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Challenges of Parallel Applications 

!   Parallelization is complex and error-
prone 

!   Parallel programs contain a number 
of tuning parameters 

!   Manual optimization difficult and 
time-consuming 

!   Each target platform may require 
re-tuning 

!   Auto-tuning: Let the computer do 
the tuning! 

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel 
Applications with Tunable Architectures 

4 3/2/10 

? ? ?

a=1 b=2 c=3 

A 

a=4 b=5 c=6 

B 

a=? b=? c=? 
! 

! 

Examples for Tuning 
Parameters 

•  Number of pipeline 
stages 

•  Choice of best algorithm 
implementation 

•  Order of execution 
•  Size of data partitions 
•  Number of workers 
•  Load balancing strategy 



Approach to Auto-Tuning 

!   Atune-TA: Approach for description of 
certain parallel, tunable architectures 
!   Automatic implementation of 

architectures 
!   Portability regarding performance 

!   Atune-OPT: Automatic search-based 
performance tuning on multi-core 
platforms (auto-tuner) 
!   Not limited to specific application domain 

or numeric programs 
!   Extension of search-based optimization 

to handle large parallel applications 
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Atune System 

Atune-OPT: 
Automatic Architecture 
OPTimizer 

Atune-TA: 
Parallel Tunable 
Architectures 



Example: Parallel Desktop Search (Indexing) 
1. Definition of Tasks 

!   Abstraction from threads and fine-grained parallelization 
!    Concept of tasks: definition of essential processing steps 
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Methods to implement 

• Crawl():List<string> 
• ParseAlgo1(string s):ParseResult 
• ParseAlgo2(string s):ParseResult 
• UpdateIndex(ParseResult p):Index 
• CreateIndexFile(Index i):void 

Find indexable documents Simple string matching algorithm KMP string matching algorithmus Update index datastructure in memory Save index datastructure on disk 

Crawl 



Example continued 
2. Design, Implementation and Optimization 
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TunablePipeline MyDesktopSearch     
[source:AC_Crawl;sink:AC_CreateIndexFile]  
{ 
    TunableAlternative 
    {      

 AC_ParseAlgo2[replicable], 
     AC_ParseAlgo1[replicable] 
    }, 
    AC_UpdateIndex 
} 
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Atune-TA 
Tunable Architecture Description Language (TADL) 

!   Description language for compact design of parallel tunable 
architectures 
!   Atomic components 

!   Represent essential sequential 
program tasks 

!   Contain no internal parallelism, but  
allow replication 

!   Implemented by program methods  
(AC methods) 

!   Connectors 
!   Connect atomic components and  

define processing and parallelization 
strategies 

!   Support nesting 
!   Implicitly expose predefined tuning  

parameters 
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TunablePipeline pipeline 
{    [source:AC_InputMethod; 
 sink:AC_OutputMethod] 
     AC_Method1, 
     AC_Method2, 
     AC_Method3 
} 

AC_MethodName[replicable] 



!   Sequential Composition 
!   General-purpose connector with 

sequential execution semantics 

!   Tunable Alternative 
!   Describes exclusive choice 
!   Auto-tuner tests alternatives during 

optimization process 

!   Tunable Fork/Join 
!   Introduces task parallelism 

Atune-TA 
TADL Connectors (1) 
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fusion of stages1,2 

!   Tunable Pipeline 
!   Describes pipeline parallelism 
!   Offers data stream semantics 

!   Tunable Producer/Consumer 
!   Describes common synchronization 

pattern 
!   Offers data stream semantics 

!   Tunable Replication 
!   Introduces data parallelism 
!   Creates instances of atomic 

component 

Atune-TA 
TADL Connectors (2) 
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Atune-TA 
Tunable Architecture Implementation: TADL Compiler 

!   TADL compiler transforms TADL script into instrumented, parallel 
executable code 

!   Result: portable intermediate representation of parallel program, 
ready for optimization on target platform 
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a=? b=? c=? 

TADL 
script 

Transforms each 
TADL connector into 

wrapper class 

Associates atomic 
component methods 

Implement TADL 
connectors using 

TALib 

Instrument wrapper 
classes using 

Atune-IL 

Library containing 
configurable 

parallelization strategies 

Tuning instrumentation 
language to specify 
tuning instructions 



Atune-OPT 
Overview and Process 

!   Context-based preprocessing 
steps to prepare search space 

!   Automatic search-based tuning 
of parallel architecture 
!   Common search algorithms: 

random sampling, hillclimbing, 
swarm optimization 
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tuning entity tuning entity 

Atune-OPT 
Context-based Search Space Partitioning 

!   Goal: Identification of program 
parts to tune independently  
tuning entities 

!   Exploit semantics of 
!   Sequential Composition 
!   Tunable Alternative 

!   Sub trees can be tuned 
separately, as they never run 
concurrently 

!   Partitioning into tuning entities 

!   Separate optimization of the 
tuning entities  reduction of 
parameter configurations 
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Atune-OPT 
Context-based Search Space Reduction 

!   Goal: Search space reduction 
using guided search 

!   Exploit semantics of parallel 
TADL connectors 

Example  
!   Tunable Pipeline with data-

parallel stages 
!   Instead of “blind tuning” we 

apply heuristics: 
!   Balancing the pipeline 
!   Fuse groups of consecutive 

data-parallel stages 
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Evaluation 
Case Studies 

Application Purpose Size 
(LOC) 

Exec. time 
sequential 

Parallelism 
Types1) 

Input data / benchmark 

MetaboliteID 
(MID) 

Bio-chemical 
data analysis ~ 100,000 85 s T / D mass spectrograms  

(1 GB) 

GrGen.NET Graph 
rewriting ~ 80,000 45 s T / D 

simulation of biological 
gene expression (~ 9 mio. 
nodes) 

Desktop 
Search (DS) 

Indexing of 
documents ~ 5,500 14 h 35 m P / D 10,700 text files  

(max. 613 KB) 

Video Video 
processing ~ 1,000 19 s P / D video (180 frames, 

800x600 px.) 
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1) P: pipeline parallelism, T: task parallelism, D: data parallelism 



Evaluation 
Experimental Results (1) 

!   Performance evaluation: 
achieved speedup after 
optimizing parallel programs 

MID GrGen DS Video 
Worst 1.6 1.8 1.7 2.6 
Best 3.1 7.7 6.9 5.6 
TPG 194% 428% 406% 215% 
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Metrics 

•  Worst speedup 
•  Best speedup after tuning 
•  Tuning Performance Gain 

(TPG) 

Experiments performed on 8-core-machine (2x Intel Xeon QC @ 1,86 GHz/Core). 
Worst speedup results from testing most inappropriate parameter configuration. 



Evaluation 
Experimental Results (2) 

!   Evaluation: Reduction of 
implementaiton effort 
using Atune-TA 

!   Comparison of manual 
and Atune-TA-based 
implementation 
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MID GrGen DS Video 

LOC 
Manual 290 120 465 300 

Atune-TA 3 3 3 3 

Reduction 287 (99%) 117 (98%) 462 (99%) 297 (99%) 
Synchronization 
primitives1) Manual 18 8 27 18 

Atune-TA 2 0 1 0 

Reduction 16 (89%) 8 (100%) 26 (96%) 18 (100%) 
Tuning 
instrumentation 
statements 

Manual 39 16 30 16 

Atune-TA 0 2 0 0 

Reduction 39 (100%) 14 (87%) 30 (100%) 16 (100%) 

1) Includes all synchronization primitives, such as lock, notify, wait, join, etc. 

Metrics 

•  LOC 
•  # explicit synchronization 

primitives 
•  # explicit tuning 

instrumentation statements 



Related Work 
!   ATLAS/AEOS (Whaley et al., 2000) 

!   Auto-tuning system for algebraic operations and algorithms 
!   Domain specific approach 
!   No support for parallel programs 

!   Active Harmony (Tapus et al., 2002) 
!   Search-based auto-tuning system for library optimization 
!   Comprehensive analysis of search algorithms 
!   Not applicable for parallel programs 

!   MATE (Morajko et al., 2007) 
!   Model-based tuning system for distributed PVM programs 
!   Provides good performance predictions 
!   Limited to special program structures 

!   Parallel Pattern Language (Mattson et al., 2004) 
!   Structured collection of parallel patterns 
!   Provides guideline for parallel programming 
!   Optimization is not considered 
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Future Work 

!   More tunable patterns! 
!   Language integration of patterns (XJava) 
!   Online tuning (instead of offline) 
!   Parameter prediction 

!   Set good starting values for search, or elimiante search 
!   Set replication depending on idle threads 
!   Prefer tasks that have the most input waiting 
!   Observe work stealing behavior for cutoff-value 

!   First results: we achieve 90% of best configuration without search 

Walter F. Tichy, Christoph A. Schaefer - Engineering Parallel 
Applications with Tunable Architectures 

19 3/2/10 



Conclusion 

!   Multi-core systems force developers to exploit parallelism in programs 
!   Auto-tuning of parallel programs is indispensable to achieve good 

performance 

!   Atune provides automated approach to design, implement and optimize 
parallel tunable architectures 
!   Combination of parallelization and optimization 
!   High-level parallelization process of applications 
!   Extension of search-based auto-tuning to handle entire architectures 

!   Atune-TA: Using tunable architectures results in reduction of 
implementation effort  

!   Atune-OPT: Novel tuning techniques provide efficient optimization and 
significant performance gain  
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 THANK YOU! 
 QUESTIONS? 
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For details see: 
Christoph A. Schaefer, Victor Pankratius, Walter F. Tichy:  
Engineering Parallel Applications with Tunable Architectures. 
In Proceedings of 32nd International Conference on Software Engineering (ICSE), 
to appear May 2010 
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Atune-IL: Tuning Instrumentation Language (1) 

!   Declaration of Tuning Blocks 

!   Define scopes of tuning parameters 

!   Tuning Blocks support  
!   Nesting (lexically or logically) to represent application structure 
!   Types to specify context 

!   Declaration of Tuning Parameters 

23 

#pragma atune SETVAR myParameter type int  
 values 10-100 step 10, weight 3, inside myBlock  

#pragma atune STARTBLOCK myBlock type PIPELINE 
<source code statements> 
<other Atune-IL statements> 
… 

#pragma atune ENDBLOCK 
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Tunable Architectures 



Atune-IL: Tuning Instrumentation Language (2) 

!   Further constructs to 
!   declare measuring points (incl. metric) 
!   declare permutation regions (to re-order statements in host 

language) 

!   Atune-IL’s design goals 
!   Separation of program code and tuning instructions 
!   Compact representation of performance-relevant variants of parallel 

architectures 
!   Syntax suitable for automatic generation 
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Evaluation 
Assumptions 

!   Estimation of manual implementation effort to implement 
functionality of TADL connectors 

TADL connector LOC # Syncs 1) 

Tunable Alternative 15 0 

Tunable Fork/Join 170 10 

Tunable Pipeline 180 10 

Tunable Producer/Consumer 150 9 

Tunable Replication 120 8 
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1) Total number of synchronization-related statements in source 
code, such as lock, notify, wait, join, etc. 


