top-of-the-line smartphones
are already powered by quadcores and octacores. Parallel computing is not new, but has been
confined to a few areas such as high performance computing, databases, and operating
systems. Until about 2005, the average computer user simply could not afford a parallel
machine, while sequential computers kept getting faster with every chip generation. However,
the latter trend stopped at about the same time that the integration of multiple processors,
caches, and interconnects onto a single chip became feasible. This integration caused costs to
drop so dramatically that truly parallel computers are now available for the price of sequential
ones. Parallelism has entered the mainstream.

As a result, we’re witnessing a revolution-in-the-making: The parallel computing paradigm is
displacing the old, sequential paradigm, relegating it to a special case. As with so many
revolutions, this change has come upon computer users rather stealthily. It began in 1999 with
SUN’s MAJC, the first commercial dual core chip. Now, chips with dozens of full-fledged
processor cores are routine, and graphical processing units (GPUs) have literally thousands of
processors on a chip.

Computer users have barely noticed a dramatic shift is taking place under the hoods of PCs,
phones, and tablet computers. To understand what is going on and what still needs to be done,
it is helpful to first take a look at the past. There is a rich history of research and experience
with parallel computing. While considered esoteric in the past, this work is now coming to the

http://ubiquity.acm.org 2 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
May 2014

forefront. It is being used as the basis of an accelerating development in both parallel
hardware and software.

A Brief History of Parallel Computing

Many people do not realize it, but parallelism has been part of computing from the start. The
Atanasoff-Berry Computer of 1942 already had 30 electronic add-subtract units running in
parallel. However, parallelism did not play a major role in the design of other first generation
digital computers. In 1945, John von Neumann’s report on the EDVAC defined the stored-
program, sequential computer. The von Neumann architecture is sequential at the
programming level, although the arithmetic and logic circuits may exploit some internal
parallelism. In the late 1950s and the 1960s, first steps in parallel operation were taken:
operating systems allowed I/O devices such as disks to run in parallel with an application.
Advanced timesharing operating systems of that era supported multi-programming: Several
applications were loaded in memory, and the CPU switched rapidly between them to give the
appearance of parallel operation. In 1962, Burroughs produced a military computer named
D825, which was probably the first symmetric multiprocessor. It had up to four identical
processors sharing memory. The Burroughs B6500 was a commercial version that followed in
1969. In 1966 Michael Flynn of Stanford University described an architectural taxonomy that
bears his name. He distinguished between SIMD (single instruction stream, multiple data
stream) and MIMD (multiple instruction stream, multiple data stream) computers. An SIMD
machine consists of a single control unit that broadcasts an instruction stream to several
processors. These processors simultaneously execute each instruction on different data. The
MIMD computer, on the other hand, has multiple instruction streams, meaning that each
processor can follow a different program or a different path through the same program. The
Burroughs D825 and the B6500 were MIMD computers; the ILLIAC-IV and the Connection
Machine (see below) were SIMD.

Important concepts for parallel programming were also developed at that time. In 1962, C. A.
Petri at the University of Bonn described Petri Nets, a theoretical model for specifying and
analyzing concurrent systems. In 1965, General Electric, MIT, and Bell Labs started work on the
famous Multics multiprocessor timesharing system. At the Technische Hogeschool Eindhoven
Edsgar Dijkstra organized the THE operating system in 1968 as a set of cooperating sequential
processes and provided semaphores for signaling processes and protecting critical regions. The

http://ubiquity.acm.org 3 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
May 2014

same year, Dijkstra introduced the Dining Philosopher’s problem, which became a standard
example for concurrency. The Burroughs 6500 provided separate stacks for each process,
making all code reentrant (meaning that multiple processors could execute the same code
simultaneously while working on different tasks). Also that year, Duane Adams at Stanford
introduced dataflow in his doctoral dissertation. IBM began working on VECTRAN, an extension
of FORTRAN with array-valued operators. Honeywell delivered the first Multics system with up
to eight processors.

The 1970s brought forth a number of parallel machines and important, fundamental concepts
for programming them. The CRAY-1 was a supercomputer that provided vector operations,
multiple arithmetic units, and pipelining among them. The ILLIAC-IV at University of lllinois was
even faster than the Cray-1, with 64 processors running in SIMD mode, but only one machine
was ever built. At Carnegie-Mellon University, researchers built a full-fledged MIMD computer,
the C.mmp, out of 16 minicomputers connected by a crossbar switch. Jack Dennis and David
Misunas at MIT published the first description of a dataflow computer and followed with the
dataflow language VAL. Leslie Lamport’s paper “Parallel Execution of Do-Loops” laid the
foundations for later work on vectorization and shared-memory parallelization. He also
invented an algorithm, called Lamport timestamps, for ordering events in distributed computer
systems. Carl Hewitt at MIT invented the actors model, which is a theoretical basis for
understanding parallel computation. Tony Hoare and Per Brinch Hansen independently
introduced the concepts of conditional critical regions; later, Hoare defined monitors, a
structured mutual-exclusion mechanism, and Brinch Hansen described remote procedure calls.
Hoare also synthesized the Communicating Sequential Processes (CSP) model, the basis for
several programming languages. The LINPACK benchmark for linear algebra was established
and used to compare 23 different computers, including the CRAY-1.

In the 1980s, parallel computers blossomed. Intel introduced the iPSC in 1985, the same year
that nCUBE offered its new parallel computer. Both were MIMD machines with hypercube
interconnects. The Connection Machine with a then-astounding 65,536 processors
demonstrated that programming a massively parallel SIMD machine in data-parallel mode was
actually fairly easy. The machine came with parallel extensions of Lisp and C, called *Lisp and
C*; FORTRAN extensions came later. Sequent Computer Corporation delivered shared-memory
multiprocessors running Unix with up to 32 processors. In Europe, the Transputer chip was
designed to connect with four neighbors. Up to 1024 Transputers were hooked up in a grid,

http://ubiquity.acm.org 4 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
May 2014

using CSP-based Occam as programming language. Additional parallel machines such as the
MasPar, the KSR, and others came and went.

The 1990s saw the rise of the clusters. Instead of building specialized, parallel computers, the
idea was to connect inexpensive, off-the-shelf PCs on solve large problems on them. In 1994, T.
Sterling and D. Becker at NASA built Beowulf, the first cluster consisting entirely of commodity-
grade hardware. Using Internet, Clusters could span large geographic areas. An example
application (1999) was SETI@home, which used idle cycles on personal computers around the
world. SETI central sent small tasks to hundreds of thousands of PCs and compiled their
responses into analyses of extra terrestrial signals. The same principle was used to factor large
non-prime numbers such as those used in RSA cryptosystems. Portable message passing
libraries PVM and MPI were standardized. The cluster approach turned out to scale so well that
the world’s fastest computers, documented in the TOP 500 list (www.top500.0rg), are all
clusters. In November 2010, the Chinese Tianhe-1A took first place with 186,368 processor
cores, while Oak Ridge’s Jaguar with 224,162 cores placed second. Half a year later, Japan took
the top spot. 2012 belonged to US supercomputers, while a new Chinese cluster, the Tianhe-2
with over three million cores, beat the competition in 2013. The benchmark used in this race is
LINPACK (see above).

In addition to the work on parallel architectures, languages to program them, and compilers to
extract parallelism from program code, there was considerable theoretical research to
understand the limitations of parallelism. In 1969, Richard Karp and Ray Miller published a
famous paper “Parallel Program Schemata” in which they studied a mathematical model of
parallel sequences and examined structural constraints that would result in the entire system
having desirable properties, such as determinacy, in which the system’s output depends only
on input values but not on the internal timing of tasks in the system. In 1971, Steve Cook
created the theory of NP-completeness while trying to understand when parallelism makes
problem solving easier. In 1966, Jack Dennis and Earl Van Horn published “Programming
Semantics for Multiprogrammed Computations” in which they laid out a strategy to deal with
parallelism, determinacy, and protection in multiprocess operating systems. Nearly all their
prescriptions are parts of modern operating system infrastructure. In 1973, Ed Coffman and

http://ubiquity.acm.org 5 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
May 2014

Peter Denning published Operating Systems Theory, in which they demonstrated a theoretical
basis for concurrency control in analyzing and designing large multiprocess systems.

A detailed timeline of parallel computing can be found here.
Enter Multicores

While supercomputer users were preoccupied with the growth of clusters, something else
happened. Transistors had shrunk enough to make it possible to place more than one processor
on a chip. The first of these chips appeared in the late 1990s when Sun Microsystems
announced the MAJC 2500, a single chip that contained two processors. Suddenly a new door
was opened: Parallel computers were not longer huge behemoths in air-conditioned centers,
but could be built into a PC. The lessons learnt with the MAJC, in particular how multiple
threads can hide memory stalls, were the basis for Sun’s UltraSparc T1 with eight processors on
a single chip, which appeared in 2005. Intel followed with a dual core chip in 2006. Presently, all
major chip manufacturers produce multicore chips, and the number of processor cores on
these chips has been climbing steadily. Oracle (which bought Sun) offers a chip with 32
processors. Tilera integrates 64 to 100 cores on a single die. But the record holder (as of early
2014) is NVIDIA’s GTX 780 Ti with 2880 cores. These are SIMD cores without an instruction
counter, so comparison with general-purpose CPUs is perhaps unfair, but because of their
power and efficiency, more and more data-intensive applications are being ported to GPUs.

While the above designs replicate the same processor, Intel is producing heterogeneous chips:
Sandy Bridge of 2011 contains four general-purpose processors and twelve graphics execution
units, doing away with separate graphics boards for all but the most demanding gaming
applications. Haswell, the 2013 successor, has eight general-purpose CPUs and up to 40
graphics execution units. With the extra-slim 3D transistor introduced by Intel in 2011, ever
more processors can be placed on a chip.

It appears multicore has crossed a critical threshold. When it became possible to place several
full-fledged processors, caches, and interconnects on a single chip, a tremendous reduction in
cost ensued: Multiprocessors could be mass-produced for the same cost as uniprocessors.

http://ubiquity.acm.org 6 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
May 2014

Before crossing this threshold, parallel programming was reserved for a small elite of
programmers such as operating system developers, database system designers, and
supercomputer users. Parallel computers were affordable only to large companies or wealthy
scientific institutions. With multicore chips, this situation changed dramatically: everyone’s
computer became a parallel machine. Anyone with a mobile phone may actually carry around a
multiprocessor. Parallel computing has become ubiquitous.

Two other developments are pushing the transition to parallel computing. First, hardware has
reached a thermal limit; it is no longer possible to increase the clock speed of silicon chips
significantly, because the chips would simply get too hot and fail. Thus, if applications require
more performance, waiting for chips with faster clocks is futile. Performance increases now
come from parallelism.

Second, instruction level parallelism has also reached a limit. Instruction level parallelism means
to execute multiple instructions from a sequential sequence at once, provided they have no
data dependencies among them. However, there is a practical limit to how much parallelism
can be extracted from an instruction sequence. It now falls to the programmer to figure out
how to divide up a computation into larger parts that can be executed in parallel.

What Does It All Mean?

Although parallelism is as old as computing, it has remained relatively hidden and the methods
of parallel programming are not yet widely know. What is different now?

Chip makers have moved to multicore chips because they could not speed up clocks and
because instruction level parallelism does not scale. As a result, application programmers can
no longer hide from parallelism. They need to deal with concurrency to improve performance
and reliability. But the hardware architectures, software methods, and languages for parallel
programming are not nearly as mature as their sequential counterparts. Nor is there an
accepted machine model to emulate or program to. Many new dimensions of software design
need to be considered: methods for thread management and synchronization, parallel design
patterns, parallel algorithms, new error classes, testing and verification, performance tuning,
heterogeneous systems, parallel programming languages, and more. But parallelism is already
ubiquitous and here to stay. There is a major shift in computational thinking under way. This

http://ubiquity.acm.org 7 ©2014 Association for Computing Machinery



Association for Ubiquity, an ACM publication
Computing Machinery
May 2014

symposium addresses the major challenges that come with the multicore transformation. In
this symposium, seven authors examine what it means for computing to enter the parallel age.

About the Author

Walter Tichy (walter.tichy@kit.edu) is professor of software engineering at Karlsruhe Institute
of Technology (formerly University of Karlsruhe) and a director of the Forschungszentrum
Informatik, a technology transfer institute. He is both a Distinguished Scientist and a Fellow of
the ACM, and an associate editor of ACM Ubiquity and IEEE Transactions on Software
Engineering. He earned M.S. and Ph.D. degrees from Carnegie Mellon University. He received
the Intel Award for the Advancement of Parallel Computing, the ACM Sigsoft Impact Paper
Award, and the IEEE Most Influential Paper Award, among others.

DOI: 10.1145/2618393

http://ubiquity.acm.org 8 ©2014 Association for Computing Machinery



