
XJava: Exploiting Parallelism with

Object-Oriented Stream Programming

Frank Otto, Victor Pankratius, and Walter F. Tichy

University of Karlsruhe, 76131 Karlsruhe, Germany
{otto,pankratius,tichy}@ipd.uka.de

Abstract. This paper presents the XJava compiler for parallel pro-
grams. It exploits parallelism based on an object-oriented stream pro-
gramming paradigm. XJava extends Java with new parallel constructs
that do not expose programmers to low-level details of parallel program-
ming on shared memory machines. Tasks define composable parallel ac-
tivities, and new operators allow an easier expression of parallel patterns,
such as pipelines, divide and conquer, or master/worker. We also present
an automatic run-time mechanism that extends our previous work to
automatically map tasks and parallel statements to threads.

We conducted several case studies with an open source desktop search
application and a suite of benchmark programs. The results show that
XJava reduces the opportunities to introduce synchronization errors.
Compared to threaded Java, the amount of code could be reduced by up
to 39%. The run-time mechanism helped reduce effort for performance
tuning and achieved speedups up to 31.5 on an eight core machine.

1 Introduction

With multicore chips, software engineers are challenged to provide better per-
formance by exploiting parallelism. Although well-established languages such as
C++ or Java use the thread model for parallel execution, this model has turned
out to be error-prone and difficult to handle for large programs. Programmers are
forced to think on low abstraction levels and consider many details of synchro-
nization. As a result, synchronization bugs, deadlocks, or data races are likely
to occur. The growing complexity of multithreaded software makes it painful to
locate such defects.

Several of our earlier case studies on parallel programming in various ar-
eas [10,11] show that best performance was achieved with a structured approach,
considering different abstraction layers and patterns for parallelism. However,
despite clear objectives and reasonable designs of the parallel programs, the
implementation has always required a lot of effort.

XJava [9] is a programming language that extends Java with language con-
structs for parallelism, combining concepts from object-orientation and stream
languages. Parallelism is exploited without requiring the programmer to explic-
itly define threads. The central construct in XJava is the task, which is syntac-
tically similar to a method and which encapsulates an activity to be executed in

H. Sips, D. Epema, and H.-X. Lin (Eds.): Euro-Par 2009, LNCS 5704, pp. 875–886, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

876 F. Otto, V. Pankratius, and W.F. Tichy

parallel. Tasks can be combined with special operators to obtain parallel state-
ments that express master/worker or pipeline parallelism.

The XJava compiler basically performs a source-to-source transformation;
XJava code is translated into native, instrumented Java code which is even-
tually translated into bytecode. The XJava compiler divides tasks and parallel
statements into logical code units that are passed to a built-in scheduler. The
scheduler transparently employs a fixed number of dedicated executor threads to
execute these units. This approach intends to reduce the degree of non-
determinism in execution behavior. The scheduling algorithms can easily be
replaced or extended in the future to support real-time load balancing.

Our case studies show that XJava makes parallel programming simpler and
more productive; there is less potential of inadvertently introducing synchro-
nization bugs. To evaluate XJava’s capabilities, we considered a desktop search
engine and a selection of smaller benchmark programs. For each application,
XJava code was compared in detail with equivalent threaded code as well as
sequential code. Compared to threaded Java, XJava lead to code savings of up
to 39% and required 87.5% − 100% less manual synchronization. We achieved
speedups between 1.5 and 31.5 over sequential Java on an eight core machine.

In this paper, we briefly sketch the XJava extensions introduced in our previ-
ous work [9] and present the key details of the mechanisms in the compiler and
runtime system. In addition, we present new results that demonstrate XJava’s
ability to implement parallel design patterns on several abstraction levels.

2 The XJava Language

XJava [9] extends Java with more intuitive constructs for general-purpose paral-
lel programming. Several types of parallelism can be expressed in this language,
although we only introduce two new keywords and two new operators.

XJava combines the principles of object-orientation with stream languages.
XJava’s design intends to make programs behave as programmer would intu-
itively expect. Thus, code understanding and maintainability should become
easier as well. XJava makes parallelism accessible at higher abstraction levels
and hides manual synchronization.

2.1 Tasks

Tasks are key constructs and are in fact special methods. Tasks encapsulate
parallel activities that run within a thread, and can be combined to parallel
statements (cf. Section 2.2). In contrast to methods, tasks have no return type,
but typed input and output ports. A public task with input type A and output
type B is declared as

public A => B t() { ... }

The input port receives a stream of data with elements of type A, and a stream
of data elements of type B is sent to the output port. If a task has no input or

XJava: Exploiting Parallelism with Object-Oriented Stream Programming 877

output, the respective port type is void. We distinguish between two kinds of
tasks: periodic tasks and non-periodic tasks.

Periodic tasks define exactly one work block that is repeatedly executed for
each stream element. For example, the code

String => String encode(Key key) {
work(String s) { push encrypt(s, key); }

}

declares a periodic task that expects an input stream of String elements. The
current element of the input stream is assigned to the local variable declared
in the parenthesis after the work keyword. The work block – in this case, the
encryption routine – is repeatedly executed for each element of the input stream.
Each received element is encrypted with the key passed as an argument to the
task. The push statement appends the encrypted element, i.e., a String object,
to the output stream. The work block terminates when an end-of-stream token
is received on the input port.

By contrast, non-periodic tasks do not have a work block, i.e., their code
is executed only once. The body of a non-periodic task may contain a parallel
statement for introducing nested parallelism.

2.2 Parallel Statements

Parallel statements are used to combine tasks to more complex parallel con-
structs. They consist of tasks that are concatenated by the operators “=>” and
“|||”.

The “=>” operator creates a pipe statement ; it connects tasks on their input
and output ports. This operator can be used to build pipelines of arbitrary
lengths. For example, consider the tasks

void => String read(File fin) { /* ... */ }
String => void write(File fout) { /* ... */ }

read reads some file and turns its content into a stream of String objects; write
accepts a stream of String objects and writes them to an output file. For given
input and output files fin and fout and some key key, the statement

read(fin) => encode(key) => write(fout);

creates a pipeline for encoding a file and automatically exploits pipeline
parallelism.

Concurrent statements are defined by the “|||” operator that concurrently
executes tasks that are not allowed to be connected neither input nor output
ports. For example, consider a task for simulating work based on randomly
generated events:

void => void simulateW() { /* ... */ }

878 F. Otto, V. Pankratius, and W.F. Tichy

Suppose we want to run several simulations to collect data or retrieve statistical
average values, we can use the following statements:

simulateW() ||| simulateW() ||| simulateW(); // 3 tasks
simluateW():i; // i tasks

The first statement concurrently executes simulateW three times. Alternatively,
the “:” operator can be used to define the number of parallel tasks dynamically.

3 The XJava Compiler

The XJava compiler extends the Polyglot compiler framework [8]. The XJava
compiler checks if task declarations and parallel statements are valid and pro-
duces Java code that is instrumented with calls to the XJava scheduler (cf.
Section 4).

3.1 Compiling Periodic Tasks

A periodic task defines exactly one work block; an arbitrary number of Java
statements may precede or follow this block. Thus, the body of a periodic task
can be divided into three parts that we call BW (“before work”), W (“work”)
and AW (“after work”). Consider a slightly modified form of the encode task
from Section 2.1 with additional code before and after the work block:

public String => String encode(Key) {
... /* Java code */ /* BW */
work (String s) { push encrypt(s, key); } /* W */
... /* Java code */ /* AW */

}

This task declaration is compiled to a wrapper class EncodeWrapper. Its super-
class PeriodicTask is provided by the XJava runtime library; it is an abstract
class defining the methods beforeWork(), work(int) and afterWork(). These
methods are implemented in the wrapper class and contain the Java code be-
fore, in, and after the work block. The purpose of this separation is to divide a
task into logical units that can be executed individually by the scheduler. This
reduces the degree of non-determinism makes parallel execution easier to predict.

class EncodeWrapper extends PeriodicTask {
Connector cin, cout;
...
beforeWork() { ... /* Java code for BW */ }
work(int n) { /* repeatedly called by the scheduler */
for (int i = 0; i < n; i++) {
... /* Java code for W */ }

}
afterWork() { ... /* Java code for AW */ }

}

XJava: Exploiting Parallelism with Object-Oriented Stream Programming 879

Connector is a class for buffering elements that are exchanged between tasks
and is part of XJava’s runtime framework. cin and cout each contain buffers to
receive or send elements. Whenever encrypt expects a new incoming element in
the previous example, it calls the respective method of the buffer in cin; a push
statement is mapped to a call to a similar method of the cout buffer. work(int
n) provides a method to the scheduler to execute n iterations of the work block
(cf. Section 4). The number n of iterations is determined by the scheduler. Local
variables of each task are saved, i.e., each task instance has an internal state.
When work has no more iterations to do and terminates, the afterWork method
is called. In addition, the task will close its output stream and will be marked
as finished.

3.2 Compiling Non-periodic Tasks

Since non-periodic tasks do not define a work block, their bodies cannot be
separated. A non-periodic task foo is compiled to a wrapper class extending the
class NonPeriodicTask in XJava’s runtime framework. This class implements
Java’s Runnable interface; the run method contains Java code representing the
body of the task:

class FooWrapper extends NonPeriodicTask {
Connector cin, cout;
...
run() { /* Java code for foo’s body */ }

}

3.3 Compiling Parallel Statements

Task calls and parallel statements are managed by XJava’s scheduler. Whenever
a task is called, an instance of its corresponding class will be created and passed
on to the scheduler. The scheduler decides when and how to execute it (cf.
Section 4).

Parallel statements consist of a number of tasks connected by operators. The
compiler checks in a parallel statement if input and output types of tasks match.
Each task’s input and output connectors are selected according to the operators
involved. For example, consider the previous example of a pipe statement for
encoding a file:

read(fin) => encode(key) => write(fout);

This statement is compiled to

Connector c1 = new Connector(); Connector c2 = new Connector();
ReadWrapper r = new ReadWrapper(fin, c1);
EncodeWrapper c = new EncodeWrapper(f, c1, c2);
WriteWrapper w = new WriteWrapper(fout, c2);
Scheduler.add(r); Scheduler.add(c); Scheduler.add(w);
w.join();

880 F. Otto, V. Pankratius, and W.F. Tichy

For each wrapper class, connectors as well as the arguments of the correspond-
ing task call are passed to the constructor. The task calls themselves are mapped
to calls of Scheduler.add(Task). After each parallel statement, the compiler
injects a join call; this method is part of XJava’s runtime library and ensure that
statements following the parallel statement will only execute after all tasks are
finished. For a pipe statement, only the last task of the statement needs to be
joined as it also finishes last. For a concurrent statement, there is no time order,
so each task of that statement needs to be joined.

4 Scheduling Mechanism

Section 3 described how task declarations, task calls and parallel statements are
compiled. Figure 1 shows how tasks are passed to and executed by the scheduler.
The scheduler was designed to avoid unbounded growth of thread numbers and
provide efficient execution. Both periodic and non-periodic tasks are compiled
to wrapper classes; task calls are mapped to new instances of these classes and
passed on to the scheduler.

When a periodic task PT is called, its instance is added to the task queue.
The scheduler employs a fixed number of executor threads that take task in-
stances from the queue, execute some iterations of their work method, and en-
queue the task instance back. By default, the number of executor threads is
equal to the number of CPU cores that are available. The number of work iter-
ations is fixed and a default value is globally defined. In the future, we plan to
dynamically adjust this value based on the execution behavior and work load.
Tasks that are currently waiting for input elements are moved to the end of the
queue. This mechanism prioritizes tasks for execution depending on the amount
of work to be done.

Non-periodic tasks are also passed on to the scheduler, but they are not
suitable for partial execution by executor threads. Instead, the scheduler decides
based on the number of currently active threads and available memory, whether

Fig. 1. Periodic and non-periodic tasks are compiled and passed on to XJava’s sched-
uler. The scheduler provides executor threads for periodic tasks. Non-periodic tasks
are executed either concurrently in separate threads or sequentially.

XJava: Exploiting Parallelism with Object-Oriented Stream Programming 881

to execute a particular task sequentially by directly calling its run method, or
to execute it in a separate thread.

5 Implementing Parallel Design Patterns

Parallel design patterns as described by Mattson et al. [7] provide useful prin-
ciples for developing parallel software. However, the gap between patterns and
program code has to be bridged by the programmer. XJava’s language constructs
help bridge that gap; the input-output-mechanism of tasks and their compos-
ability allow for expressing several types of parallelism such as pipelines, divide
and conquer parallelism, or master/worker. As pipelines were already illustrated
earlier, we now provide examples for divide and conquer and master/worker
parallelism.

5.1 Divide and Conquer Algorithms

Divide and conquer algorithms are easy to express in XJava, as the parallel code
is similar to the sequential version. For example, the following code sketches a
sequential merge sort algorithm:

void mergesort(int from, int to) {
if (to - from > threshold) {
int x = from + (to - from)/2;
mergesort(from, x);
mergesort(x + 1, to);
merge(from, x + 1, to);

} else sort(from, to);
}

Parallelizing this algorithm in XJava is simple. (1) We need to make the method
mergesort a void => void task. (2) Instead of sequentially calling mergesort
two times in the recursion step, we combine these calls to a concurrent statement
using the “|||” operator:

void => void mergesort(int from, int to) { // (1)
if (to - from > threshold) {
int x = from + (to - from)/2;
mergesort(from, x) ||| mergesort(x + 1, to); // (2)
merge(from, x + 1, to);

} else sort(from, to);
}

The programmer does not need to think about synchronization or the number of
running threads. This example shows how efficiently divide-and-conquer-based
parallelism can be expressed in XJava. More details and performance results of
this algorithm are given in Section 6.

882 F. Otto, V. Pankratius, and W.F. Tichy

5.2 Master/Worker Configurations

The master/worker pattern is a powerful concept that is used in many parallel
applications. In XJava, it can be created by parallel statements that use variants
of the “=>” operator. For example, consider a file indexing algorithm. The task
declaration

File => void index() { /* ... */ }

specifies a worker task expecting a stream of File objects in order to index
them. The non-periodic task

File => void indexers(int i) {
index():i;

}

encapsulates a set of i workers that run concurrently to make indexing parallel.
The task

void => File visitFiles(File root) { /* ... */ }

can be interpreted as a master task that recursively visits all files in the directory
specified by the root argument. For a File object dir that we want to index,
we can easily create a master/worker configuration employing a certain number,
say n, workers:

visitFiles(dir) => indexers(n);

By choosing the “=>” operator, the workers are fed in a round-robin style with
elements from the stream. Alternatively, the “=>?” operator distributes elements
on a first-come-first-serve basis; the “=>*” operator would broadcast each ele-
ment to all workers. In the file indexing context, the “=>?” apparently makes
most sense: the order in which files are indexed is not important. In addition,
the worker’s waiting times are reduced, which results in better performance.

6 Experimental Results

We evaluated the sequential (i.e., single-threaded), multi-threaded, and XJava
versions of four benchmark programs to compare code structure and perfor-
mance. The threaded versions were written before the XJava versions to make
sure that programs do not just re-implement the XJava concepts. We chose the
programs to cover data, task, and pipeline parallelism. All programs were tested
on three different machines: (1) an Intel Quadcore Q6600 with 2.40 GHz, 8 GB
RAM and Windows XP Professional; (2) two Intel Xeon Quadcores E5320 with
1.86 GHz (Dual-Quadcore), 8 GB RAM and Ubuntu Linux 7.10; (3) a Sun Ni-
agara 2 with 8 cores at 1.2 GHz capable of executing 4 threads, 16 GB RAM,
and Solaris 10.

XJava: Exploiting Parallelism with Object-Oriented Stream Programming 883

6.1 The Benchmark

JDesktopSearch (JDS) [5] is an open source desktop search application written
entirely in Java. We use it as an example of a realistic, major application. It
consists of about 3, 400 lines of code (LOC) plus several additional libraries.
The file indexing part is already multithreaded, but it can also be executed with
just one thread. We re-engineered this part from Java to XJava; the relevant
code had 394 LOC. We split the indexing methods into tasks to implement a
master/worker approach as described in Section 5.2. Conceptually, the master
task recursively walks through the root directory that has to be indexed, pushing
the contained indexable files to the workers. We tested JDS for a 242 MB sample
directory containing different file types and file sizes with a total of 12, 223 files
in 3, 567 folders.

Additionally, we considered a selection of three smaller programs that are stan-
dard examples for parallelization. Mandelbrot computes mandelbrot sets based
on a given resolution and a maximum number of iterations. Matrix multiplies
matrices of type double that are randomly generated. MergeSort sorts an array
of 3 million randomly generated integer values. It is a representative of divide
and conquer algorithms; the XJava version implements the code already sketched
in Section 5.1.

6.2 Results

Code. Table 2 shows code metrics for the sequential, threaded and XJava ver-
sions of the benchmark programs. In addition, the table presents total and rela-
tive improvements achieved by XJava over threaded Java. Outstanding benefits
of XJava over threaded Java are that XJava saves code and significantly reduces
the need for manual synchronization. For MergeSort, the sizes of the sequential
and XJava programs are the same; and compared to the threaded MergeSort,
XJava saved 39% of code. In XJava, fewer classes are required; the number of
attributes is lower since attributes for synchronization or status notifications
are no longer needed. We counted the occurences of synchronized, wait, join,
notify, notifyAll, sleep, and java.util.concurrent. For the desktop search
application, the number of synchronization constructs was reduced from 8 to 1;
the other XJava benchmark programs do not require any manual synchroniza-
tion at all. This effect comes from XJava’s high abstraction level and its implicit
synchronization mechanisms. Accordingly, the number of try-catch blocks is re-
duced for all programs since exceptions caused by concurrent modifications or
interrupted threads do not need to be considered anymore. Our XJava programs
used a few more methods (including tasks) than threaded Java, which lead to
marginally lower average nested block depths.

Performance. We measured the performance of all benchmark programs’ se-
quential, threaded and XJava versions; results are shown in Figure 3. Overall,
XJava can indeed compete with threaded Java as execution times are on the
same level. Only for divide and conquer parallelism as in the MergeSort program,

884 F. Otto, V. Pankratius, and W.F. Tichy

Fig. 2. Code metrics of the benchmark programs. In terms of code sizes and used
synchronization constructs, XJava shows significant improvements over threaded Java.

JDS Mandelbrot Matrix MergeSort

seq 87241 3281 41283 9719

par 58876 1187 9465 2244

xjava 58017 922 9438 3063

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

E
x
e
c
u
ti
o
n

ti
m

e
s

(m
ill

is
e
c
o
n
d
s
)

Intel Q6600 QuadCore

JDS Mandelbrot Matrix MergeSort

seq 59245 4361 59104 17768

par 27715 1173 7274 3379

xjava 24640 880 6149 5378

0

10000

20000

30000

40000

50000

60000

70000

E
x
e
c
u
ti
o
n

ti
m

e
s

(m
ill

is
e
c
o
n
d
s
)

2x Intel XEON E5320 QuadCore

JDS Mandelbrot Matrix MergeSort

seq 546583 12390 316987 66697

par 257086 4049 9013 5234

xjava 264530 2009 10134 5297

0

100000

200000

300000

400000

500000

600000

E
x
e

c
u

ti
o

n
ti
m

e
s

(m
ill

is
e

c
o

n
d

s
)

Sun Niagara2

Fig. 3. Performance results of the sequential (seq), threaded (par) and XJava (xjava)
versions of the benchmark programs

XJava: Exploiting Parallelism with Object-Oriented Stream Programming 885

XJava tends to be a bit slower on all machines; on the Dual-Quadcore machine,
the threaded version is even 1.6 times faster than the XJava version. The reason
is most likely some overhead in the scheduler when executing non-periodic tasks.
The Matrix program achieved an almost linear speedup on all machines, both
for threaded Java and XJava. The speedups of the desktop search application
were similar for Java and XJava; the maximum of only 2.1 can be explained with
the memory bandwidth and bus bottlenecks.

Summary. Compared to threaded Java, the benchmark programs show that
XJava simplifies parallel programming by reducing the amount of code, espe-
cially the need for manual synchronization and exception handling. We achieved
speedups that can compete with the performance of threaded Java, although
there is still potential for optimizing the scheduling mechanism.

7 Related Work

XJava is inspired by stream-oriented languages [14]. Stream programs consist
of filters that are connected to form a stream graph. An input data stream of
arbitrary length flows through that graph and is processed by the filters. Stream
languages such as StreamIt have been demonstrated to efficiently exploit data,
task, and pipeline parallelism for applications from the signal processing and
graphics domain [15,4]. These languages were not designed for programming
general-purpose applications; they use rather simple data structures and do not
support object-orientation.

Chapel [2], Fortress [12] and X10 [3] are object-oriented languages for paral-
lel programming. However, all of them are designed for explicit multithreading
and require considerable manual synchronization. Their programming models
focus on aspects of data and task parallelism; streams, master/slave or pipeline
parallelism are not addressed explicitly.

As an alternative to new languages or language extensions, several libraries
were designed to simplify parallel programming. Those libraries usually provide
thread pools, data structures such as futures, locking mechanisms and synchro-
nization constructs such as barriers. Intel’s Threading Building Blocks [13] and
Boost [1] are C++ libraries; the java.util.concurrentpackage [6] offers classes
and interfaces for concurrent programming in Java. In contrast to native lan-
guage constructs, the semantic information of library constructs is less powerful
to enable more advanced optimizations or debugging – both essential in parallel
programming.

8 Conclusion

XJava extends Java by providing tasks as native language constructs, which can
be combined to parallel statements. In addition, XJava simplifies the implemen-
tation of parallel programming patterns and moves a significant part of low-level
synchronization behind the scenes. Focusing in this paper on XJava’s compiler

886 F. Otto, V. Pankratius, and W.F. Tichy

and scheduling mechanism, we benchmarked four XJava programs on three dif-
ferent multicore machines. Each XJava program was compared to equivalent
threaded and sequential versions in terms of performance and code structure.
XJava’s approach is indeed applicable on programs of different complexity. We
achieved speedups between 1.5 and 31.5 over sequential Java and, compared to
threaded Java, code savings up to 39%.

Future work will include more case studies and experiments with applica-
tions from different domains. Also, more research is needed to evaluate different
scheduling strategies in the context of XJava. A special focus will be on real-time
tuning of scheduling parameters.

Acknowledgments. We thank the University of Karlsruhe and the Excellence
Initiative for their support.

References

1. Boost C++ Libraries, http://www.boost.org/
2. Chamberlain, B.L., Callahan, D., Zima, H.P.: Parallel Programmability and the

Chapel Language. Int. J. High Perform. Comput. Appl. 21(3) (August 2007)
3. Charles, P., et al.: X10: an object-oriented approach to non-uniform cluster com-

puting. In: Proc. OOPSLA 2005. ACM Press, New York (2005)
4. Gordon, M.I., Thies, W., Amarasinghe, S.: Exploiting coarse-grained task, data,

and pipeline parallelism in stream programs. In: Proc. ASPLOS-XII. ACM Press,
New York (2006)

5. JDesktopSearch, http://sourceforge.net/projects/jdesktopsearch
6. Lea, D.: The java.util.concurrent synchronizer framework. Sci. Comput. Program.

58(3) (2005)
7. Mattson, T.G., Sanders, B.A., Massingill, B.L.: Patterns for parallel programming.

Addison-Wesley, Boston (2005)
8. Nystrom, N., Clarkson, M.R., Myers, A.C.: Polyglot: An extensible compiler frame-

work for java. In: Hedin, G. (ed.) CC 2003. LNCS, vol. 2622, pp. 138–152. Springer,
Heidelberg (2003)

9. Otto, F., Pankratius, V., Tichy, W.F.: High-level Multicore Programming with
XJava. In: ICSE 2009, New Ideas And Emerging Results. ACM Press, New York
(2009)

10. Pankratius, V., Jannesari, A., Tichy, W.F.: Parallelizing BZip2. A Case Study in
Multicore Software Engineering. Accepted for IEEE Software (September 2008)

11. Pankratius, V., Schaefer, C., Jannesari, A., Tichy, W.F.: Software engineering for
multicore systems: an experience report. In: Proc. IWMSE 2008. ACM Press, New
York (2008)

12. Project Fortress, http://projectfortress.sun.com/
13. Reinders, J.: Intel Threading Building Blocks. O’Reilly Media, Inc., Sebastopol

(2007)
14. Stephens, R.: A Survey of Stream Processing. Acta Informatica 34(7) (1997)
15. Thies, W., Karczmarek, M., Amarasinghe, S.: StreamIt: A language for streaming

applications. In: Horspool, R.N. (ed.) CC 2002. LNCS, vol. 2304, p. 179. Springer,
Heidelberg (2002)

http://www.boost.org/
http://sourceforge.net/projects/jdesktopsearch
http://projectfortress.sun.com/

	XJava: Exploiting Parallelism with Object-Oriented Stream Programming
	Introduction
	The XJava Language
	Tasks
	Parallel Statements

	The XJava Compiler
	Compiling Periodic Tasks
	Compiling Non-periodic Tasks
	Compiling Parallel Statements

	Scheduling Mechanism
	Implementing Parallel Design Patterns
	Divide and Conquer Algorithms
	Master/Worker Configurations

	Experimental Results
	The Benchmark
	Results

	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

