
High-Level Multicore Programming with XJava

Frank Otto, Victor Pankratius, and Walter F. Tichy
University of Karlsruhe

76131 Karlsruhe, Germany
{otto, pankratius, tichy}@ipd.uka.de

Abstract

Multicore chips are becoming mainstream, but program-
ming them is difficult because the prevalent thread-based
programming model is error-prone and does not scale well.
To address this problem, we designed XJava, an exten-
sion of Java that permits the direct expression of pro-
ducer/consumer, pipeline, master/slave, and data paral-
lelism. The central concept of the extension is the task, a
parallel activity similar to a filter in Unix. Tasks can be
combined with new operators to create arbitrary nestings
of parallel activities.

Preliminary experience with XJava and its compiler sug-
gests that the extensions lead to code savings and reduce
the potential for synchronization defects, while preserv-
ing the advantages of object-orientation and type-safety.
The proposed extensions provide intuitive “what-you-see-
is-what-you-get” parallelism. They also enable other soft-
ware tools, such as auto-tuning and accurate static analysis
for race detection.

1. Introduction

Dual- and quad-core CPUs have become standard in to-
day’s desktop computers; a doubling of cores with every
chip generation is expected. The shift to parallelism has
amplified interest in parallel programming; parallelism isno
longer confined to scientific computing, database systems,
or instruction-level compiler optimizations. Many applica-
tions will be parallel in the future, and software research
needs to address the issues regarding general-purpose par-
allel programming.

Writing parallel programs is difficult, because program-
ming abstractions are typically limited to threads with ex-
plicit synchronization. As a result, many defects arise dueto
atomicity violations, order violations, or deadlocks [5].We
think that parallel programming can be significantly sim-
plified. In our view, the currently available concepts and
languages deal with parallelism at an abstraction level that

is too low. Promising concepts exist, but are highly special-
ized and inaccessible in a broader context. For example,
stream languages such as StreamIt [11] provide intuitive
constructs for parallelism, but were designed for signal pro-
cessing and graphics. We need to find ways to extend the
key concepts and make them accessible in a fully-featured,
general-purpose programming language.

In this paper, we present XJava, a programming language
that extends Java with parallelism in a novel way. We unify
key concepts from stream languages [3], parallel design pat-
terns [6], and object-orientation. Our language design is
motivated by observations made in previous case studies [8]
and by the need to express parallelism in a simple and in-
tuitive way. The central language constructs are thetask
and a set of combination operators. A task is basically an
extended method; it runs in its own thread and provides a
stream-oriented interface. It may be used with combination
operators for expressing consumer/producer or master/slave
configurations, pipelines, data parallelism, and other par-
allel patterns. Preliminary results indicate that this ap-
proach provides productivity improvements over threaded
Java, while delivering satisfactory speedups.

2. Related Work

Stream-oriented languages are a domain-specific ap-
proach to parallel programming. A stream program consists
of interconnected filters. The input is a theoretically infi-
nite stream of data elements “flowing” through the filters.
A survey of stream languages can be found in [10]. Lan-
guages such as StreamIt have been demonstrated to express
data, task, and pipeline parallelism for programs in the do-
main of signal processing and graphics [3]. However, these
languages provide rather simple data structures and do not
offer the flexibility of object-orientation.

X10 [2] is an experimental language for parallel and
distributed programming with focus on cluster computing.
Fortress [1] provides implicit parallelism and supports the
concept of transactions. However, both are are optimized

for numeric programs. Streams and master/slave paral-
lelism are not explicitly addressed.

The alternative to language extensions are libraries. The
java.util.concurrent package provides constructs
for multithreading in Java [4]. Intel’s Threading Building
Blocks (TBB) is a library for concurrent C++ program-
ming [9]. However, library solutions are not as intuitive
and succinct as well-designed language extensions. While
libraries require less effort to implement than compilers,
composability is often limited. Libraries primarily encap-
sulate functionality without providing semantic information
to the compiler. Appropriate language constructs, on the
other hand, provide additional semantic information which
enables optimizations, better tools, easier debugging, im-
proved understanding, code savings, and higher productiv-
ity.

3. Case Studies on Parallel Programming and
Parallel Design Patterns

We recently carried out case studies on the paralleliza-
tion of real-world applications [8]. These case studies were
intended for learning about parallelization strategies and ad-
equate designs of parallel applications. We observed that
parallelism occurred on several levels of granularity. For
example, Figure 1 illustrates the architecture of a parallel
application for biological data analysis. On the top level,
the architecture is a pipeline. At the next level of granular-
ity, stages 2 and 3 exhibit task parallelism, with some of the
tasks being pipelines. At the next level down, data paral-
lelism is employed. Split-join mechanisms are used for task
parallelism and low-level data parallelism. Implementing
nested parallel architectures such as this one with threads
is painful; the resulting code is hard to understand, tune,
maintain, and extend.

In our case studies we also found that many features of
object-oriented languages are useful when parallelizing se-
quential code, so we decided to add the required concepts
to a general-purpose object-oriented language.

4. Unifying Object-Orientation, Streams, and
Patterns in XJava

In this section, we describe XJava’s language extensions
and implementation. The central construct is thetask; tasks
can be combined toparallel statements.

4.1. Tasks

Syntactically, tasks are special methods. Tasks can be
declared in interfaces or classes and inherit or override other
tasks. Their properties can be specified by common flags

Stage 1 Stage 2 Stage 3 Stage 4

M1

M2

M3

M4

M10

M5

M10

(Instance 1)Input bin 1

Input bin 2

Input bin m

Result
bin 1

Result

bin 2

Result

bin m

M10

(Instance 2)

M10
(Instance m)

R
e
su

lt
 D

a
ta

C

o
n
so

lid
a
ti
o
n

D
a
ta

P
a
rt

iti
o
n

in
g

P
ip

e
li

n
e

 L
a

y
e
r

M
o

d
u

le
 L

a
y
e

r
D

a
ta

 L
a

y
e

r

Pre-

Processing
Post-

Processing

In
p
u

t
d
a
ta

R
e
su

lt
d
a
ta

M7 M8

M6

M9

Figure 1. Conceptual architecture of a parallel
application for biological data analysis [8].

such asprotected, static, abstract, or final.
They may throw or catch exceptions. A task runs as a sepa-
rate thread and has an input and an output port. It receives
a stream of data at its input port and generates a stream of
data at its output port. Both ports are typed. For example,

public X => Y foo() { /* ... */ }

declares a public taskfoowith input typeX and output type
Y. That is, input data has to be of typeX or its subtypes;
output data will be of typeY or its subtypes. These types
may bevoid if there is no input or output. Depending on
the structure of the task body, we distinguish periodic and
non-periodic tasks, as described next.

Periodic tasks define exactly onework block inside
their bodies. Awork block is repeatedly executed as long
as there is input available at the task’s input port. At the
start of each iteration, the next object received at the input
port is assigned to a local variable declared after the key-
word work. A push statement puts an object on the out-
put stream. Thus, periodic tasks are similar to Unix filters,
except that their inputs and outputs can be any data type.
Filters whose input type isvoid also repeat, but their stop-
ping condition is given by a boolean expression after the
work keyword. As soon as a periodic task receives an end-
of-stream token or its boolean expression returns false, it
pushes an end-of-stream token into its output stream and the
repetition of thework block terminates. Additional code
may appear before or after thework block; it is executed
when the task starts or finishes, respectively.

For illustration, consider a file compression applica-
tion. The algorithm divides an inputFile into fixed-sized
Blocks, compresses each of them, and stores the com-

pressedBlocks in the original order in an outputFile.
This scheme is used in applications such as BZip2. The
tasks for reading, compressing and writing could be ex-
pressed as follows:

public void => Block read(File f) {
Iterator i = f.blockIterator();
work(i.hasNext()) { push (Block) i.next(); }

}

public Block => Block compress() {
work(Block b) { push b.compressBlock(); }

}

public Block => void write(File f) {
work(Block b) { f.add(b); }
printFinishMessage();

}

Non-periodic tasks do not define a work block and are
executed only once. They may contain parallel statements,
i.e. combinations of task calls that spawn nested paral-
lelism (cf. next Section). The compiler ensures that in-
put and output types of the nested parallel statement cor-
respond to those input and output types of the surrounding
non-periodic task.

4.2. Parallel Statements

Tasks can be combined by new operators to introduce
parallelism. Such a combination is called a parallel state-
ment. There are two major types of operators, with several
variants.

The “=>” operator creates apipe statement. It connects
tasks via their input/output ports and builds pipelines. For
the file compression example, the statement

read(inFile) => compress() => write(outFile);

creates a pipeline that automatically works in parallel. A
simple producer/consumer configuration is a pipeline with
two stages.

The “|||” operator creates aconcurrent statement. The
operands are tasks that will be executed in parallel. Suppose
we want to compress two files concurrently. Then we would
declare a non-periodic task

compress(File in, File out) {
read(in) => compress() => write(out);

}

encapsulating the pipeline above. The statement

compress(f1, f1out) ||| compress(f2, f2out);

would compress the filesf1 andf2 in parallel and store
the results inf1out anf2out, respectively. There is an
implicit barrier at the end of each parallel statement; the

next statement is only executed after the tasks called in the
parallel statement are finished.

Finally, we illustrate how to build a master/worker con-
figuration, using nested parallelism. First, we need the
workers. They are declared as a concurrent statement
wrapped inside a non-periodic task, say taskb(). The
concurrent statement provides a static number of work-
ers; a shorthand allows the number of workers to be deter-
mined dynamically. Next, the expressiona() => b(),
wherea() is the master task, feeds the workers in a round-
robin fashion with data objects. Variants of this operator
are “=>?” for indeterministic distribution on a first-come-
first-serve basis, and “=>*” for broadcasting objects to all
tasks. These operators simplify the implementation of sev-
eral common patterns described in [6].

4.3. Language Implementation

We built a preprocessor that translates the XJava exten-
sions to native Java, using the Polyglot compiler frame-
work [7]. In addition, we built a prototype runtime sys-
tem consisting of a scheduler and other classes for runtime
management. The scheduler controls the number of running
threads and could enable future performance optimizations
at runtime.

5. Results

We tested the XJava language constructs in several con-
texts to study their fitness for general parallel applications,
not just the streaming domain. First, we tried out simple
examples such as text transformations, sorting algorithms,
matrix multiplications and mandelbrot sets. We created
sequential and parallel versions to compare performance.
Speedups ranged between2.0 and3.5 on a quad-core ma-
chine.

For a few programs, we wrote versions employing ex-
plicit threading. Up to40% of the lines of code could be
saved using XJava.

Furthermore, we implemented the skeleton of the paral-
lelized application introduced earlier (cf. Figure 1) using
our language extensions. The following sketch of task dec-
larations illustrates the design:

void => X stage1() {...}
X => Y stage2() { m1() ||| m2(); }
Y => Z stage3() { m3() ||| m456() ||| m78() |||

m9() ||| m10(); }
Z => void stage4() {...}
...
Y => Z m456() { m4() => m5() => m6(); }
Y => Z m78() { m7() => m8(); }
...
X => Y m1() {...}
...
Y => Z m10() { m101() ||| m102() ||| m103(); }

The typesX, Y, andZ signify the classes of objects gener-
ated by each stage. Finally, the statement

stage1() =>* stage2() =>* stage3() => stage4();

creates the top-level pipeline with nested parallelism as
shown in the figure.

6. Improvements for Software Engineering

Based on our application studies, we believe that the pro-
posed language extensions will make software engineering
of general-purpose parallel applications easier. The power
of object-oriented paradigms does not need to be sacrificed.
The proposed extensions provide a clear, “what-you-see-is-
what-you-get” syntax for parallelism. An XJava program
is more likely to behave as expected by developers than
a threaded form. As many users already know how Unix
pipes work, we built upon this metaphor to express pipeline
parallelism in ordinary code.

XJava’s abstraction mechanisms allow programmers to
“think in tasks”. Wherever possible, XJava hides the con-
fusing details of thread creation and destruction, locks, sig-
nals, or buffers. Thus, it is less likely that programmers for-
get something or make wrong assumptions about the pro-
gram’s behavior. XJava’s operators are composable – a
property that is largely neglected, but which is important
for the engineering of large parallel applications.

Debugging becomes easier since the compiler knows the
semantics of native language constructs and could provide
more precise analyses. In addition, our case studies show
that compared to programs with explicit threading, signifi-
cant code savings can be expected.

7. Conclusion

XJava simplifies the expression of parallelism in general-
purpose parallel applications. The main concepts of its pro-
gramming model are the task abstraction and composition
operators. Tasks can be composed to express different types
of parallelism on different levels of granularity. Severaltest
programs showed promising results: the code was simpler,
shorter, required no explicit synchronization, and provided
less room for bugs.

Further research is needed to asses which other exten-
sions are useful. For this purpose, future case studies are
planned. Static and dynamic analysis could take advantage
of the semantics of the parallel constructs, in order to pro-
vide precise happens-before and may-happen-in-parallel in-
formation. Even with the constructs proposed here, it is still
possible to produce data races and deadlocks. With pre-
cise analysis, these problems could be localized accurately.

The integration of auto-tuning strategies to improve perfor-
mance on different platforms is another area that might ben-
efit from the semantic information contained in tasks and
the combination operators.

Acknowledgments. We thank the University of Karlsruhe
and the Excellence Initiative for their support. We also
thank David Meder for assistance with the experiments.

References

[1] E. Allen, D. Chase, J. Hallett, V. Luchangco, J.-W. Maessen,
S. Ryu, G. L. S. Jr., and S. Tobin-Hochstadt. The Fortress
language specification 1.0, April 2008.

[2] P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. Kiel-
stra, K. Ebcioglu, C. von Praun, and V. Sarkar. X10: an
object-oriented approach to non-uniform cluster computing.
In Proc. OOPSLA ’05, pages 519–538. ACM, 2005.

[3] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting
coarse-grained task, data, and pipeline parallelism in stream
programs. InProc. ASPLOS-XII, pages 151–162. ACM,
2006.

[4] D. Lea. The java.util.concurrent synchronizer framework.
Sci. Comput. Program., 58(3):293–309, 2005.

[5] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes:
a comprehensive study on real world concurrency bug char-
acteristics. InProc. ASPLOS XIII, pages 329–339. ACM,
2008.

[6] T. Mattson, B. Sanders, and B. Massingill.Patterns for par-
allel programming. Addison-Wesley Boston, 2005.

[7] N. Nystrom, M. R. Clarkson, and A. C. Myers. Polyglot: An
extensible compiler framework for Java. In G. Hedin, editor,
CC, volume 2622 ofLecture Notes in Computer Science,
pages 138–152. Springer, 2003.

[8] V. Pankratius, C. Schaefer, A. Jannesari, and W. F. Tichy.
Software engineering for multicore systems: an experience
report. InProc. IWMSE ’08, pages 53–60. ACM, 2008.

[9] J. Reinders.Intel Threading Building Blocks. O’Reilly Me-
dia, Inc, Sebastopol, 2007.

[10] R. Stephens. A survey of stream processing.Acta Informat-
ica, 34(7):491–541, 1997.

[11] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt:
A language for streaming applications. In R. N. Horspool,
editor,CC, volume 2304 ofLecture Notes in Computer Sci-
ence, pages 179–196. Springer, 2002.

