
A Language-Based Tuning Mechanism for Task

and Pipeline Parallelism

Frank Otto, Christoph A. Schaefer, Matthias Dempe, and Walter F. Tichy

Karlsruhe Institute of Technology, 76131 Karlsruhe, Germany
{otto,cschaefer,dempe,tichy}@ipd.uka.de

Abstract. Current multicore computers differ in many hardware as-
pects. Tuning parallel applications is indispensable to achieve best per-
formance on a particular hardware platform. Auto-tuners represent a
promising approach to systematically optimize a program’s tuning pa-
rameters, such as the number of threads, the size of data partitions, or
the number of pipeline stages. However, auto-tuners require several tun-
ing runs to find optimal values for all parameters. In addition, a program
optimized for execution on one machine usually has to be re-tuned on
other machines.

Our approach tackles this problem by introducing a language-based
tuning mechanism. The key idea is the inference of essential tuning pa-
rameters from high-level parallel language constructs. Instead of identify-
ing and adjusting tuning parameters manually, we exploit the compiler’s
context knowledge about the program’s parallel structure to configure
the tuning parameters at runtime. Consequently, our approach signifi-
cantly reduces the need for platform-specific tuning runs.

We implemented the approach as an integral part of XJava, a Java lan-
guage extension to express task and pipeline parallelism. Several bench-
mark programs executed on different hardware platforms demonstrate
the effectiveness of our approach. On average, our mechanism sets over
90% of the relevant tuning parameters automatically and achieves 93%
of the optimal performance.

1 Introduction

In the multicore era, performance gains for applications of all kind will come
from parallelism. The prevalent thread model forces programmers to think on
low abstraction levels. As a consequence, writing multithreaded code that offers
satisfying performance is not straight-forward. New programming models have
been proposed for simplifying parallel programming and improving portability.
Interestingly, the high-level constructs can be used for automatic performance
tuning. Libraries, in contrast, do not normally provide semantic information
about parallel programming patterns.

Case studies have shown that parallel applications typically employ different
types of parallelism on different levels of granularity [13]. Performance depends
on various parameters such as the number of threads, the number of pipeline

P.D’Ambra,M.Guarracino, andD.Talia (Eds.):Euro-Par2010,Part II,LNCS6272, pp. 328–340, 2010.
c© Springer-Verlag Berlin Heidelberg 2010

A Language-Based Tuning Mechanism for Task and Pipeline Parallelism 329

stages, or load balancing strategies. Usually, these parameters have to be defined
and set explicitly by the programmer. Finding a good parameter configuration
parameters is far from easy due to large parameter search spaces. Auto-tuners
provide a systematic way to find an optimal parameter configuration. However,
as the best configuration strongly depends on the target platform, a program
normally has to be re-tuned after porting to another machine.

In this paper, we introduce a mechanism to automatically infer and config-
ure five essential tuning parameters from high-level parallel language constructs.
Our approach exploits explicit information about task and pipeline parallelism
and uses tuning heuristics to set appropriate parameter values at runtime. From
the programmer’s perspective, a considerable number of tuning parameters be-
comes invisible. That is, the need for feedback-directed auto-tuning processes on
different target platforms is drastically reduced.

We implemented our approach as part of the previously introduced language
XJava [11,12]. XJava extends Java with language constructs for high-level parallel
programming and allows the direct expression of task and pipeline parallelism.
An XJava program compiles to Java code instrumented with tuning parameters
and context information about its parallel structure. The XJava runtime system
exploits the context information and platform properties to set tuning parameters.

We evaluated our approach for a set of seven benchmark programs. Our ap-
proach sets over 90% of the relevant tuning parameters automatically, achieving
93% of the optimum performance on three different platforms.

2 The XJava Language

XJava extends Java by adding tasks and parallel statements. For a quick overview,
the simplified grammar extension in BNF style is shown in Figure 1. We basically
extend the existing production rules for method declarations (rule 1) and state-
ments (rule 7). New keywords are work and push, new operators are => and |||.
Semantics are described next.

2.1 Language

Tasks. Tasks are conceptually related to filters in stream languages. Basically, a
task is an extension of a method. Unlike methods, a task defines a concurrently
executable activity that expects a stream of input data and produces a stream
of output data. The types of data elements within the input and output stream
are defined by the task’s input and output type. These types can also be void
in order to specify that there is no input or output. For example, the code

public String => String encode(Key key) {
work (String s) { push encrypt(s, key); }

}

declares a public task encode with input and output type String. The work
block defines what to do for each incoming element and can be thought of as a

330 F. Otto et al.

Fig. 1. The grammar extension of XJava

loop. A task body contains either exactly one or no work block (rule 6). A push
statement inside a task body puts an element into the output stream. In the
example, these elements are String objects encrypted by the method encrypt
and the parameter key.

Parallel statements. Tasks are called like methods; parallelism is generated by
combining task calls with operators to compose parallel statements (rule 9). Basi-
cally, these statements can be used both outside and inside a task body; the latter
case introduces nested parallelism. Parallel statements allow for easily expressing
many different types of parallelism, such as linear and non-linear pipelines, mas-
ter/worker configurations, data parallelism, and recursive parallelism.

(1) Combining tasks with the “=>” operator introduces pipeline parallelism. In
addition to the task encrypt above, we assume two more tasks read and write
for reading and writing to a file. Then, the pipeline statement

read(fin) => encode(key) => write(fout);

creates a pipeline that encodes the content of the file fin and writes results to
the file fout.
(2) Combining tasks with the “|||” operator introduces task parallelism. As-
suming a task compress, the concurrent statement

compress(f1) ||| compress(f2);

compresses two files f1 and f2 concurrently.
By default, a task is executed by one thread. Optionally, a task call can be

marked with a “+” operator to make it replicable. A replicable task can be
executed by more than one thread, which is useful to reduce bottleneck effects
in pipelines.

A Language-Based Tuning Mechanism for Task and Pipeline Parallelism 331

For example, the task encode in the pipeline example above might be the
slowest stage. Using the expression encode(key)+ instead of encode(key) can
increase throughput since we allow more threads to execute that critical stage.
The number of replicates is determined at runtime and thus does not need to be
specified by the programmer. If the programmer wants to create a concrete num-
ber of task instances at once, say 4, he can use the expression encode(key):[4].

2.2 Compiler and Runtime System

The XJava compiler transforms XJava to optimized and instrumented Java code,
which is then translated into bytecode. The translated program consists of logical
code units that are passed to the XJava runtime system XJavaRT. XJavaRT
is the place where parallelism happens. It is designed as a library employing
executor threads and built-in scheduling mechanisms.

3 Tuning Challenges

A common reason for poor performance of parallel applications is poor adaption
of parallel code to the underlying hardware platform. With the parallelization of
an application, a large number of performance-relevant tuning parameters arise,
e.g. how many threads are used for a particular calculation, how to set the size
of data partitions, how many stages a pipeline requires, or how to accomplish
load balancing for worker threads.

Manual tuning is tedious, costly, and due to the large number of possible
parameter configurations often hopeless. To automate the optimization pro-
cess, search-based automatic performance tuning (auto-tuning) [23,1,20,22] is
a promising approach. Auto-tuning represents a feedback-directed process con-
sisting of several steps: choice of parameter configuration, program execution,
performance monitoring, and generation of a new configuration based on search
algorithms such as hill climbing or simulated annealing. Experiments with real-
world parallel applications have shown that using appropriate tuning techniques,
a significant performance gain can be achieved on top of “plausible” configura-
tions chosen by the programmer [13,18].

However, as the diversity of application areas for parallelism has grown and
the available parallel platforms differ in many respects (e.g. in number or type of
cores, cache architecture, available memory, or operating system), the number
of targets to optimize for is large. Optimizations made for a certain machine
may cause a slowdown on another machine. Thus, a program optimized for a
particular hardware platform usually has to be re-tuned on other platforms.

For illustration, let’s think of a parallel program with only one tuning parame-
ter t that adjusts the number of concurrent threads. While the best configuration
for t on a 4-core-machine is probably a value close to 4, this configuration might
be suboptimal for a machine with 16 cores. From the auto-tuner’s perspective, t
represents a set of values to choose from. If the tuner knew the purpose of t, it
would be able to configure t directly in relation to the number of cores providing
significantly improved performance.

332 F. Otto et al.

To tackle the problem of optimization portability, recent approaches propose
the use of tuning heuristics to exploit information about purpose and impact of
tuning parameters [17]. This context information helps configuring parameters
implicitly without enumerating and testing their entire value range.

4 Language-Based Tuning Mechanism

We propose an approach that exploits tuning-relevant context information from
XJava’s high-level parallel language constructs (cf. Section 2). Relevant tuning
parameters are automatically inferred and implicitly set by the runtime system
(XJavaRT). Therefore, porting an XJava application to another machine requires
less re-tuning, in several cases no re-tuning at all. Figure 2 illustrates the concept
of our approach (b) in contrast to feedback-directed auto-tuning (a).

Our work focuses on task and pipeline parallelism; both forms of parallelism
are widely used. Task parallelism refers to tasks whose computations are inde-
pendent from each other. Pipeline parallelism refers to tasks with input-output
dependencies, i.e. the output of one task serves as the input of the next task.

Fig. 2. Adapting a parallel program P to different target platforms M1, M2, M3. (a) A
search-based auto-tuner requires the explicit declaration of tuning parameters a, b, c.
The auto-tuner needs to perform several feedback-directed tuning runs on each plat-
form to find the best configuration. (b) In our approach, we use compiler knowledge
to automatically infer relevant tuning parameters and context information about the
program’s parallel structure. The parameters are set by the runtime system XJavaRT,
which uses tuning heuristics that depend on the characteristics of the target platform.

First, we describe essential types of tuning parameters for these forms of
parallelism (Section 4.1). Then, we show how the XJava compiler infers tuning
parameters and context information from code (Sections 4.2 and 4.3). Finally,
we describe heuristics to set the tuning parameters (Section 4.4).

A Language-Based Tuning Mechanism for Task and Pipeline Parallelism 333

4.1 Tuning Parameters

Tuning parameters represent program variables that may influence performance.
In our work, we distinguish between explicit and implicit tuning parameters.
The first have to be specified and configured by the programmer, the latter are
invisible to the programmer and set automatically. In the following we describe
essential types of tuning parameters for task and pipeline parallelism [13,17].
Thread count (TC). The total number of threads executing an application
strongly influences its performance. To underestimate the number will limit
speedup, to overestimate the number might slow down the program due to syn-
chronization overhead and memory consumption.
Load balancing strategy (LB). The load balancing strategy determines how
to distribute workload to execution threads or CPU cores. Load balancing can
be done statically, e.g. in a round-robin style, or dynamically, e.g. in a first-come-
first-serve fashion or combined with work stealing.
Cut-off depth (CO). Parallel applications typically employ parallelism on dif-
ferent levels. Low-level parallelism can have a negative impact on the perfor-
mance, if the synchronization and memory costs are higher than the additional
speedup of concurrent execution. In other words, there is a level CO where
parallelism is not worthwhile and a serial execution of the code is preferable.
Stage replicates (SR). The throughput and speedup achieved by a pipeline
is limited by its slowest stage. If this stage is stateless, it can be replicated in
order to be executed by more than one thread. The parameter SR denotes the
number of replicates.
Stage fusion (SF). From the programmer’s perspective, the conceptual layout
of a pipeline usually consist of n stages s1, ..., sn. However, mapping each stage
si to one thread may not be the best configuration. Instead, fusing some stages
could reduce bottleneck effects. Stage fusion represents functional composition
of stages and is similar to the concept of filter fusion [14].
Data size (DS). Parallel programs often process a large amount of data that
needs to be decomposed into smaller partitions. The data partition size typcially
affects the program’s performance.

The applications considered here expose up to 14 parameters that need to be
tuned (cf. Section 5). Note that one application can contain several parameters
of the same type.

The following sections show how our approach automatically infers and sets
these parameters, except DS. As the most appropriate size of data partitions
depends on the type of application, we leave this issue to the programmer or fur-
ther tuning. The XJava programmer must define separate tasks for decomposing
and merging data.

4.2 Inferring Tuning Parameters from XJava Code

The XJava compiler generates Java code and adds tuning parameters. Task
parallel statements are instrumented with the parameter cut-off depth (CO).

334 F. Otto et al.

Fig. 3. Inferring tuning parameters and context information from XJava code

When compiling a pipeline statement consisting of n stages s1, ..., sn, the stages
s2, ...sn are instrumented with the boolean tuning parameter stage fusion (SF),
indicating whether that stage should be fused with the previous one. In addition,
the parameter stage replicates (SR) is added to each stage declared as replicable.

Figure 3 illustrates the parameter inference for a task parallel statement and
a pipeline. A task parallel statement p() ||| q() is instrumented with the pa-
rameter CO. Depending on its value, that statement executes either concurrently
or sequentially, if the cut-off depth is reached. A pipeline a() => b()+ => c()+
=> d() compiles to a set of four task instances a, b, c and d. Since b and c are
replicable, a tuning parameter SR is added to them. In addition, b, c and d get
a boolean parameter SF defining whether to fuse that stage with the previous
one. The parameters TC and LB for the overall number of threads and the load
balancing strategy affect both task parallel statement and pipelines.

In Section 4.4, we describe the heuristics used to set the parameters.

4.3 Inferring Context Information

Beside inferring tuning parameters, the XJava compiler exploits context informa-
tion about the program’s parallel structure. The compiler makes this knowledge
available at runtime to set tuning parameters appropriately.

The context information of a task call includes several aspects: (1) purpose
of the task (pipeline stage or a part of task-parallel section), (2) input and
output dependences, (3) periodic or non-periodic task, (4) level of parallelism,
and (5) current workload of the task. Aspects 1-3 can be inferred at compile time,
aspects 4 and 5 at runtime. However, XJavaRT has access to all information.
Figure 3 sketches potential context information for tasks.

4.4 Tuning Heuristics

Thread count (TC). XJavaRT provides a global thread pool to control the
total number of threads and to monitor the numbers of running and idle threads
at any time. XJavaRT knows the number n of a machine’s CPU cores and

A Language-Based Tuning Mechanism for Task and Pipeline Parallelism 335

therefore uses the heuristic TC = �n · α� for some α ≥ 1. We use α = 1.5 as a
predefined value.
Load balancing (LB). XJavaRT employs different load balancing strategies
depending on the corresponding context information. For recursive task paral-
lelism, such as divide and conquer algorithms, XJavaRT applies a work stealing
mechanism based on the Java fork/join framework [8]. For pipelines, XJavaRT
prefers stages with higher workloads to execute, thus implementing a dynamic
load balancing strategy.
Cut-off depth (CO). XJavaRT dynamically determines the cut-off depth for
task parallel expressions to decide whether to execute a task parallel statement
concurrently or in sequential order. Since XJavaRT keeps track of the number of
idle executor threads, it applies the heuristic CO = ∞ if idle threads exist, and
CO = l otherwise (where l is the nested level of the task parallel expression).
In other words, tasks are executed sequentially if there are no executor threads
left.
Stage replicates (SR). When a replicable task is called, XJavaRT creates
SR = i replicates of the task, where i denotes the number of idle executor
threads. If there are no idle threads, i.e. all CPU cores are busy, no replicates
will be created. XJavaRT uses a priority queue putting tasks with lower work
load (i.e. few data items waiting at their input port) at the end. This mechanism
does not always achieve optimal results, but seems effective in practice, as our
results show.

Fig. 4. Stage fusion for a pipeline a() => b()+ => c()+ => d(). (a) Stage replication
without fusion introduces overhead for splitting and joining data items. (b) Stage fusion
prior to replication removes some of this overhead.

Stage fusion (SF). In a pipeline consisting of several stages, combining two
or more stages into a single stage can increase performance, as the overhead for
split-join operations is reduced. Therefore, XJava fuses consecutive replicable
tasks within a pipeline expression to create a single replicable task. Figure 4
illustrates this mechanism for a pipeline a() => b()+ => c()+ => d().

5 Experimental Results

We evaluate our approach using a set of seven benchmarks that cover a wide
range of parallel applications, including algorithmic problems such as sorting

336 F. Otto et al.

or matrix multiplication, as well as the real-world applications for raytracing,
video processing and cryptography. The applications use task, data or pipeline
parallelism. We measure two metrics:

Implicit tuning parameters. We count the number of automatically handled
tuning parameters as a metric for simplification of the optimization process.
If more tuning parameters are automated, fewer optimizations have to be per-
formed manually.

Performance. For each application, we compared a sequential version to an
XJava version and measured the speedups heur and best :

– heur: Speedups of the XJava programs using our heuristic-based approach.
These programs did not require any manual adjustments.

– best: Speedups achieved for the best parameter configuration found by an
auto-tuner performing an exhaustive search.

The speedups over the sequential versions were measured on three different par-
allel platforms: (1) an Intel Quadcore Q6600 with 2.40 GHz, 4 GB RAM and
Windows 7 Professional 64 Bit; (2) a Dual Intel Xeon Quadcore E5320 1.86 GHz,
8 GB RAM and Ubuntu Linux 7.10; (3) a Sun Niagara T2 with 8 cores (each
capable of 8 threads), 1.2 GHz, 16 GB RAM and Solaris 10.

5.1 Benchmarked Applications

MSort and QSort implement the recursive mergesort and quicksort algorithms to
sort a randomly generated array with approximately 33.5 million integer values.

Matrix multiplies two matrices based on a master-worker configuration, where
the master divides the final matrix into areas and assigns them to workers. MBrot
computes the mandelbrot set for a given resolution and a maximum number of
1000 iterations. LRay is a lightweight raytracer entirely written in Java. MBrot
and LRay both use the master-worker pattern by letting the master divide the
image into multiple blocks, which are then computed concurrently by workers.

The applications Video and Crypto use pipeline parallelism. Video is used to
combine multiple frames into a slideshow, while performing several filters such
as scaling and sharpening on each of the video-frames. The resulting pipeline
contains eight stages, five of which are data parallel and can be replicated. Crypto
applies multiple encryption algorithms from the javax.crypto package to a 60
MB text file that is split into 5 KB blocks. The pipeline has seven stages; each
stage except those for input and output are replicable.

5.2 Results

Implicit tuning parameters. Depending on the parallelization strategy, the
programs expose different tuning parameters. Figure 5 shows the numbers of
explicit and implicit parameters for each application. Explicit parameters are
declared and set in the program code. Implicit parameters do not appear in the
code, they are automatically inferred by the compiler and set using our approach.

A Language-Based Tuning Mechanism for Task and Pipeline Parallelism 337

Fig. 5. Explicit and implicit tuning parameters for the benchmarked applications. On
average, our approach infers and sets 91% of the parameters automatically.

On average, the number of explicit tuning parameters is reduced by 91%, ranging
from 67% to 100%.

Our mechanism automatically infers and sets all parameters except the data
size (DS). For Matrix , these are the sizes of the parts of the matrix to be com-
puted by a worker; for MBrot and LRay, these are the sizes of the image blocks
calculated concurrently. In Crypto the granularity is determined by the size of
the data blocks that are sent through the pipeline. As Video decomposes the
video data frame by frame, there is no need for an explicit tuning parameter to
control the data size.

Fig. 6. Execution times (milliseconds) of the sequential benchmark programs

Performance. Figure 6 lists the execution times of the sequential benchmark
programs. Figure 7 shows the speedups for the corresponding XJava versions on
the three parallel platforms. Using our approach, the XJava programs achieve
an average speedup of about 3.5 on the Q6600 quadcore, 5.0 on the E5320 dual-
quadcore, and 17.5 on the Niagara T2.

The automatic replication of XJava tasks achieves good utilization of the avail-
able cores in the master-worker and pipeline applications, although the round-
robin distribution of items leads to a suboptimal load balancing in the replicated
stages. The blocks in Crypto are of equal size, leading to an even workload. The
frames in Video have different dimensions, resulting in slightly lower speedups.

To examine the quality of our heuristics, we used a script-based auto-tuner
performing an exhaustive search to find the best parameter configuration. We

338 F. Otto et al.

Fig. 7. Performance of our heuristic-based approach (heur) in comparison to the best
configuration found by a search-based auto-tuner

observed the largest performance difference for QSort and for LRay on the E5320
machine. In general, QSort benefits from further increasing the cutoff threshold,
as more tasks allow better load balancing with workstealing. For LRay, reducing
the number of workers by one increases the speedup from 3.4 to 5 - we attribute
this behavior to poor cache usage or other memory bottlenecks when using too
many threads.

In all other cases, the search-based auto-tuner achieved only minor additional
speedups compared to our language-based tuning mechanism. In total, the mean
error rate of the heuristic-based configurations to the best configurations are 9%
on the E5320 dual-quadcore, 7% on the Niagara T2, and 4% on the Q6600
quadcore. That is, our approach achieves 93% of the optimal performance.

6 Related Work

Auto-tuning has been investigated mainly in the area of numerical software
and high-performance computing. Therefore, many approaches (such as ATLAS
[23], FFTW [5], or FIBER [7]) focus on tuning particular types of algorithms
rather than entire parallel applications. Datta et al. [4] address auto-tuning and
optimization strategies for stencil computations on multicore architectures.

MATE [10] uses a model-based approach to dynamically optimize distributed
master/worker applications. MATE predicts the performance of these programs.
However, optimizing other types of parallel patterns requires the creation of new
analytic models. MATE does not target multicore systems.

A Language-Based Tuning Mechanism for Task and Pipeline Parallelism 339

Atune [17,19] introduces tuning heuristics to improve search-based auto-tuning
of parallel architectures. However, Atune needs a separate configuration language
and an offline auto-tuner.

Stream languages such as StreamIt [21,6] provide explicit syntax for data,
task and pipeline parallelism. Optimizations are done at compile time for a
given machine; dynamic adjustments are typically not addressed.

Libraries such as java.util.concurrent [9] or TBB [16] provide constructs for
high-level parallelism, but do not exploit context information and still require
explicit tuning. Languages such as Chapel [2], Cilk [15] and X10 [3] focus on task
and data parallelism but not on explicit pipelining and do not support tuning
parameter inference.

7 Conclusion

Tuning parallel applications is essential to achieve best performance on a partic-
ular platform. In this paper, we presented a language-based tuning mechanism
for basically any kind of application employing task and pipeline parallelism.
Our approach automatically infers tuning parameters and corresponding con-
text information from high-level parallel language constructs. Using appropriate
heuristics, tuning parameters are set at runtime. We implemented our technique
as part of the XJava compiler and runtime system.

We evaluated our approach for seven benchmark programs covering different
types of parallelism. Our tuning mechanism infers and sets over 90% of the rel-
evant tuning parameters automatically. The average performance achieves 93%
of the actual optimum, drastically reducing the need for further tuning. If fur-
ther search-based tuning is still required, our approach provides a good starting
point.

Future work will address the support of further tuning parameters (such as
data size), the refinement of tuning heuristics, and the integration of a feedback-
driven online auto-tuner.

References

1. Asanovic, K., Bodik, R., Catanzaro, B.C., Gebis, J.J., Husbands, P., Keutzer, K.,
Patterson, D.A., Plishker, W.L., Shalf, J., Williams, S.W., Yelick, K.A.: The Land-
scape of Parallel Computing Research: A View from Berkeley. Technical Report,
University of California, Berkeley (2006)

2. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel Programmability and the
Chapel Language. Int. J. High Perform. Comput. Appl. 21(3) (August 2007)

3. Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K.,
von Praun, C., Sarkar, V.: X10: An Object-Oriented Approach to Non-Uniform
Cluster Computing. In: Proc. OOPSLA 2005. ACM, New York (2005)

4. Datta, K., Murphy, M., Volkov, V., Williams, S., Carter, J., Oliker, L., Patterson,
D., Shalf, J., Yelick, K.: Stencil Computation Optimization and Auto-tuning on
State-of-the-Art Multicore Architectures. In: Proc. Supercomputing Conference
(2008)

340 F. Otto et al.

5. Frigo, M., Johnson, S.G.: FFTW: An Adaptive Software Architecture for the FFT.
In: Proc. ICASSP, vol. 3 (May 1998)

6. Gordon, M.I., Thies, W., Amarasinghe, S.: Exploiting Coarse-grained Task, Data,
and Pipeline Parallelism in Stream Programs. In: Proc. ASPLOS-XII. ACM, New
York (2006)

7. Katagiri, T., Kise, K., Honda, H., Yuba, T.: FIBER: A Generalized Framework for
Auto-tuning Software. In: Proc. International Symposium on HPC (2003)

8. Lea, D.: A Java fork/join Framework. In: Proc. Java Grande 2000. ACM, New
York (2000)

9. Lea, D.: The java.util.concurrent Synchronizer Framework. Sci. Comput. Pro-
gram 58(3) (2005)

10. Morajko, A., Margalef, T., Luque, E.: Design and Implementation of a Dynamic
Tuning Environment. Parallel and Distributed Computing 67(4) (2007)

11. Otto, F., Pankratius, V., Tichy, W.F.: High-level Multicore Programming With
XJava. In: Comp. ICSE 2009, New Ideas And Emerging Results. ACM, New York
(2009)

12. Otto, F., Pankratius, V., Tichy, W.F.: XJava: Exploiting Parallelism with Object-
Oriented Stream Programming. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-
Par 2009 Parallel Processing. LNCS, vol. 5704, pp. 875–886. Springer, Heidelberg
(2009)

13. Pankratius, V., Schaefer, C.A., Jannesari, A., Tichy, W.F.: Software Engineering
for Multicore Systems: an Experience Report. In: Proc. IWMSE 2008. ACM, New
York (2008)

14. Proebsting, T.A., Watterson, S.A.: Filter Fusion. In: Proc. Symposium on Princi-
ples of Programming Languages (1996)

15. Randall, K.: Cilk: Efficient Multithreaded Computing. PhD Thesis. Dep. EECS,
MIT (1998)

16. Reinders, J.: Intel Threading Building Blocks. O’Reilly Media, Inc., Sebastopol
(2007)

17. Schaefer, C.A.: Reducing Search Space of Auto-Tuners Using Parallel Patterns. In:
Proc. IWMSE 2009. ACM, New York (2009)

18. Schaefer, C.A., Pankratius, V., Tichy, W.F.: Atune-IL: An Instrumentation Lan-
guage for Auto-Tuning Parallel Applications. In: Sips, H., Epema, D., Lin, H.-X.
(eds.) Euro-Par 2009 Parallel Processing. LNCS, vol. 5704, pp. 9–20. Springer,
Heidelberg (2009)

19. Schaefer, C.A., Pankratius, V., Tichy, W.F.: Engineering Parallel Applications with
Tunable Architectures. In: Proc. ICSE. ACM, New York (2010)

20. Tapus, C., Chung, I., Hollingsworth, J.K.: Active Harmony: Towards Automated
Performance Tuning. In: Proc. Supercomputing Conference (2002)

21. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A Language for Streaming
Applications. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, p. 179. Springer,
Heidelberg (2002)

22. Werner-Kytola, O., Tichy, W.F.: Self-tuning Parallelism. In: Williams, R., Af-
sarmanesh, H., Bubak, M., Hertzberger, B. (eds.) HPCN-Europe 2000. LNCS,
vol. 1823, p. 300. Springer, Heidelberg (2000)

23. Whaley, R.C., Petitet, A., Dongarra, J.J.: Automated Empirical Optimizations of
Software and the ATLAS Project. Journal of Parallel Computing 27 (2001)

	A Language-Based Tuning Mechanism for Task and Pipeline Parallelism
	Introduction
	The XJava Language
	Language
	Compiler and Runtime System

	Tuning Challenges
	Language-Based Tuning Mechanism
	Tuning Parameters
	Inferring Tuning Parameters from XJava Code
	Inferring Context Information
	Tuning Heuristics

	Experimental Results
	Benchmarked Applications
	Results

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037002e000d00500072006f00640075006300650073002000500044004600200062006f006f006b00200069006e006e006500720077006f0072006b002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

