
Reducing Search Space of Auto-Tuners Using Parallel Patterns

Christoph A. Schaefer
University of Karlsruhe (TH)

Institute for Program Structures and Data Organization (IPD)
Am Fasanengarten 5, 76131 Karlsruhe, Germany

cschaefer@ipd.uka.de

Abstract

Auto-tuning is indispensable to achieve best perfor-
mance of parallel applications, as manual tuning is ex-
tremely labor intensive and error-prone. Search-based
auto-tuners offer a systematic way to find performance op-
timums, and existing approaches provide promising results.
However, they suffer from large search spaces.

In this paper we propose the idea to reduce the search
space using parameterized parallel patterns. We intro-
duce an approach to exploit context information from Mas-
ter/Worker and Pipeline patterns before applying common
search algorithms. The approach enables a more efficient
search and is suitable for parallel applications in general.

In addition, we present an implementation concept and
a corresponding prototype for pattern-based tuning.

The approach and the prototype have been successfully
evaluated in two large case studies. Due to the significantly
reduced search space a common hill climbing algorithm
and a random sampling strategy require on average 54%
less tuning iterations, while even achieving a better accu-
racy in most cases.

1. Introduction

Tuning of parallel applications is important, as finding
the best configuration of tuning parameters is far from easy
and often non-intuitive [12, 18]. Tuning parameters include
all performance-relevant variables of a program, such as
the number of worker threads, the choice of load balanc-
ing strategies, the number of threads per stage in a pipeline,
or size of data partitions.

1.1. Need for Auto-Tuning

The concept of automatic performance tuning (auto-
tuning) has been studied for several years, especially in the

field of numerical programs [5, 19]. The growing diversity
of parallel programs and the large variety of application ar-
eas for parallelism requires more general auto-tuning meth-
ods.

For this purpose, search-based auto-tuners represent a
promising systematic approach [2, 13, 16, 17]. A search-
based tuner is a library or a stand-alone application that
dynamically executes a parameterized application several
times (called tuning iterations) and monitors performance.
After each tuning iteration, it calculates a new parameter
configuration based on the performance results of the pre-
vious iteration. Doing so, it tries to find a parameter con-
figuration that yields the best performance on a given target
platform.

Experiments with real-world parallel applications have
shown that using appropriate tuning techniques, a signifi-
cant performance gain can be achieved on top of the per-
formance improvement attained by the parallelization itself
(cf. Section 4, [12, 14]).

However, the size of the search space that is defined by
the cross-product of all parameter domains in the program
is crucial for the efficiency of the search algorithm. As the
search space grows exponentially, even a smart search algo-
rithm may need a long time to find the best – or at least a
sufficiently good – parameter configuration. For example,
consider the initial search space of our first case study in
Section 4, that consists of nearly 240,000 parameter con-
figurations. If a sophisticated search algorithm tests only
1% of the configurations, it will still perform 2,400 tuning
iterations.

Some research approaches therefore suggest the use of
models instead of search-based techniques to predict the
performance depending on certain non-functional parame-
ters [10, 11, 3]. However, model-based approaches are often
limited to certain algorithm types, application domains and
hardware platforms. In addition, studies have shown that
search-based tuning is more effective than model-based op-
timization [4].

1.2. Search Space Reduction

Search-based auto-tuners are usually not aware of pur-
pose and impact of the tuning parameters. Thus, useless
parameter configurations might be tested.

We therefore propose to reduce the search-space of auto-
tuners using parameterized parallel patterns. A pattern sets
all its parameters in a certain context we can exploit. If
this context information can be made available to an auto-
tuner, it can focus the search on the most promising parts
of the search space. The idea is to specify the search space
more intelligent and thus reduce it before applying common
search algorithm.

We investigate the Master/Worker and the Pipeline pat-
tern – two commonly used patterns – regarding their
performance-relevant parameters, analyze the coherence of
the parameters and identify options to sample the pattern-
related search space more efficiently. In addition, we
present a suitable implementation approach introducing the
concept of tuning wrappers.

In two large case studies – one of them deals with a com-
mercial application – we show the efficiency of our proto-
type: The significantly pruned search space results in ap-
prox. 54% less tuning iterations required by two search al-
gorithms, namely hill climbing and random sampling. Ex-
cept for one case, both strategies achieved a better accuracy
compared to conventional tuning without context informa-
tion.

2. Exploiting Context Information of Parallel
Patterns

A tuning parameter appears to an auto-tuner as a set of
values to choose from. Typically, the auto-tuner does not
know anything about purpose and dependencies of a par-
ticular parameter. Consequently, it has to tune all the pro-
gram’s parameters in concert with each other. This may
result in testing useless parameter configurations.

But actually each tuning parameter belongs to a paral-
lel section that implements a certain type of parallelization
strategy, that in turn can be expressed as a pattern. Parallel
patterns describe recurring parallel computation or decom-
position problems of similar structure and synchronization
behavior and provide a suitable solution [8, 9].

Patterns represent enclosed parallel sections that can be
considered as independent from each other if they are not
nested or sharing resources. In earlier work [14] we have
shown that independent parallel sections can be tuned sep-
arately, which cuts the initial search space into smaller
pieces.

In particular, a parameterized pattern offers context for
each of its tuning parameters. If this context information is
expressible in some way, an auto-tuner can focus the search

on crucial parts of the search space evolved by a particular
pattern.

In the following sections, we introduce two commonly
used patterns. We discuss how their tuning parameters
cohere as well as how we can exploit the coherence and
other characteristics of the pattern to enable more intelli-
gent search-based tuning.

In addition, we use the concept of history values to take
advantage of the experience gained in earlier tuning runs.
History values of a certain parameter depend on the hard-
ware platform and are stored in the context of the pattern
the parameter belongs to.

For all considerations we assume a shared memory mul-
ticore platform.

1 2 s

1 2 s1 2 s

1

2

n

t1 Task/Stage

Tuning Parameter

w:
l:

n:
m1...ms:
l1...ls:

Master/Worker

Pipeline

number of workers
load balancing strategy

total number of pipeline threads
number of threads per stage
load balancing strategy per stage

Figure 1. Schematic representation of param-
eterized parallel patterns: a) Master/Worker,
b) Pipeline with data parallel stages.

2.1. Master/Worker Pattern

The Master/Worker (M/W) pattern is a frequently used
strategy to implement task parallelism. A task is a program
element that can execute independently. The master creates
a number of worker threads, assigns one or more tasks to
each of them and starts the workers. The master waits or
does other jobs until all workers have finished their tasks.
After collecting the results, the master stops all workers and
proceeds with the rest of the program.

The performance of the M/W pattern mainly depends on
two tuning parameters: the number of workers (w) and the
load balancing strategy (l). Although the M/W pattern of-
fers additional tuning options, such as the data partition size
for particular workers, in literature [3] as well as according
to our experience, w and l are considered to be the most
influencing parameters regarding performance.

Figure 1 a) sketches a parameterized M/W pattern.
The optimal number of workers for a particular hard-

ware platform coheres with the available number of pro-
cessor cores (p) as well as with the total number of tasks
(t). However, we do not know the exact correlation. To re-
duce the search space for w, we suggest to use the history
parameters α and β to restrict the search to a range around
p. That is, bα · pc ≤ w ≤ bβ · pc, where 0 < α ≤ 1,
β > 1. The values for α and β are history values depending
on a particular value of p. For example, if the best values
for w always were between 6 and 10 on an 8-core machine
(p = 8), the stored values for α and β are 0.75 and 1.25
respectively. To consider the correlation with t, we can use
a fix range around t and add the corresponding values to
the value range of w. Based on our experience we suggest
b0.9tc ≤ w ≤ b1.1tc. Obviously, we can include t in our
analysis only, if t is a constant value. That is, the number of
tasks in the program must be fixed for the particular M/W
section.

The load balancing strategy defines how the tasks are as-
signed to the workers. In the M/W pattern, the load bal-
ancing strategy does not depend on the number of workers,
but on the running times of the tasks. In literature, different
strategies are discussed [3]. We focus on static and dynamic
load balancing.

With static load balancing the master equally distributes
the tasks to the workers. That is, each worker gets bt/wc
tasks. While the dispatching overhead for the master is low,
the load balancing may be suboptimal if the tasks have un-
equal running times. Therefore, static load balancing usu-
ally yields good performance with tasks requiring approxi-
mately the same time to complete.

Dynamic load balancing moves more control to the
workers. Initially, each worker gets one task. Whenever
a worker has finished a task, it requests the next available
task from the master. This means a lot more overhead for
the master. However, this strategy performs well with tasks
having unequal running times.

Without context, we would have to test both values for
l (static, dynamic) with all values of w. Using the knowl-
edge about M/W, we can test each strategy just once with
a constant value for w (usually w = p) and finally use the
strategy that yields the better performance. Doing so, we
need only 2 instead of l · w samples. If the number of tasks
(t) is smaller than the number of workers (w), we can even
omit testing, as each worker gets a maximum of one task
only. In this case, the load balancing strategy doesn’t mat-
ter.

After applying the aforementioned considerations, the
remaining search space of the M/W pattern consists only
of the reduced value range of w. A common search algo-
rithm, such as hill climbing, can now find the optimal value
in a short time.

2.2. Pipeline Pattern

The Pipeline pattern schedules the tasks according to a
pipelining strategy. That is, the tasks are executed in a fixed
order, i.e. in stages, while two consecutive stages are con-
nected by a FIFO-based data type; the output of each stage
is the input of the next. Each stage runs at least in one sep-
arate thread.

To yield good performance, all stages must be equally
balanced regarding their running time. We can influence the
running time of a stage if we assign more than one thread
to the stage. For this purpose, the stage’s task must in itself
provide parallelism, such as task or data parallelism.

Above all, we have to consider the total number of
threads (n) the pipeline can use concurrently.

Figure 1 b) sketches a parameterized pipeline with data
parallel stages. Typically, an auto-tuner would search for an
optimal configuration within the entire parameter space of
the pipeline. If the number of stages is s, this would result
in 2s+ 1 parameters.

However, a pipeline often lacks performance due to a
stage that is significantly slower than the others. Thus, a
suitable heuristic would be to adjust the running time of the
fastest and the slowest data parallel stage only.

Therefore, we first have to find the best value for the total
number of pipeline threads (n) as a limit. As described for
the M/W pattern, we can use history parameters to limit the
search for n to bα · pc ≤ n ≤ bβ · pc, where 0 < α ≤ 1,
β > 1, and p the number of cores.

Now we can start the search to find the optimal values
for the number of threads in the slowest (mslowest) and
the fastest stage (mfastest) by sampling the resulting search
space dom(mslowest)× dom(mfastest). The search is fin-
ished if both stages have approximately the same running
time. We assign the rest of the available threads (that is
n −mslowest −mfastest) to the other data parallel stages
– either equally or inversely proportional to their particular
running times. After setting the number of threads for each
stage, we can fine-tune the slowest stage by adjusting the
load balancing strategy as described in the previous section.

If necessary, we can iterate this process to adjust the re-
maining stages accordingly.

Of course, our heuristic can be improved and extended to
be suitable for other runtime characteristics of the pipeline
stages. However, the approach prunes the search space of
the pipeline to smaller stage-related parts that are easier to
handle for search algorithms.

2.3. Nested Parallelism

Our approach so far allows only limited nested paral-
lelism. The heuristic for the pipeline pattern in the previous
section considers nesting, as each stage can contain its own

parallel section. However, the heuristic is not applicable for
all kinds of nested parallelism.

A more general approach would be to separately deter-
mine the runtime characteristics of each child component of
the nested structure. To do so, we have to treat each compo-
nent according to its underlying pattern as described in the
previous sections and apply a search-based tuning process.
For each component we get samples that map a runtime
value to a parameter configuration. Using the samples from
all child components, an optimizer can find the best com-
bination of all child components’ configurations depending
on the tuning parameters of the parent component.

2.4. Findings

The heuristics we discussed above show that parallel pat-
terns provide context information we can exploit to improve
search-based tuning. The auto-tuner does not have to tune a
”black box” anymore by adjusting a number of anonymous
parameters. Using the inherent context as well as history
parameters, we can reduce the initial search space. The re-
maining space is significantly smaller and thus more feasi-
ble for a common search algorithm, as shown in our case
studies in Section 4.

3. Implementation Concept

In this section we present a possible approach to build
a context-aware auto-tuner. The approach is based on our
auto-tuning framework Atune [14].

3.1. Atune

Atune is a search-based auto-tuning framework that ad-
justs parameter values between consecutive executions of a
parallel program. We extended the auto-tuning principles
known from numerics and algorithmic engineering to work
with a wide range of parallel programs.

We assume that we have an existing parallel program
instrumented with our tuning instrumentation language
Atune-IL [14]. The pragma-based language is used to spec-
ify tuning information such as parameters and their value
ranges, blocks, or measuring points within the code of the
parallel application.

Atune’s auto-tuning cycle contains the following steps:
(1) The Atune-IL Pre-Processor parses the instrumented

program and builds up a data structure containing the tuning
information.

(2) The tuning information is passed to Atune-OPT, the
actual optimizer. Using exchangeable search algorithms,
Atune-OPT computes a tuple of values that represents a

valid configuration of parameters. As the optimization pro-
cess itself is not the focus this paper, we refer to existing
approaches for details [17, 13].

(3) The computed parameter values are inserted into the
code of the program. The output of this stage is an exe-
cutable variant of the original program.

(4) Next, the Atune Backend starts the new program vari-
ant and monitors it. Data from all measuring points is
recorded, aggregated, and stored.

(5) In the last step the recorded monitoring results are
transformed to a format usable by Atune-OPT. The auto-
tuning cycle (steps 2-5) is repeated until some predefined
condition is met, depending on the employed search algo-
rithm.

3.2. Pattern-based Parallel Sections

Our approach requires implementations of parameter-
ized parallel patterns. According to the schematic represen-
tation in Figure 1, we have developed a library containing
the components for the M/W and the Pipeline pattern. For
both pattern types, a well-defined interface exists to enable
application developers to implement their own pattern com-
ponents.

We decided to specify the tasks to be processed using
pointers to methods that implement the tasks. The list of
method pointers is passed to the pattern component.

The pattern components enable us to build consistent
parallel sections in a systematic and standardized way. As
we know the behavior of the pattern and its corresponding
tuning parameters, we can provide this information to the
auto-tuner. In the next section we show how this could be
done.

3.3. Tuning Wrappers

The pattern components described in the previous sec-
tion provide tuning parameters. Nevertheless, the compo-
nents are not auto-tunable yet. Therefore, we have to mark
the tuning parameters and indicate the existence and type of
the parallel pattern. For that reason, we use our instrumenta-
tion language Atune-IL. As described in Section 3.1, Atune-
IL provides instrumentation constructs to specify tuning in-
formation within the program’s code.

To automate and standardize the instrumentation pro-
cess, we introduce the concept of tuning wrappers. A tuning
wrapper is a static class that encapsulates the call to an in-
stance of a pattern component. For each pattern type, a cor-
responding type of tuning wrapper exists. A tuning wrap-
per contains the declarations of the tuning parameters, the
call to the particular instance of the component, and all nec-
essary Atune-IL statements. In addition, a tuning wrapper

indicates a separate block in terms of the Atune-IL specifi-
cation [14]. That is, if the encapsulated parallel section is
independent from others, it can be tuned separately.

Within the program, the tuning wrapper is always called
instead of the encapsulated pattern component.

Tuning wrappers are designed to be created automati-
cally by a tuning wrapper generator. The wrapper class is
generated in a separate code file. The call to the wrapper is
placed within the program’s code at a point that is annotated
by the application programmer.

To use tuning wrappers together with pattern compo-
nents, an application programmer has to perform the fol-
lowing steps for each pattern-based parallel section within
the program:

(1) Create an instance of a particular pattern component
and pass the task method pointers.

(2) Add an annotation for the tuning wrapper generator
specifying the new wrapper’s name and type as well as the
name of the pattern component instance created above.

(3) Start the tuning wrapper generator.
(4) Modify the Atune-IL statements in the generated

wrapper class if necessary.
Listing 1 shows the code example for creating an in-

stance of a M/W pattern component and the annotation to
create a corresponding tuning wrapper (according to steps 1
and 2).

Listing 1. Code example to create a Master/-
Worker instance and a corresponding tuning
wrapper

. . .
IMas te rWorker myMw =

new MyMasterWorker (t a s k M e t h o d P o i n t e r L i s t) ;

#pragma tuningwrapper
CREATE MyMwTuningWrapper
TYPE MasterWorker
INSTANCE myMw

. . .

The tuning wrapper generator acts as a pre-processor
that parses the program’s code for all pragma
tuningwrapper annotations. For each annotation
found in the program it generates a tuning wrapper class
and a call statement replacing the annotation.

For illustration, Figure 2 depicts the generated code of a
M/W tuning wrapper class. The wrapper method is sur-
rounded by the Atune-IL statements STARTBLOCK and
ENDBLOCK to specify a block for tuning parameters. The
STARTBLOCK keyword MasterWorker indicates that
this is a wrapper for a M/W pattern component. The wrap-
per method declares the two tuning parameters of the M/W

pattern component and initializes them with default values.
Each parameter declaration follows the Atune-IL statement
SETVAR specifying appropriate tuning information. These
statements will be replaced by a variable assignment in step
3 of the auto-tuning cycle (cf. Section 3.1). The SETVAR
statement with the context GET numTasks represents a
constant program parameter that is read-only for the auto-
tuner. Here, the statement contains the number of tasks.
The value of the program parameter must be correctly spec-
ified by the application programmer. Finally, the wrapper
passes the tuning parameter values and the tasks pointer to
the M/W instance and executes it (see box in Figure 2).

The generated code for a Pipeline tuning wrapper looks
similar to the M/W example.

static class MyMwTuningWrapper :
IMasterWorkerTuningWrapper

{
 #pragma atune STARTBLOCK MasterWorker

public void Execute(
MasterWorker mw,
List<TasksPointer> taskPointers)

 {
int numThreads = 2;

 #pragma atune SETVAR numThreads TYPE int
 VALUES 2-32 CONTEXT numThreads

LBStrategy lbs = LBStrategy.Dynamic;
 #pragma atune SETVAR lbs TYPE generic

 VALUES „LBStrategy.Dynamic;
 LBStrategy.Static“

 CONTEXT lb

 #pragma atune SETVAR numTasks
VALUE 8 TYPE int CONTEXT GET_numTasks

 #pragma atune GAUGE mwExecTime1
mw.Start(numThreads, lbs, taskPointers);

 #pragma atune GAUGE mwExecTime1
 }
 #pragma atune ENDBLOCK
}

Figure 2. Generated code of a Master/Worker
Tuning Wrapper.

The generated call to the tuning wrapper in Figure 2 is
shown in Listing 2. The tuning wrapper generator has re-
placed the annotation by the appropriate calling statement.

Listing 2. Code after the tuning wrapper gen-
erator was started

. . .
IMas te rWorker myMw =

new MyMasterWorker (t a s k M e t h o d P o i n t e r L i s t) ;

MyMwTuningWrapper . Execute (myMw) ;
. . .

4. Experimental Results

As a proof of concept we have implemented a prototype
based on our Atune framework and successfully evaluated
it in two case studies.

4.1. Prototype

The prototype extends Atune-OPT (cf. Section 3.1) to
be able to exploit the context information of M/W patterns.

We had to modify the part of Atune-OPT that prepares
and interprets the information retrieved from the Atune-IL
parser. Atune-OPT is now able to recognize if the program
contains MasterWorker blocks inside tuning wrappers.
If such a block is detected, Atune-OPT handles the block’s
parameters according to the M/W context information and
tunes them respectively. Each M/W block is considered to
be independent and therefore tuned separately.

As the actual optimization process is still search-based,
Atune-OPT would include parameters of unknown parallel
sections into the tuning session as well. Obviously, these
parameters have to be treated conventionally, since no addi-
tional information is available.

Up to now, the prototype covers context-aware tuning of
M/W sections. However, we are currently working on the
implementation of tuning capabilities targeting the Pipeline
pattern. The preliminary results are promising.

4.2. Case Studies

We performed two case studies to show the efficiency of
our approach. The subjects of the case studies are two large
applications we briefly sketch below.

The program of the first case study is Agilent’s Metabo-
liteID (MID) [1], a commercial application for biological
data analysis. Basically, MID compares mass spectrograms
to identify metabolites.

The second case study deals with GrGen, that is cur-
rently the fastest graph rewriting system [6]. As a bench-
mark, we simulate the biological gene expression process
on the E.coli DNA [15]. The model of the DNA results
in an input graph representation consisting of more than 9
million graph elements.

We have parallelized both applications by integrating our
parameterized M/W pattern component (cf. Section 3.2)
and made them auto-tunable using corresponding tuning
wrappers. Each M/W section provides the tuning param-
eters w (number of threads) and l (load balancing strategy)
introduced in Section 2.1. Although both applications pro-
vide additional tuning parameters, we focus on the parame-
ters in the M/W sections and set the remaining parameters
to their default values. The first part of Table 1 lists relevant
application characteristics.

To evaluate our approach, we compared the efficiency
of search strategies with and without context-aware search
space reduction. The search strategies were 1) random sam-
pling based on the Mersenne-Twister algorithm and 2) a
common implementation of the hill climbing algorithm. We
intentionally chose two basic algorithms to show that using
our approach, even ordinary search strategies achieve ac-
ceptable results.

We determined the efficiency by counting the number of
tuning iterations a search strategy needs to finish. While
the hill climbing algorithm converges after a certain num-
ber of iterations, random sampling needs an iteration limit.
To be comparable, we set this limit to the number of itera-
tions required by the hill climbing algorithm. In addition,
we measured the mean error rate, that indicates how close
a search strategy converges towards the real optimum. We
repeated each tuning run 20 times to get statistically signif-
icant results.

Table 1 summarizes the results for conventional and
context-aware tuning per case study. All tests were per-
formed on an 8-core machine (2x Intel Xeon E5320 Quad-
Core, 1.86 GHz/Core, 8 GB RAM, Microsoft Windows
2003 R2). Therefore, our database for history values con-
tained the results of earlier M/W tuning runs of different
applications performed on an 8-core machine. Based on the
M/W tuning history, Atune-OPT sets α = 0.9 and β = 1.8
to limit the value range of w (cf. Section 2.1).

Results with MID. In MID we exploited parallelism us-
ing three independent M/W sections providing a total of
six tuning parameters (wi and ti, i = {1, 2, 3}). We set
all wi = [2, . . . , 32] (according to a maximal number of
30 tasks) and all li = [′static′,′ dynamic′], resulting in
a search space size of 238,328 parameter configurations.
Using context-aware tuning, the search space was divided
into the three considerably smaller sub-spaces of each in-
dependent M/W section, that in turn were reduced using
the heuristics and history values for the M/W pattern. Fi-
nally, the search space contained only 48 parameter con-
figurations. As are result, hill climbing required 56% less
tuning iterations and even achieved a lower error rate. Ran-
dom sampling produces similar results regarding the error
rate. The speed-up obtained by the best configuration was
3.1; the worst speed-up was 1.6. That is, the performance
gain achieved solely by tuning was 193%.

Results with GrGen. GrGen offered two sections that were
parallelizable using our M/W pattern component, covering
a total of four parameters (wi and ti, i = {1, 2}). Again, we
set all li = [′static′,′ dynamic′], but w1 = [2, . . . , 40] and
w2 = [2, . . . , 32] due to different numbers of tasks. The
resulting search space had a size of 2,914 parameter con-
figurations. After applying our context-aware approach, the
search space was pruned to 35. The number of tuning iter-

ations required by hill climbing was reduced by 53% with
a lower error rate. Using random sampling the mean er-
ror rate was 2% higher than without context-aware tuning,
which is still acceptable. The tuning performance gain was
427%.

Table 1. Application Characteristics and Ex-
perimental Results

MID GrGen

Application Characteristics

Avg. Running Time (ms) 85,000 45,000
Approx. Size (LOC) 150,000 100,000
Independent M/W Sections 3 2

Search Space Reduction

Size (conventional) 238,328 2,914
Size (context-aware) 48 35
Reduction > 99% 98%

Efficiency using Hill Climbing

Avg. # Iterations (conventional) 30 17
Mean Error Rate (conventional) 8% 10%
Avg. # Iterations (context-aware) 13 8
Mean Error Rate (context-aware) 7% 9%

Efficiency using Random Sampling

Avg. # Iterations (conventional) 30 17
Mean Error Rate (conventional) 15% 19%
Avg. # Iterations (context-aware) 13 8
Mean Error Rate (context-aware) 13% 21%

Performance Results

Best Obtained Speed-up 3.1 7.7
Worst Obtained Speed-up 1.6 1.8
Avg. Tuning Performance Gain 193% 427%

The results show that context-aware tuning is worth its
effort. In most cases, both search algorithms we used for
evaluation achieved better results in a significantly shorter
time, as less tuning iterations were required. In addition, the
attained tuning performance gain indicates that auto-tuning
is necessary to get the best performance of an application.

5. Related Work

Auto-tuning has been previously investigated mainly in
the area of numerical software and high-performance com-
puting. Therefore, many approaches, such as ATLAS [19]

or FFTW [5], focus on tuning either certain types of algo-
rithms or programs belonging to a particular application do-
main.

Newer research projects target a broader range of parallel
programs. We discuss two of the most relevant approaches.

Active Harmony [17] is a framework for dynamic adap-
tation of applications regarding network and resource ca-
pacities. The application must use the system’s tuning API.
Active Harmony manages the values of the different tunable
parameters and changes them for better performance using
a search-based strategy. The project focuses on the selection
of the most appropriate algorithm for a given problem. The
algorithms have to be implemented in separate exchange-
able libraries. The approach allows to tune more general
types of applications.

The Monitoring, Analysis and Tuning Environment
(MATE) [10] focuses distributed parallel applications.
MATE uses a model-based approach to optimize scientific
Master/Worker applications at runtime. MATE relies on
performance models providing conditions to describe the
application behavior and to allow the system to find the opti-
mal values. While MATE’s performance prediction for dis-
tributed Master/Worker applications is precise, tuning other
types of parallel applications requires definitions of new ap-
propriate performance models. MATE does not target mul-
ticore systems.

6. Conclusion and Future Directions

In this paper, we propose the idea to reduce the search
space of auto-tuners using context information of parame-
terized parallel patterns. Our investigation of the M/W and
Pipeline pattern shows that using tuning parameters in a pat-
tern context, the search space can be specified more pre-
cisely. In addition, pattern- and platform-dependent history
information of parameters from earlier tuning session can
help reduce the search space significantly as well.

As a proof of concept we present a prototype imple-
mentation of a context-aware auto-tuner based on our auto-
tuning framework Atune. Beside the conventional search-
based optimization it is capable to exploit context informa-
tion from M/W sections. In two case studies the prototype
offers promising results.

It turned out that context-aware tuning based on parallel
patterns is a feasible approach. However, there is still a lot
of research work to do. We have identified several opportu-
nities for future research.

• Beside the patterns analyzed in this paper, there are
more parallel patterns to be studied, such as the Wave-
front or the Devide&Conquer pattern. We have to in-
vestigate how the knowledge about these patterns is
usable for tuning. Existing approaches dealing with

performance diagnosis of patterns, such as [7], repre-
sent good starting points.

• As real-world applications usually contain different
types of parallel sections as well as nested pattern
structures, reasonable combinations of patterns have
to be explored to learn how their tuning parameters
interact. In particular, our experience shows that
patterns exploiting data parallelism are often nested
within structural patterns, such as the Pipeline or De-
vide&Conquer pattern. Therefore, we have to under-
stand the performance-related coherence of such pat-
tern structures to develop suitable heuristics for effi-
cient tuning.

• The integration of pattern-based performance mod-
els might be a promising approach to further reduce
the number of tuning iterations. Performance model-
ing of parallel patterns is already discussed in liter-
ature [3, 11, 10]. The proposed models usually de-
pend on particular hardware platforms, programming
paradigms, or application domains. However, modern
parallel applications often comprise several types of
parallel patterns. Further on, tuning techniques should
not be limited to certain hardware platforms and appli-
cation domains. Therefore, a possible option is to use
pattern-based models within our approach. The pro-
posed pattern heuristics and the search-based tuning
can be used to determine initial parameters and per-
formance samples for the models. Feeding the results
of the search-based approach to appropriate models,
the optimal configuration of the program might be cal-
culated more precisely in less time. This requires the
adaption of existing models as well as creating new
ones. In addition, it might be useful to have more
than one model available for a particular pattern, as
the auto-tuner can choose the most suitable model re-
garding the underlying platform or available external
parameters.

• To improve handling, a smooth integration of our ap-
proach into existing search-based auto-tuners must be
provided. Especially, a flexible specification of pattern
heuristics and information about how to tune patterns
is necessary.

Acknowledgements. The author would like to thank the Agilent
Technologies Foundation for the financial support.

References

[1] Agilent Technologies: MassHunter MetaboliteID Software.
(2008)

[2] K. Asanovic et al. The Landscape of Parallel Computing Re-
search: A View from Berkeley. Technical Report, University
of California, Berkeley, 2006.

[3] E. Cesar et al. Modeling Master/Worker Applications for Au-
tomatic Performance Tuning. Journal of Parallel Computing,
volume 32, pages 568–589, 2006.

[4] A. Epshteyn et al. Analytic Models and Empirical Search: A
Hybrid Approach to Code Optimization. Proceedings of the
Workshop on Languages and Compilers for Parallel Com-
puting, volume 4339/2006, pages 259–273, 2006.

[5] M. Frigo et al. FFTW: An Adaptive Software Architecture
for the FFT. Proceedings of the International Conference on
Acoustics, Speech and Signal Processing, volume 3, pages
1381–1384, 1998.

[6] R. Geiß et al. GrGen.NET. www.info.
uni-karlsruhe.de/software/grgen/. University
of Karlsruhe, IPD Prof. Goos, 2008.

[7] L. Li et al. Knowledge Engineering for Automatic Paral-
lel Performance Diagnosis. Concurrency and Computation:
Practice and Experience, volume 19, pages 1497–1515,
2007.

[8] B. L. Massingill et al. A Pattern Language for Parallel Appli-
cation Programs. Proceedings of the 6th International Euro-
Par Conference on Parallel Processing, volume 1900/2000,
pages 678–681, 2000.

[9] T. G. Mattson et al. Patterns for Parallel Programming.
Addison-Wesley, 2004.

[10] A. Morajko et al. Design and Implementation of a Dynamic
Tuning Environment. Parallel and Distributed Computing,
volume 67, pages 474–490, 2007.

[11] Y. L. Nelson et al. Model-guided Performance Tuning of Pa-
rameter Values: A Case Study with Molecular Dynamics Vi-
sualization. Proceedings of the IPDPS, pages 1–8, 2008.

[12] V. Pankratius et al. Software Engineering For Multicore Sys-
tems: An Experience Report. Proceedings of the 1st IWMSE,
pages 53–60, 2008.

[13] A. Qasem et al. Automatic Tuning of Whole Applications us-
ing Direct Search and a Performance-based Transformation
System. The Journal of Supercomputing, volume 36, pages
183–196, 2006.

[14] C. A. Schaefer et al. Atune-IL: An Instrumentation Lan-
guage for Auto-Tuning Parallel Applications. Technical Re-
port, University of Karlsruhe (TH), 2009.

[15] Schimmel, J. et al.: Gene Expression with General Purpose
Graph Rewriting Systems. Proceedings of the 8th GT-VMT
Workshop (2009)

[16] V. Tabatabaee et al. Parallel Parameter Tuning for Applica-
tions with Performance Variability. Proceedings of the Su-
percomputing Conference, 2005.

[17] C. Tapus et al. Active Harmony: Towards Automated Perfor-
mance Tuning. Proceedings of the Supercomputing Confer-
ence, 2002.

[18] O. Werner-Kytl et al. Self-Tuning Parallelism. Proceedings
of the 8th International Conference on High-Performance
Computing and Networking, pages 300–312, 2000.

[19] R. C. Whaley et al. Automated Empirical Optimizations of
Software and the ATLAS Project. Journal of Parallel Com-
puting, volume 27, pages 3–35, 2001.

