
KIT – University of Baden-Württemberg and National Research Center of the Helmholtz Association

Institute for Program Structures and Data Organization

Engineering Parallel Applications with Tunable
Architectures

International Conference on Software Engineering, May 2010
Christoph A. Schaefer/Victor Pankratius/Walter Tichy

Where is Karlsruhe?

Where is Karlsruhe?

University of Karlsruhe - KIT, Germany
Faculty of Computer Science

Institute for Program Structures and Data Organization (IPD)

One of the leading CS departments in Europe
>40 faculty, >400 PhD students in CS

Challenges of Parallel Applications

!   Parallelization is complex and error-
prone

!   Parallel programs contain a number
of tuning parameters

!   Manual optimization difficult and
time-consuming

!   Each target platform may require
re-tuning

!   Auto-tuning: Let the computer do
the tuning!

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

4 3/2/10

? ? ?

a=1 b=2 c=3

A

a=4 b=5 c=6

B

a=? b=? c=?
!

!

Examples for Tuning
Parameters

•  Number of pipeline
stages

•  Choice of best algorithm
implementation

•  Order of execution
•  Size of data partitions
•  Number of workers
•  Load balancing strategy

Approach to Auto-Tuning

!   Atune-TA: Approach for description of
certain parallel, tunable architectures
!   Automatic implementation of

architectures
!   Portability regarding performance

!   Atune-OPT: Automatic search-based
performance tuning on multi-core
platforms (auto-tuner)
!   Not limited to specific application domain

or numeric programs
!   Extension of search-based optimization

to handle large parallel applications

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

5 3/2/10

Atune System

Atune-OPT:
Automatic Architecture
OPTimizer

Atune-TA:
Parallel Tunable
Architectures

Example: Parallel Desktop Search (Indexing)
1. Definition of Tasks

!   Abstraction from threads and fine-grained parallelization
!    Concept of tasks: definition of essential processing steps

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

6 3/2/10

ParseAlgo
1

ParseAlgo
2

Update
Index

Create
Indexfile

Methods to implement

• Crawl():List<string>
• ParseAlgo1(string s):ParseResult
• ParseAlgo2(string s):ParseResult
• UpdateIndex(ParseResult p):Index
• CreateIndexFile(Index i):void

Find indexable documents Simple string matching algorithm KMP string matching algorithmus Update index datastructure in memory Save index datastructure on disk

Crawl

Example continued
2. Design, Implementation and Optimization

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

7 3/2/10

TunablePipeline MyDesktopSearch
[source:AC_Crawl;sink:AC_CreateIndexFile]
{
 TunableAlternative
 {

 AC_ParseAlgo2[replicable],
 AC_ParseAlgo1[replicable]
 },
 AC_UpdateIndex
}

Create
IndexFile

Update
Index

ParseAlgo
1

ParseAlgo
2

alt

A

B

Crawl
lb

1

nu
m

1

lb
2

nu
m

2

al
t

Parameterized
architecture implementation

Automatic platform-
specific optimization

In
st

an
ce

 1

In
st

an
ce

 2

In
st

an
ce

 n

...

lb1 num1

ParseAlgo1

In
st

an
ce

 1

In
st

an
ce

 2

In
st

an
ce

 n

...

lb2 num2

ParseAlgo2

Atune-TA
Tunable Architecture Description Language (TADL)

!   Description language for compact design of parallel tunable
architectures
!   Atomic components

!   Represent essential sequential
program tasks

!   Contain no internal parallelism, but
allow replication

!   Implemented by program methods
(AC methods)

!   Connectors
!   Connect atomic components and

define processing and parallelization
strategies

!   Support nesting
!   Implicitly expose predefined tuning

parameters

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

8 3/2/10

TunablePipeline pipeline
{ [source:AC_InputMethod;
 sink:AC_OutputMethod]
 AC_Method1,
 AC_Method2,
 AC_Method3
}

AC_MethodName[replicable]

!   Sequential Composition
!   General-purpose connector with

sequential execution semantics

!   Tunable Alternative
!   Describes exclusive choice
!   Auto-tuner tests alternatives during

optimization process

!   Tunable Fork/Join
!   Introduces task parallelism

Atune-TA
TADL Connectors (1)

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

9 3/2/10

…

…

alternative

…

workers

= or

1 2

n …

fusion of stages1,2

!   Tunable Pipeline
!   Describes pipeline parallelism
!   Offers data stream semantics

!   Tunable Producer/Consumer
!   Describes common synchronization

pattern
!   Offers data stream semantics

!   Tunable Replication
!   Introduces data parallelism
!   Creates instances of atomic

component

Atune-TA
TADL Connectors (2)

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

10 3/2/10

= or

buffer size batch size

1

2

n …

fusion of stages 1,2 fusion of stages n-1, n
…

Data

instances batch size
Load balancing

strategy

…

Atune-TA
Tunable Architecture Implementation: TADL Compiler

!   TADL compiler transforms TADL script into instrumented, parallel
executable code

!   Result: portable intermediate representation of parallel program,
ready for optimization on target platform

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

11 3/2/10

a=? b=? c=?

TADL
script

Transforms each
TADL connector into

wrapper class

Associates atomic
component methods

Implement TADL
connectors using

TALib

Instrument wrapper
classes using

Atune-IL

Library containing
configurable

parallelization strategies

Tuning instrumentation
language to specify
tuning instructions

Atune-OPT
Overview and Process

!   Context-based preprocessing
steps to prepare search space

!   Automatic search-based tuning
of parallel architecture
!   Common search algorithms:

random sampling, hillclimbing,
swarm optimization

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

12 3/2/10

P
re

pr
oc

es
si

ng

Extract tuning
instructions and

context information

Context-based
Search Space
Partitioning

S
ea

rc
h-

ba
se

d
Tu

ni
ng

Compute new
architecture
configuration

Apply
configuration

to architecture

Execute and
monitor
program

Context-based
Search Space

Reduction

tuning entity tuning entity

Atune-OPT
Context-based Search Space Partitioning

!   Goal: Identification of program
parts to tune independently 
tuning entities

!   Exploit semantics of
!   Sequential Composition
!   Tunable Alternative

!   Sub trees can be tuned
separately, as they never run
concurrently

!   Partitioning into tuning entities

!   Separate optimization of the
tuning entities  reduction of
parameter configurations

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

13 3/2/10

Sequential
Composition/

Tunable
Alternative

…

TADL
connector

a b c

…

TADL
connector

d e f

Atune-OPT
Context-based Search Space Reduction

!   Goal: Search space reduction
using guided search

!   Exploit semantics of parallel
TADL connectors

Example
!   Tunable Pipeline with data-

parallel stages
!   Instead of “blind tuning” we

apply heuristics:
!   Balancing the pipeline
!   Fuse groups of consecutive

data-parallel stages

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

14 3/2/10

Stage 1

Stage 2

Stage 3

time

processing time
1 element

Stage 1

Stage 2

Stage 3

time

processing time
1 element

Non-balanced pipeline

Balanced pipeline

stage
1

stage
4

stage
2

stage
3

stage
5

stage
1

stage
2

stage
4

stage
3

stage
5

fused stages

Evaluation
Case Studies

Application Purpose Size
(LOC)

Exec. time
sequential

Parallelism
Types1)

Input data / benchmark

MetaboliteID
(MID)

Bio-chemical
data analysis ~ 100,000 85 s T / D mass spectrograms

(1 GB)

GrGen.NET Graph
rewriting ~ 80,000 45 s T / D

simulation of biological
gene expression (~ 9 mio.
nodes)

Desktop
Search (DS)

Indexing of
documents ~ 5,500 14 h 35 m P / D 10,700 text files

(max. 613 KB)

Video Video
processing ~ 1,000 19 s P / D video (180 frames,

800x600 px.)

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

15 3/2/10

1) P: pipeline parallelism, T: task parallelism, D: data parallelism

Evaluation
Experimental Results (1)

!   Performance evaluation:
achieved speedup after
optimizing parallel programs

MID GrGen DS Video
Worst 1.6 1.8 1.7 2.6
Best 3.1 7.7 6.9 5.6
TPG 194% 428% 406% 215%

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

Sp
ee

du
p

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

16 3/2/10

Metrics

•  Worst speedup
•  Best speedup after tuning
•  Tuning Performance Gain

(TPG)

Experiments performed on 8-core-machine (2x Intel Xeon QC @ 1,86 GHz/Core).
Worst speedup results from testing most inappropriate parameter configuration.

Evaluation
Experimental Results (2)

!   Evaluation: Reduction of
implementaiton effort
using Atune-TA

!   Comparison of manual
and Atune-TA-based
implementation

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

17 3/2/10

MID GrGen DS Video

LOC
Manual 290 120 465 300

Atune-TA 3 3 3 3

Reduction 287 (99%) 117 (98%) 462 (99%) 297 (99%)
Synchronization
primitives1) Manual 18 8 27 18

Atune-TA 2 0 1 0

Reduction 16 (89%) 8 (100%) 26 (96%) 18 (100%)
Tuning
instrumentation
statements

Manual 39 16 30 16

Atune-TA 0 2 0 0

Reduction 39 (100%) 14 (87%) 30 (100%) 16 (100%)

1) Includes all synchronization primitives, such as lock, notify, wait, join, etc.

Metrics

•  LOC
•  # explicit synchronization

primitives
•  # explicit tuning

instrumentation statements

Related Work
!   ATLAS/AEOS (Whaley et al., 2000)

!   Auto-tuning system for algebraic operations and algorithms
!   Domain specific approach
!   No support for parallel programs

!   Active Harmony (Tapus et al., 2002)
!   Search-based auto-tuning system for library optimization
!   Comprehensive analysis of search algorithms
!   Not applicable for parallel programs

!   MATE (Morajko et al., 2007)
!   Model-based tuning system for distributed PVM programs
!   Provides good performance predictions
!   Limited to special program structures

!   Parallel Pattern Language (Mattson et al., 2004)
!   Structured collection of parallel patterns
!   Provides guideline for parallel programming
!   Optimization is not considered

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

18 3/2/10

Future Work

!   More tunable patterns!
!   Language integration of patterns (XJava)
!   Online tuning (instead of offline)
!   Parameter prediction

!   Set good starting values for search, or elimiante search
!   Set replication depending on idle threads
!   Prefer tasks that have the most input waiting
!   Observe work stealing behavior for cutoff-value

!   First results: we achieve 90% of best configuration without search

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

19 3/2/10

Conclusion

!   Multi-core systems force developers to exploit parallelism in programs
!   Auto-tuning of parallel programs is indispensable to achieve good

performance

!   Atune provides automated approach to design, implement and optimize
parallel tunable architectures
!   Combination of parallelization and optimization
!   High-level parallelization process of applications
!   Extension of search-based auto-tuning to handle entire architectures

!   Atune-TA: Using tunable architectures results in reduction of
implementation effort

!   Atune-OPT: Novel tuning techniques provide efficient optimization and
significant performance gain

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

20 3/2/10

 THANK YOU!
 QUESTIONS?

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

21 3/2/10

For details see:
Christoph A. Schaefer, Victor Pankratius, Walter F. Tichy:
Engineering Parallel Applications with Tunable Architectures.
In Proceedings of 32nd International Conference on Software Engineering (ICSE),
to appear May 2010

BACKUP SLIDES

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

22 3/2/10

Atune-IL: Tuning Instrumentation Language (1)

!   Declaration of Tuning Blocks

!   Define scopes of tuning parameters

!   Tuning Blocks support
!   Nesting (lexically or logically) to represent application structure
!   Types to specify context

!   Declaration of Tuning Parameters

23

#pragma atune SETVAR myParameter type int
 values 10-100 step 10, weight 3, inside myBlock

#pragma atune STARTBLOCK myBlock type PIPELINE
<source code statements>
<other Atune-IL statements>
…

#pragma atune ENDBLOCK

3/2/10 Christoph A. Schaefer - Engineering Parallel Applications with
Tunable Architectures

Atune-IL: Tuning Instrumentation Language (2)

!   Further constructs to
!   declare measuring points (incl. metric)
!   declare permutation regions (to re-order statements in host

language)

!   Atune-IL’s design goals
!   Separation of program code and tuning instructions
!   Compact representation of performance-relevant variants of parallel

architectures
!   Syntax suitable for automatic generation

24 3/2/10 Christoph A. Schaefer - Engineering Parallel Applications with
Tunable Architectures

Evaluation
Assumptions

!   Estimation of manual implementation effort to implement
functionality of TADL connectors

TADL connector LOC # Syncs 1)

Tunable Alternative 15 0

Tunable Fork/Join 170 10

Tunable Pipeline 180 10

Tunable Producer/Consumer 150 9

Tunable Replication 120 8

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel
Applications with Tunable Architectures

25 3/2/10

1) Total number of synchronization-related statements in source
code, such as lock, notify, wait, join, etc.

