
Semantic Enriching of Natural Language Texts
with Automatic Thematic Role Annotation

Sven J. Körner and Mathias Landhäußer

Karlsruhe Institute of Technology (KIT),
sven.koerner@kit.edu, lama@ipd.uni-karlsruhe.de

WWW home page: http://svn.ipd.uni-karlsruhe.de/trac/mx/

Abstract. This paper proposes an approach which utilizes natural lan-
guage processing (NLP) and ontology knowledge to automatically denote
the implicit semantics of textual requirements. Requirements documents
include the syntax of natural language but not the semantics. Semantics
are usually interpreted by the human user. In earlier work Gelhausen and
Tichy showed that Sale mx automatically creates UML domain models
from (semantically) annotated textual specifications [1]. This manual an-
notation process is very time consuming and can only be carried out by
annotation experts. We automate semantic annotation so that Sale mx
can be completely automated. With our approach, the analyst receives
the domain model of a requirements specification in a very fast and easy
manner. Using these concepts is the first step into farther automation of
requirements engineering and software development.

1 Introduction

Requirements engineering (RE) starts with the elicitation of the stakeholders’
requirements, includes the management of the various user viewpoints and later
leads to requirements analysis. Requirements analysis is often done by building
domain models to visualize the processes. Domain models are used for Model
Driven Architecture (MDA) [2], [1]. The requirements analyst uses these domain
models to verify and rectify the stakeholders’ input. Usually highly trained ana-
lysts build domain models manually. This process is as vital as time consuming
in software development. So far, the analyst has little tool support 1 for his use-
cases. A recent survey [3] shows that many practitioners yearn for improvements.

In 2007, Gelhausen and Tichy [1] showed how UML domain models can be
created automatically from text that is enriched with semantic information. The
models that are created in the Sale mx [4] process are complete and exhaustive,
especially compared to the average quality of a human modeler. Their work shows
that there is a direct connection of natural language and its corresponding UML
model representations. The automatic model creation uses the implicit semantics
of a phrase. The semantics is denoted manually via textual annotations. This

1 Many tools support the later stages of the software development process, e.g. CASE
tools.

2

makes semantic information computer processable. The problem is that semantic
annotation is very time-consuming. The idea is to accelerate RE with automatic
semantic annotation. The enivisioned toolkit enables the average requirements
analyst to create domain models rapidly.

Spec
Annotated
Spec

Auto
Annotator

UML-
Graph

UML/XMI
Model

RECAA

SaleMX:
Automatic Model

Creation

G
ra
ph

(S
A
L E
-G
ra
ph
)

Fig. 1. AutoAnnotator Supports the Automatic Model Creation from Requirements

Our tool AutoAnnotator (see Fig. 1) offers exactly this possibility and
helps to put RE where it needs to be: next to the software development pro-
cesses that have been proven for many years. To decrease the high error rates,
RE needs to be defined more clearly and to be less dependent on the human fac-
tor. Our solution integrates into a larger scope software solution RECAA [4] that
covers requirements engineering from requirements elicitation to implementation
and back. The analyst profits from automatic model creation from natural lan-
guage specifications while documenting his understanding in cooperation with
the stakeholder. RECAA maintains the connection between textual specifica-
tions and their model representation in both directions, and AutoAnnotator
is an important part of this software solution.

The outline of this paper is as follows: Section 2 covers related work and the
idea of automatic model creation. Section 3 describes our processing. Section 4
shows how we use semantic tools like ontologies to determine more complex
structures and to verify the findings from NLP against world knowledge. Sec-
tion 5 wraps up with a summary of our findings and the outlook to future work.

2 Related Work

Natural language is the main type of information in RE [3]. Its automatic pro-
cessing is therefore especially interesting. Natural language was and will remain
the main form of requirements documentation [5]. After elicitation, requirements
are transformed into models that give a more formal representation of the de-
scribed software system. These models are usually not intended for use with the
client but with the software architects and the programming team. The average
client cannot understand these models. As a result, the analyst usually main-
tains two models: one (semi) formal model for the development team, and one
informal description in natural language for the client. These models have to be
kept in sync during requirements evolution.The client signs a contract based on

3

the model he understands. Dawson and Swatman argue in [6], that the mapping
between informal and formal models is ad hoc and often results in divergent
models. This strongly suggests to fill the gap between textual specifications and
its models.

But requirements analysts cannot be replaced by NLP software, as Ryan
argues in [7]. Most NLP tools are based on statistical approaches and have
even greater error margins then human analysts. He highlights that NLP does
not enable a machine to understand text, but it allows for a text’s systematic
transformation.

In 1997, Moreno [8] set the foundation for model extraction. Juzgado [9] et
al. explain that a systematic procedure to dissect and process natural language
information is strongly needed. They hint to the disadvantages of manual tasks
which dominate the RE process until today. They postulate that this procedure
must be independent from the analyst and his individual skills. In 2000, Har-
main [10] developed CM-Builder, a NLP tool which generates an object oriented
model from textual specifications. Additionally, Gildea and Jurafsky [11] showed
in 2002 that statistical models can tag a sentence’s semantics with a precision of
65% and a recall of 61%. Montes et al. describe in [12] a method of generating
an object-oriented conceptual model (like UML class diagrams) from natural
language text. Hasegawa [13] et al. describe a tool that extracts requirements
models (abstract models of the system) from natural language texts. Instead of
using only NLP, they perform text mining tasks on multiple documents to ex-
tract relevant words (nouns, verbs, adjectives etc.), assuming that important and
correct concepts of the domain are contained in multiple distributed documents.
Kof [14] reports that using NLP approaches is indeed feasible and worthwhile
for larger documents (i.e. 80 pages and more). In [15] he shows that NLP is
mature enough to be used in RE.

3 Combining NLP Tools - The Processing Pipeline

In this section, we explain how AutoAnnotator derives semantic informa-
tion from syntactic sentence structures automatically. First we need to describe
how Sale mx [1] extracts UML domain models from natural language text using
annotations.

3.1 How Sale mx Works

Thematic roles [1] can be used to extract domain models from natural language
text. As an example we use the sentences Chillies are very hot vegetables.

Mike Tyson likes green chillies. Last week, he ate five of them.

Using the syntax of Sale
2, we need to tag the elements 3 with thematic roles.

In Sale, elements containing more than one word are connected using a and

2 Semantic Annotation Language for English [1].
3 Elements can be atomic or combined parts of a sentence that represent a semantic

entity and can therefore represent thematic roles.

4

Table 1. Linguistic Structures of Sale (excerpt).

Linguistic Structure Explanation

AG agens An acting person or thing executing an action

PAT patiens Person or thing affected by an action

ACT (+AG +PAT) actus An action, executed by AG on PAT

STAT (+AG +PAT) status A relation between AG and PAT

FIN (+FIC) fingens and fictum The FIN plays the role of/acts like/is a FIC

TEMP (+ACT) tempus A time specification TEMP for an ACT

obsolete elements are omitted using #. Furthermore, we prefix multiplicities with
* and attributes with $. Sale contains 67 thematic roles [4] based on the works
of Fillmore and others [16],[17],[18]. For our example, the roles shown in Tab. 1
are sufficient. Manually annotating the text with Sale results in the following:

1 [Chillies|FIN #are $very $hot vegetables|FIC].

2 [Mike_Tyson|AG likes|STAT $green chillies|PAT].

3 [$Last week|TEMP, he|AG ate|ACT *five #of them|PAT].

4 [@he|EQD @Mike_Tyson|EQK]. [@them|EQD @Chillies|EQK].

5 [@chillies|EQD @Chillies|EQK].

The thematic role fingens (FIN) is used to denote a person or thing that
is playing a role; vice versa, fictum (FIC) is the role played by somebody or
something. The word are is encoded in the fingens/fictum relationship and thus
can be omitted. very and hot are attributes – the former attributing hot, the
latter attributing vegetables.

In the second sentence, the role agens (AG) tells the system that the according
element is the active (not in a grammatical sense!) entity of the phrase. The agens
in our case is Mike Tyson which has been created by concatenating Mike and
Tyson since it is an element consisting of two words. The role actus (ACT) is
used for actions like walk from A to B while status (STAT) is used for general
statements or relations like A owns B. Since like is a general statement, it is
a status. Last but not least, we have chillies which is “the thing affected” by
the status of Mike; therefore it is the patiens (PAT).

TEMP is a time, a date, or a “period”. It modifies the roles it is used with
in conjunction. Here week modifies actus and last is an attribute of week. he
is the agens in the third phrase, performing the action ate. them is the thing
being affected by the action of the agens, therefore it is the patiens. five is a
multiplicity, determining the number of them. of is omitted.

Knowing that he refers to Mike Tyson and them refers to chillies, the
analyst includes the assertions listed in line 4. Sale mx replaces the element
tagged with EQD 4 with a reference to the element tagged with EQK 5. To preserve

4 EQD is an acronym for “equal drop”. The element is marked for replacement.
5 EQK is an acronym for “equal keep”. The element replaces one or more EQD elements.

5

week

last: boolean

Chillies

green: boolean

Mike Tyson

ate (in whomOrWhat: Chillies, in when: week)

whomOrWhat

actor

vegetables

hot:boolean

likes

(a) The UML class diagram generated
with Sale mx.

Document
Sentences Sentence Splitter
Words Word Splitter
POS-Tags POS Tagger
Parse-Tree
Stanford TDs NL Parser

NE-List NER
World Knowledge Ontologies

A
u
t
o
A
n
n
o
t
a
t
o
r

plain text

Sale Document

0
1
2
3

5
6

4

+
+
+

+
+
+
+

+

{

(b) The Processing Pipeline of AutoAn-
notator.

the same case, we replace chillies with Chillies in line 5 6. With this input,
Sale mx generates an UML class diagram as shown in Fig. 2(a).

3.2 Automating Annotation

To achieve a streamlined process and a holistic information extraction, we com-
bine several NLP tools and check the results against “digital common sense”,
i.e. world knowledge from an ontology (see Sect. 4). Our process is outlined in
Fig. 2(b). It starts with the plain text. Every stage of the pipeline adds or verifies
some information.

First, the text 7 is converted into an internal data structure (0). It contains
the plain text aside the additional information gathered during the conversion
into a graph structure.

After loading the text and splitting it into chunks (steps 0, 1, 2), it is pro-
cessed with a part-of-speech (POS) tagger (3), a statistical parser (4), and a
named entity recognizer (5). All tools used are from the Stanford NLP Group [19].
Afterwards, the document contains the following information:

(PENN-like) POS tags as described in [20]:
Chillies/NNS are/VBP very/RB hot/JJ vegetables/NNS ./.

Mike/NNP Tyson/NNP likes/VBZ green/JJ chillies/NNS ./.

Last/JJ week/NN ,/, he/PRP ate/VBD five/CD of/IN them/PRP ./.

Stanford Typed Dependencies (SD) as described in [21]:
nsubj(vegetables-5, Chillies-1), cop(vegetables-5, are-2),

advmod(hot-4, very-3), amod(vegetables-5, hot-4), ...

Named Entities The list of named entities contains only Mike Tyson.

6 Normalization could render assertions like this unnecessary. The model extraction
of Sale mx is not yet capable of using this additional information.

7 The text should comply to some rules: Since the described process is text-only, it
should not contain images or rely on information given in images or illustrations. At
the moment we cannot compute enumerations. They should be replaced beforehand.

6

Using the POS Tags and The Stanford Dependencies one can derive,
that

– Mike and Tyson should be concatenated because they are in the same noun
phrase (NNP), that consists only of them. On top of that, there is a named
entity ’Mike Tyson‘.

– likes is a verb having the subject Mike Tyson and the (direct, non-passive)
object chillies. Since we do not know, if like is an action or a state, we
can only tag it with METHODROLE 8. Mike Tyson will be tagged with agens
and chillies with patiens.

– green modifies chillies, and is not a number; thus it will be marked as
attribute.

Similar deductions can be made for the first and the third sentence:

1 Chillies|FIN #are $very $hot vegetables|FIC.

2 Mike_Tyson|AG likes|METHODROLE $green chillies|PAT.

3 $Last week|TEMPROLE , he|AG ate|METHODROLE *five #of them|PAT.

Comparing the AutoAnnotator output with the manual annotation in
Sect. 3.1, we realize that we need additional information to make the rest of the
annotation decisions (6).

4 Semantic Information Enriching with Ontologies

We use two different knowlegde bases to gain the missing information: Word-
Net [22] and Cyc [23]. These ontologies are built upon concepts (of a domain)
and relationships between these concepts and can be used to answer queries.

First we determine a word’s base form with WordNet. Only containing open-
class words (nouns, verbs, adjectives and adverbs), WordNet has simply four
POS tags. The POS tags we discovered in step (3) restrict the search space
when querying WordNet, as e.g. ate is not only included as verb with the base
form eat but also as noun Ate9. The PENN tags allow us to parametrize the
query. Since we do know, that ate has the PENN tag VBD and therefore is a (past
tense) verb, WordNet does not produce the goddess as a result to our query.

The Cyc ontology is one of the most exhaustive and compelling collections
of structured computable world knowledge. Cyc offers a vast collection of as-
sertions between the ontological representation of many real world objects. Cyc
delivers additional semantics to the problems discovered in Sect. 3. Let’s revisit
the second sentence of our example: We have found that the verb like is some
kind of action or relationship between two entities. When asked about like, Cyc
answers:
Predicate: likesRoleInEventType

isa: FirstOrderCollectionPredicate, TernaryPredicate

8 Our role system allows inheritance. METHODROLE is the (abstract) parent of actus and
status. Using METHODROLE, we (internally) mark the element to be processed later.

9 Ate is recorded as the Greek goddess of criminal rashness and its punishment.

7

Collection: TernaryPredicate

genls: Predicate, TernaryRelation

Cyc shows that like is predicate type of word (a TernaryPredicate to be pre-
cise). The collection of all TernaryPredicates itself has a generalization Predicate.
Predicates are modeled as relations [24] and therefore the thematic role that has
to be assigned is status.

5 Summary

Using sentence grammar structures to determine the correct semantics of a sen-
tence seems feasible with our approach. We use popular NLP tools for the pre-
processing of natural language texts. Even though AutoAnnotator is still
work in progress, we have run a small qualitative case study using the techni-
cal specification of the WHOIS Protocol (IETF RFC 3912). The results suggest
that the proposed approach is indeed capable of deriving the semantic tags of
Sale mx. Still there are some difficulties, which have to be addressed in future
development.

First of all, subphrases are not yet handled correctly leading to confusing
results. Errors of the pipelined NLP tools are not yet addressed adequately. As-
signing a confidence value to each tool could improve results when information
conflicts. On top of these future improvements, we plan to extend AutoAn-
notator with an interactive dialog tool. This allows the analyst to steer the
analysis process. We expect this interactive component to be used to resolve ob-
vious mistakes the algorithms make as part of a feedback loop in the annotation
process. Together with an instant UML diagram building process, the analyst
could identify and correct the derived semantics on the fly.

Eventually, our process improves the annotation process with a speedup
which we are currently evaluating. Only if the analyst is faster and receives
the same quality models than in the manual process, automatic model creation
can help support and improve the software development process.

References

1. Gelhausen, T., Tichy, W.F.: Thematic role based generation of UML models from
real world requirements. In: First IEEE International Conference on Semantic
Computing (ICSC 2007). Volume 0., Irvine, CA, USA, IEEE Computer Society
(September 2007) 282–289

2. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1 (June 2003)
3. Mich, L., Franch, M., Inverardi, P.N.: Market research for requirements analysis

using linguistic tools. Requirements Engineering 9(1) (February 2004) 40–56
4. Körner, S.J., Derre, B., Gelhausen, T., Landhäußer, M.: RECAA – the Require-

ments Engineering Complete Automation Approach [Online].
5. Cheng, B.H.C., Atlee, J.M.: Research directions in requirements engineering. In:

Proc. Future of Software Engineering FOSE ’07. (May 2007) 285–303
6. Dawson, L., Swatman, P.A.: The use of object-oriented models in requirements

engineering: a field study. In: ICIS. (1999) 260–273

8

7. Ryan, K.: The role of natural language in requirements engineering. In: Proceedings
of IEEE International Symposium on Requirements Engineering, IEEE (Jan 1993)
240–242

8. Moreno, A.M., van de Riet, R.: Justification of the equivalence between linguistic
and conceptual patterns for the object model (1997)

9. Juzgado, N.J., Moreno, A.M., López, M.: How to use linguistic instruments for
object-oriented analysis. IEEE Software 17(3) (2000)

10. Harmain, H.M., Gaizauskas, R.J.: CM-Builder: An automated NL-based CASE
tool. In: ASE. (2000) 45–54

11. Gildea, D., Jurafsky, D.: Automatic labeling of semantic roles. Computational
Linguistics 28(3) (September 2002) 245–288

12. Montes, A., Pacheco, H., Estrada, H., Pastor, O.: Conceptual model generation
from requirements model: A natural language processing approach. In Kapetanios,
E., Sugumaran, V., Spiliopoulou, M., eds.: NLDB. Volume 5039 of Lecture Notes
in Computer Science., Springer (2008) 325–326

13. Hasegawa, R., Kitamura, M., Kaiya, H., Saeki, M.: Extracting conceptual graphs
from Japanese documents for software requirements modeling. In Kirchberg, M.,
Link, S., eds.: APCCM. Volume 96 of CRPIT., Australian Computer Society (2009)
87–96

14. Kof, L.: Natural language procesing for requirements engineering: Applicability
to large requirements documents. In Russo, A., Garcez, A., Menzies, T., eds.:
Automated Software Engineering, Proceedings of the Workshops, Linz, Austria
(September 2004) In conjunction with the 19th IEEE Internationl Conference on
Automated Software Engineering.

15. Kof, L.: Natural language processing: Mature enough for requirements documents
analysis? In Montoyo, A., Muñoz, R., Métais, E., eds.: NLDB. Volume 3513 of
Lecture Notes in Computer Science., Springer (June 2005) 91–102

16. Fillmore, C.J.: Toward a modern theory of case. In Reibel, D.A., Schane, S.A.,
eds.: Modern Studies in English. Prentice Hall (1969) 361–375

17. Krifka, M.: Thematische Rollen (June 2005)
18. Rauh, G.: Tiefenkasus, thematische Relationen und Thetarollen. Gunter Narr

Verlag, Tübingen, Germany (1988)
19. Manning, C., Jurafsky, D.: The stanford natural language processing group [On-

line].
20. Santorini, B.: Part-of-speech tagging guidelines for the Penn Treebank Project (3rd

revision). Technical Report MS-CIS-90-47, University of Pennsylvania Department
of Computer and Information Science (1990)

21. de Marneffe, M.C., Manning, C.D.: The Stanford typed dependencies representa-
tion. In: COLING Workshop on Cross-framework and Cross-domain Parser Eval-
uation. (2008) 1–8

22. Miller, G.A.: WordNet: A lexical database for English. Communications of the
ACM 38(1) (1995) 39–41

23. Cycorp Inc.: ResearchCyc. http://research.cyc.com/ [checked 2010-02-15].
24. Körner, S.J., Gelhausen, T.: Improving automatic model creation using ontologies.

In Institute, K.S., ed.: Proceedings of the Twentieth International Conference on
Software Engineering & Knowledge Engineering. (July 2008) 691–696

