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Truck Scheduling on Multicore
Scheduling von Transportern auf Mehrkernrechnern

Victor Pankratius, Walter F. Tichy, Karlsruhe Institute of Technology (KIT)

Summary Transportation businesses reduce costs by op-
timizing the routes of their trucks. However, determining
optimal truck schedules is computationally intensive, run-
ning for hours on sequential computers. This article describes
experience with parallelizing SAP’s Vehicle Scheduling and
Routing Optimizer on shared-memory multicore computers.
Re-engineering this complex application for a 24-core ma-
chine reduced typical computation time on real data from
1.5 hours to 5 minutes. The article discusses successful and
unsuccessful parallelization approaches and concludes with
lessons learnt. ��� Zusammenfassung Speditionsun-
ternehmen reduzieren Kosten, indem sie die Routenpläne

für ihre Fahrzeuge optimieren. Die Ermittlung optimaler
Transportpläne ist jedoch berechnungsintensiv und kann auf
sequenziellen Rechnern mehrere Stunden dauern. Dieser Ar-
tikel beschreibt Erfahrungen mit der Parallelisierung des
“Vehicle Scheduling and Routing Optimizer” der Firma SAP
auf Mehrkernrechnern mit gemeinsamen Speicher. Die Pa-
rallelisierung dieser komplexen Anwendung hat auf einem
Mehrkernrechner mit 24 Kernen die typische Optimierungszeit
für reale Daten von 1,5 Stunden auf 5 Minuten reduziert.
Der Artikel beschreibt erfolgreiche und nicht erfolgrei-
che Parallelisierungsansätze und fasst abschließend wichtige
Erkenntnisse zusammen.

Keywords D.1.3 [Software: Programming Techniques: Concurrent Programming] Parallel programming; D.2.0 [Software: Software
Engineering: General]; multicore, parallelization, transportation problem, logistics ��� Schlagwörter Mehrkernrechner,
Parallelisierung, Transportproblem, Logistik

1 Introduction
Transportation businesses reduce costs by optimizing the
routes of their trucks. However, determining optimal
schedules is computationally intensive, running for hours
on sequential computers. We present the results of a par-
allelization project in which computation time has been
reduced to minutes on shared-memory multicore com-
puters. Multicore computers are attractive because they
cost less than clusters and are easier to operate.

The article describes experience with parallelizing
SAP’s Vehicle Scheduling and Routing Optimizer. The
original optimizer employs an evolutionary algorithm. It
was important to preserve the properties of this algo-
rithm, because a lot of effort had been spent on refining
and tuning it on complex customer data. Moreover,
customers would expect the parallel version to produce
results close to those of the sequential version, only faster.
Thus, developing an entirely new, parallel algorithm was
out of the question; instead, the existing optimizer had
to be re-engineered for parallelism.

The article is based on the M. S. thesis of Markus
Hossner [3] and is organized as follows. Section 2 in-
troduces the optimization problem. Section 3 describes
SAP’s sequential optimizer that served as a starting point.
Section 4 discusses two parallelization strategies that were
considered most promising. Section 5 shows parallel per-
formance results. Section 6 summarizes lessons learnt.
Section 7 contrasts this project with other multicore case
studies.

2 The Problem
The vehicle scheduling and routing problem is an exten-
sion of the well-known traveling salesman problem [5]:
Given a graph G= (V , E) with a set of vertices V , a set of
edges E and edge weights w(ei) that represent transporta-
tion costs, find a closed, cost-minimal tour in which every
vertex occurs exactly once. The salesman uses this tour
to visit all nodes. In the vehicle routing problem [11],
the single salesman is replaced by a fleet of trucks deliv-
ering orders. Each truck covers a portion of the graph.
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In addition to determining the best routes for the trucks,
a solver must provide an assignment of orders to trucks,
plan stops at warehouses for transshipment, and solve
constraints such as that certain loads can be transported
by certain truck models only.

In our real transportation scenarios, the number of
orders and destinations ranges from tens to thousands.
Hundreds of trucks are typically required for delivery.
There can be hundreds of additional constraints for
a single transport planning scenario. The constraints
complicate the search and its parallelization. Since the
problem is NP-complete, only approximations to the true
optimum can be found.

3 The Sequential Vehicle Scheduling Optimizer
The sequential vehicle scheduling and routing optimizer
is part of the SAP Business Suite. It is written in C++
and consists of about 150 000 lines of code, of which
20 000 lines are relevant for parallelization.

The optimizer uses an evolutionary algorithm to com-
pute a transport plan consisting of vehicle schedules and
routes. Evolutionary algorithms are well matched to cus-
tomer requirements in the trucking business:
1. It is not necessary to find the global optimum; cus-

tomers just need a solution that is “good enough”;
2. orders can be added or removed even if the com-

putation has already started, without rerunning the
optimization from scratch.

The evolutionary algorithm works with candidates each
of which represents a solution to the transport problem,
including information on vehicles, schedules, and routes.
Each candidate’s cost is computed and the best solutions
are mutated to generate a new population of candidates.
This iterative process continues until the cost of a solution
is below a pre-defined threshold or computation time
runs out. The details are beyond the scope of this paper,
so we sketch the key working principles.

The sequential optimizer starts with five candidates,
each of which is generated with a different greedy
algorithm, for example based on tours ordered by earli-
est/latest due date, shortest/longest driving time, or some
user-defined order. Identical candidates are eliminated.

Then the algorithm applies a sequence of random mu-
tations, depth-first search, and iterated local search as
outlined in Fig. 1. Random mutations are used to diver-
sify solutions. Depth-first search explores a particular part
of the search space. Iterated local search perturbs a can-
didate and then generates new neighboring candidates
from it by applying a mutation operator; for example,

Figure 1 Steps applied by the sequential optimizer on candidate solutions.

the 2-opt operator [5] eliminates two randomly chosen
edges and reconnects the new graph “cross-wise”, which
yields a new tour. A similar operator is applied on other
tour data, such as vehicle schedules or loads. In total, the
optimizer uses more than 20 different mutation opera-
tors.

A general problem with this approach is that the op-
timizer might get stuck in a local minimum. This is the
reason why the optimizer employs several candidate sets
and meta-heuristics. The general idea is to switch to can-
didates that may be worse than the best solutions found
so far, but lie far away from current candidates and ini-
tiate search in other subspaces.

4 Parallelization Approaches
In principle, evolutionary algorithms are not difficult to
parallelize. The challenge was to preserve the evolution-
ary strategies of the sequential optimizer. We outline the
implementation constraints prior to parallelization and
present two parallelization approaches that were consid-
ered most promising; we refer to [3] for others. The first
approach splits up the search space into disjoint parts
that are traversed in parallel. The second approach ap-
plies several heuristics simultaneously on the entire search
space.

4.1 Implementation Constraints
The practical context imposed several constraints on the
parallel implementation. For example, it was not pos-
sible to employ existing libraries or compiler extensions
such as Pthreads [4], Threading Building Blocks [10], or
OpenMP [2]. SAP has its own threading library built on
top of Pthreads [4] which uses wrappers and facade pat-
terns. Applications in the SAP business suite are required
to use the proprietary library to make code easier to main-
tain. In addition, parallelizing the existing code required
task parallelism and fine-granular synchronization rather
than loop parallelization as supported by OpenMP.

4.2 Parallel Search Space Traversal
About 80% of the sequential optimizer’s runtime is
spent on candidate generation and evaluation. It seemed
straight-forward to parallelize generation and evaluation
of candidates within a search step. As shown in Fig. 2a,
each thread receives a copy of a candidate, performs mu-
tations to generate neighbors, and computes their cost.
This strategy is intuitive, but unfortunately it does not
increase performance! The problem is due to overhead:
Measurements revealed that creating a copy of the start
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Figure 2 Comparison of parallelization approaches: (a) Parallel search space traversal; (b) Parallel application of heuristics.

candidate takes about 1 ms per thread, while the cost
of mutation and evaluation is about 0.01 ms. So at least
one hundred evaluations would have to be performed
to amortize the cost per candidate. However, the typical
neighborhood explored per thread is too small to amor-
tize the cost of copying.

This experience demonstrates that it is not enough to
reason about a parallelization strategy in general, but that
it is important to estimate overhead and compare it to
computation time.

4.3 Parallel Application of Heuristics
This approach uses different threads to apply different
classes of heuristics in parallel, as shown in Fig. 2b. Each
of the heuristics random mutation, depth-first search, and
iterated local search is executed by one or more threads.
The number of threads executing a particular heuristic is
balanced in such a way that the candidate sets are always
non-empty, avoiding waiting times.

If candidates are processed in parallel, there is a par-
ticular implementation problem that the developer needs
to handle: Sets may contain candidates from different
evolutionary generations at the same time. This wasn’t
a problem in the sequential case, because mutations were
applied serially. However, failing to synchronize popula-
tions in the parallel implementation makes evolutionary
search ineffective.

Our first implementation of parallel heuristics was
inefficient and analyzed fewer candidates than the se-
quential version. Intel’s VTune performance profiling
tools pointed to the source of the problem, which was
synchronization overhead. SAP’s threading library used
global locks that serialized many calls, e. g., for each dy-
namic memory allocation and for each usage of container
data structures such as list, map, and vector.

To tackle the problems, most work went into re-
structuring code to make parallelization more efficient.
Memory allocators were rewritten to allocate from

thread-private memory. Other restructuring was neces-
sary to aggregate and process data privately within threads
and to reduce the size of critical sections. The paralleliza-
tion of the optimizer was successful only after completing
the code restructuring work. The next section outlines the
performance results.

5 Performance Results
We measured the performance of the parallel heuristics
approach (Sect. 4.3), which was the best one. All results
were obtained on a 24 core machine (4x Intel Dunnington
at 2.4 GHz) with 32 GB RAM, running Windows 2003
Server Edition.

Table 1 shows 15 different benchmark scenarios for
vehicle scheduling, out of which 12 are based on real cus-
tomer data. Using 24 threads, Fig. 3 shows the speedups
for each scenario. The bars show the minimum, aver-
age, and maximum speedup from three executions of
each scenario. The average speedup for all scenarios is
17, which is a respectable result, but it shows that it is
difficult to achieve a uniform speedup in all situations.

Performance results vary for each scenario due to the
specific problem size, constraints, and parallelization and
synchronization overhead resulting from the respective
constraints. It is interesting to observe that some runs
achieve superlinear speedups, up to 211 on 24 cores! Su-
perlinear speedups of this sort are due to randomization
effects: One of the search threads may find the best so-
lution right away, so there is no need to continue. In
contrast, the sequential version might exhaustively ex-
plore a subspace until it reaches a search space that
contains the satisfactory solution. This case study pro-
vides a demonstration that these extreme and rare cases
discussed in textbooks [12] do occur in practice.

Scenarios 2, 3, and 4 are not based on real customer
data. Their performance results differ systematically from
the other scenarios. This is excellent evidence that parallel
applications need to be evaluated on real-world data. If
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Table 1 Details outlining the complexity of each transportation scenario.

scenario real orders departure desti- transfer requires requires has problem
customer stations nations stations trailers other time description

resources constraints file size [KB]

1 yes 140 1 75 – – – – 1211

2 no 1101 4 200 – – × × 2024

3 no 1101 4 200 – – – × 2025

4 no 75 4 25 1 – – – 96

5 yes 1019 3 250 – – – × 1175

6 yes 1960 1 142 – – – × 2533

7 yes 50 1 8 – × × – 256

8 yes 804 1 31 – – × – 626

9 yes 662 11 46 – – × – 732

10 yes 90 14 62 – – × × 1839

11 yes 227 2 30 1 – – – 230

12 yes 1176 1 559 – – – × 7709

13 yes 255 5 194 – – – × 24 746

14 yes 255 5 194 – – – × 20 988

15 yes 217 2 160 – – – × 68 016

Figure 3 Speedups for 15 scenarios at 24 threads. Results for minimum, average, and maximum of three runs.

this study had been conducted on the artificial bench-
marks only, the results would not have shown the real
picture. Compared to the artificial scenarios, the average
speedup of almost all real-world scenarios is higher.

Figure 4a and b summarize performance results. Fig-
ure 4a shows that increasing the number of threads leads

Figure 4 (a) Multiple of analyzed candidate solutions for a 10 minutes threshold, averaged over 15 scenarios. (b) Time until a pre-defined cost threshold
is reached.

to an almost linear increase in the number of candi-
date solutions analyzed, reaching a factor of 23.6 at 24
threads. The parallel algorithm was set to a 10 minute
threshold, and all 15 scenarios were executed and aver-
aged. Note that the average speedup is 17 because some
candidates are examined by multiple threads. This result
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is influenced by the time limit and several threads exam-
ining the same candidates by accident. Figure 4b shows
runtime in minutes until a pre-defined cost threshold is
reached, dependent on the number of threads. The chart
shows that more threads shorten the time required, but
the curve levels off and there appears to be more variance
compared to Fig. 4a due to randomization.

6 Lessons Learnt
The lessons from this project are as follows:
• Restructuring the existing code base was enough; it

was not necessary to rewrite everything or to develop
an entirely new algorithm.

• The initial, plausible parallelization approach did not
work. The overhead outweighed the benefit of paral-
lelization.

• Estimating overhead is important in practice. Devel-
opers need to consciously think about the minimum
number of tasks, work package sizes, and execution
times per thread necessary to amortize parallelization
overhead. We recommend measurement and back-of-
the-envelope calculations to estimate the overhead for
a particular parallelization strategy before the strategy
is fully implemented.

• Multithreaded memory allocators are critical for good
parallel performance.

• Tools are indispensable for coping with the complex-
ity of real-world applications. Performance profiling
tools provide insight into what causes performance
problems. In our case, profiling tools helped trace
performance problems to global locks. However, tools
have limitations: Intel’s VTune Performance Analyzer
and Thread Profiler could not handle large memory
footprints in several routing scenarios.

Overall, parallelizing a sequential complex application
worked, but not in the straightforward manner that some
parallel programming textbooks [1; 2] suggest.

7 Other Multicore Case Studies
We conducted other parallelization case studies in
addition to this project. References [6–9] report on
applications in areas such as indexing, compression, bio-
logical data analysis, simulation, and graph computations
that were parallelized for multicore. In particular, refer-
ence [8] discusses parallelization strategies for BZip2, an
open-source compression program, and confirms some
of the observations made in this article. First of all, the
sequential compression strategy had to be preserved to
obtain binary compatibility on compressed files. Sec-
ond, parallelization approaches that were thought to
be obvious and straight-forward did not work. Third,
most work went into restructuring the sequential ver-
sion to enable parallelization. All studies illustrate that
developing parallel algorithms is not a major issue; the
greatest difficulty lies in re-engineering the sequential
codes.

8 Conclusion
This case study demonstrates that it is possible to par-
allelize a complex industrial application without starting
from scratch. The average computation time for SAP’s
parallel transport optimizer was reduced from 1.5 hours
to 5 minutes. This reduction makes it possible to compute
schedules much more often and enables the optimiza-
tion of larger problem instances. From a theoretical
standpoint, a speedup average of 17 on a 24 core ma-
chine is satisfactory. Some scenarios showed dramatic
super-linear speedups due to randomization effects. Even
though extreme speedups are considered rare, this study
shows that they do occur in practice. SAP’s future product
versions will benefit from the insights and the successful
parallelization strategies described in this article.
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