
A detailed Desription of two ontrolled Experimentsonerning the Usefulness of Assertions as a Means forProgrammingMatthias M. M�uller1, Rainer Typke2, Oliver Hagner3Computer Siene DepartmentUniversity of Karlsruhe, Germany1muellerm�ipd.uka.de, 2rainer�typke.om, 3oliver.hagner�bigfoot.deTehnial Report no. 2002-2AbstratAssertions or more generally \Programming by ontrat" have gained widespreadaeptane in the omputer siene ommunity as a means for orret program de-velopment. However, the literature laks an empirially evaluation of the bene�ts aprogrammer gains by using assertions in his software development. This paper re-ports about two ontrolled experiments to lose this gap. Both experiments ompared\Programming by ontrat" to the traditional programming style without assertions.The evaluation suggests that assertions tend to derease the programming e�ort andthat assertions lead to more reliable programs ompared to those programs writtenwithout using them.1 IntrodutionAssertions have gained widespread aeptane in the omputer siene ommunity as amethod for orret program development. They are used in numerous di�erent appliationdomains where program quality is of major onern. The literature about assertions orthe more ommon priniple of \Programming by Contrat" desribes a never ending storyof suess. For example, Voas [Voa97℄ states that \assertions an be a means of boostingtesting's value where masking errors are most likely". And aording to MKim [MK96℄,\Programming by ontrat is a way to provide rigorous spei�ations in a way that isaessible to a good tehnial programmer." He onludes: \Therefore programming byontrat is a good thing!"We do not disagree with these statements, but so far, most of the literature about asser-tions emphasizes their advantages without empirially evaluating the main question: Whatbene�t does a programmer gain by using assertions in his software development? From an1

2 1 INTRODUCTIONeonomial point of view, that would be the most important question for every managerwho is onfronted with a new tehnique. What do I get from it and at what prie? So far,literature has no answer to this question. This is where our experiments ome into play.Meyer's four hypotheses about the advantages of assertions formed the starting point forour study [Mey88℄.Meyer's Hypotheses 1 Software is orret as it is developed along with its spei�ation.Meyer's Hypotheses 2 Usage of assertions leads to a better understanding of the solu-tion and the program.Meyer's Hypotheses 3 The development of doumentation is easier with assertions.Meyer's Hypotheses 4 Assertions form a base for strutured testing and orretion.These hypotheses over four areas that might be inuened by the use of assertions: pro-gram orretness, program understanding, doumentation, and testing. Sine it is almostimpossible to onsider all these issues in one experiment, we onentrated on the �rst twotopis, program orretness and program understanding. Both issues were onsidered indi�erent situations, i.e., during the development of new software and during maintenane.We ompared software development with the use of assertions to development withoutassertions. Meyer's last two hypotheses were not within the sope of our study.Both experiments were onduted as part of a pratial training ourse introduing thePSP (personal software proess) [Hum97℄ held during the winters of 1999 and 2000 atthe University of Karlsruhe. Partiipants were omputer siene graduate students. Thesubjets in the �rst experiment EXP1 used C and APP [Ros92℄, while those in the seondexperiment EXP2 used Java with jContrat [St�o99℄. Sine we were interested in boththe e�ets of assertions when writing new software and the e�ets on maintainability, onetask of EXP1 was to write new funtions that did not interat muh with the rest of theprogram, while the other task of EXP1 required a deeper understanding of the program.EXP2 involved solving one programming task whih had the harater of developing newsoftware.The evaluation of both experiments suggests that assertions derease the programminge�ort for maintenane, measured as time needed to �nish the task, while the program-ming e�ort slightly inreases during the development of new ode. If we assume that theprogramming e�ort depends on program understanding, we have to aept Meyer's seondhypothesis for maintenane, but we annot aept it for the development of new ode.EXP2 also evaluated the reliability of the resulting programs. The result is that programsdeveloped with assertions had a slightly better reliability than those programs developedwithout assertions. But this advantage is only marginal. And at �rst glane, we alsoannot aept Meyer's �rst hypothesis onerning better program orretness. But, if welook at the programs before the quality assurane stage, i.e., the program versions thesubjets onsidered �nished, the programs developed with assertions had a muh higher

3reliability, though not signi�ant, than the other programs. And for these intermediateprograms, Meyer's �rst hypotheses holds.This paper is organized as follows: the next setion presents related work about evaluationof assertions. Setion 3 desribes the used assertions tools APP and jContrat. Setion 4shows the experimental settings. In setion 5, the results are disussed.2 Related WorkMeyer's integration of assertions into Ei�el as native language onstruts [Mey88℄ is notthe only example of assertions being added to programming languages. Other examplesare the assert keyword in Java 1.4 [jav℄, ANNA (ANNotated Ada) [LST91℄, Tl [Coo97℄,iContrat [Sys℄, jContrat [St�o99℄, APP [Ros92℄, xUnit [xun℄, and the assert-library in C.In an empirial study, Leveson et al. [LCKS90℄ ompared software error detetion selfheks with N-version voting. They noted that there are great di�erenes in the ability ofindividual programmers to design and plae e�etive heks. And generally, spei�ation-based heks alone were not as e�etive as ombining them with ode-based heks. Theomparison of self heks and N-version voting revealed that both tehniques identi�ed thesame number of defets, although the observed defets were not the same. In fat, selfheks deteted errors aused by faults that had not been deteted by N-version voting inone million of randomly generated input ases. The authors onlude that self hekingmay have important advantages over voting.Rosenblum developed the \Annotation PreProesser" (APP) for C, see 3.1 for a desription,and presented a lassi�ation of faults found with and without APP [Ros95℄. He showedthat almost 75% of all observed faults ould be found with assertions written with APP.Other work onerning assertions mention their bene�ts but lak empirial evidene aboutthe assumptions made. The following list is an exerpt and does not laim to be omplete.Lukham, Shankar, and Takahashi [LST91℄ propose a method alled \two-dimensionalpinpointing". They insert annotations into the ode whih hek onformane with spei-�ations during runtime. When violations are found, they try to pinpoint the subunit thataused the inonsisteny. Their searh varies with the struture level of the software andthe test sequene length.MKim [MK96℄ emphasizes the bene�t of using assertions. He does not rely on a speialtool, instead, he developed rules that guide the insertion of assertions to get the mostvaluable bene�t.Shneider [Sh98℄ argues in the same manner as MKim when he disusses how assertionalreasoning an be used in the analysis and development of onurrent programs.3 APP and jContratBefore we desribe the experiment settings in setion 4, we shall desribe the assertiontools that were used for the experiments, APP and jContrat.

4 3 APP AND JCONTRACT3.1 APPAPP (\Annotation Preproessor for C Programs") allows the programmer to add preon-ditions and postonditions to funtions in C programs. Also, assertions an be inludedat any plae within the funtions. The programmer an ontrol whether these onditionsand assertions are heked during runtime and what should happen if the heks fail.The APP tool was developed by David S. Rosenblum [Ros92℄. A detailed desription of allaspets of this tool an be found in its man page (see [Ros℄). Our desription will mainlyfous on the syntax and semantis, whih should be enough for an overview of how it anbe used.APP assertions are written between the speial omment delimiters /*� . . . �*/. WithinAPP assertion regions, omments an be plaed between \// " and the end of the line.For APP assertions, C expressions are used with the onvention that zero is interpreted as\false", while non-null pointers and numbers are interpreted as \true". In addition to thestandard C keywords, the following keywords an be used for writing APP assertions:� assume <ondition>;This keyword denotes a preondition. The programmer an plae an arbitrary num-ber of assume onditions between the head and body of a funtion. Whenever thefuntion is alled, all these onditions are heked before the �rst line of the funtionis reahed. If a hek fails, the user-de�ned ation takes plae. The default ation isto print a message to stderr whih inludes the type of the violated assertion andthe line number.� promise <ondition>;Postonditions are spei�ed with this keyword. Like preonditions, they are plaedbetween the head and body of a funtion. The only di�erene between the assumeand promise keywords is the point of time when these assertions are heked. Post-onditions are heked after the funtion has been ompletely exeuted, but beforeontrol is returned to the aller.� return <identifier> where <ondition>;The return keyword an be used to speify a property of the return value. Therefore,this kind of assertion is impliitly a postondition. Like the promise and assumekeywords, it is plaed between the head and body of a funtion. Multiple returnonditions are heked sequentially.� assert <ondition>;This keyword an be used to hek a ondition anywhere within the body of a fun-tion.� in <expression>Expressions that are preeded with \in" are evaluated with the value they had whenthe urrent funtion was alled, even if the expression is somewhere inside the urrentfuntion or part of a postondition. In Ei�el, the same e�et is ahieved with the

3.1 APP 5\old" keyword. The APP \in" should not be onfused with the \in" keyword injContrat.Examples for the keywords that were mentioned so far:int square_root(int x)/*�assume x >= 0;return y where y >= 0;return y where y*y <= x&& x < (y+1)*(y+1);�*/{ ...}The preondition is: x � 0.Postondition: The return value is � 0, its square is � x, but x < (return value +1)2.void swap(int *x, int *y)/*�assume x && y && x != y;promise *x == in *y;promise *y == in *x;�*/{ *x = *x + *y;*y = *x - *y;/*�assert *y == in *x;�*/*x = *x - *y;}Here the preondition is that neither x nor y are null pointers and that they do not pointto the same loation.Postonditions: the values that x and y point to have swithed plaes.The assertion within the funtion body marks the line where one of the postonditionsshould already hold, provided that there was no overow.In addition to the keywords shown above, there are the quantors� all (Initialisation; loop ondition; iteration) <expression>;and� some (Initialisation; loop ondition; iteration) <expression>;whih are onvenient for speifying properties of many array elements in a single statement.

6 4 EXPERIMENTAL SETTINGS3.2 jContratWith jContrat, lass invariants an be de�ned as well as pre- and postonditions formethods. The example below illustrate the syntax of jContrat assertions. All assertionsare part of a JavaDo omment. The jContrat preproessor transforms these speialassertion tags into Java soure ode. The result of the preproessing is then the originalsoure ode merged with the Java ode resulting from assertions. The pre-proessed odean then be ompiled with a normal Java ompiler. It is easy to disable the assertions byjust skipping the preproessing step before ompiling the soure ode.The example shows a greeting depending on the urrent time. The parameter of the methodmust be a valid objet referene (preondition) and the returned greeting string is either"hello" or "good night" (postondition)./��� �require Time != nu l l� �ensure return . equa l s (" He l lo ")� j j return . equa l s ("Good night ")�/St r ing Welome (St r ing Time) f . . . gListing: jContratExample.javaIf an assertion is violated, the program is normally stopped with a runtime exeptionsaying whih assertion (method name, pre- or postondition) is violated. The jContratpreproessor an also be used for heking the assertions without stopping the programwhen an assertion is violated. The violation will then only be reported on the standarderror output. We all these kind of assertions "silent assertions".4 Experimental settingsEXP1 used a ounterbalaned design, while EXP2 used a single-fator, posttest-only, inter-subjet design [Chr94℄.4.1 SubjetsOverall, 22 students partiipated in the experiments, 9 in EXP1 and 13 in EXP2. Whilein EXP1, all subjets solved a task with and without assertions, the subjets in EXP2were divided into an experimental group (7 subjets) and a ontrol group (6 subjets).All partiipants were male Computer Siene graduate students who had just partiipatedin a one-semester graduate lab ourse introduing the PSP (personal software proess)[Hum97℄.During the PSP-ourse, the partiipants were introdued to assertions. After this introdu-tion, they were told to use them during their remaining program assignments of the PSP.The partiipants had to take part in the experiment in order to get their ourse redits.

4.2 Hypotheses 74.2 HypothesesBased on Meyer's �rst two hypotheses, we investigated the following hypotheses in theexperiments.HReliability Using assertions results in more reliable programs.HE�ort Using assertions redues the programming e�ort of development or maintenanetasks.Thus, we obtained the following null-hypotheses.H0;Reliability The programs developed with assertions are at most as reliable as programsthat aren't developed with assertions.H0;E�ort The programming e�ort does not derease when using assertions.4.3 First Experiment4.3.1 TaskSine the number of partiipants for the �rst experiment was rather small, we needed tasksthat allow the use of eah partiipant as a member of a group that uses assertions as wellas a member of a ontrol group that doesn't. Also, the problems to be solved by thesubjets had to be suÆiently omplex for any e�ets to be visible, while at the same timestill being solvable within the limited amount of time people were willing to spend on theexperiment.In order to ful�ll these onstraints, the partiipants were assigned two tasks that werebased on the same C program. These tasks were unrelated so that people ould be usedboth as a member of the ontrol group and as a member of the group using assertions.Sine they had to get to know only one program, the tasks ould be more omplex thantasks dealing with two di�erent programs ould have been.While we were looking for suitable tasks, it beame obvious that not all programs areequally suitable for the use of assertions:� Programs that are split into very small funtions are in danger of requiring morespae and e�ort for the assertions than for the program itself. This does not seemto make muh sense sine the probability of mistakes within the assertions wouldbe unreasonably high, and the e�ort of writing the program would be inreasedonsiderably.� On the other hand, programs that are split into very large and omplex funtionsdo not seem to be good andidates for the use of assertions either. Suh funtionswould require omplex assertions using auxiliary funtions that are about as omplexas the main funtion itself. When a omplex assertion fails, the high probability ofmistakes within omplex assertions would raise the question whether the assertion

8 4 EXPERIMENTAL SETTINGSwith its auxiliary funtions or the program is orret. If this question annot beanswered quikly and with little e�ort, assertions do not seem to be too useful.� Programs whose behaviour is diÆult to desribe with assertions, e. g. graphial userinterfaes that have to ful�ll onditions like \the new window has a green border and isompletely visible", do not seem to be promising andidates for the use of assertions.The program we hose as a basis for the tasks symbolially derives funtions and listsintermediate steps. This program was not written for the purpose of this experiment.Sine we were interested in both the e�ets of assertions when writing new software andthe e�ets on maintainability, one of the two tasks was to write new funtions that didnot interat muh with the rest of the program, while the other task required a deeperunderstanding of the program.The �rst task was to write equivalents for the insert and delete string funtions of Pasal.Sine the symboli derivation program had been ported from Pasal to C, it made use ofthese string funtions, whih are not part of the standard C library.Assertions an be useful here beause they make it easy for the programmer to hekwhether the preonditions he builds on when writing the new funtions are met, andwhether the new funtions always do what they are supposed to do. If the program fails,it should therefore be easy to determine if the ause lies in a new funtion or the rest ofthe program.This task had the harater of writing new software sine these string funtions havenothing to do with deriving funtions, therefore it was not neessary to look at the rest ofthe program for solving the problem.The seond task was to extend the program so that it ould apply the hain rule, i. e.(f('(x)))0 = f 0('(x)) � '0(x). Assertions an be useful here beause the programmer ansave e�ort by reusing existing funtions. This also enhanes the quality of the resultingsoftware. Both the doumentation harater of assertions, whih makes it easier to �ndreusable funtions, and the fat that assertions an help to quikly detet wrong ways ofreusing existing funtions an help here.4.3.2 ProedureSine the number of partiipants was small, every partiipant was used as a member of twogroups, a ontrol group and a group using assertions. Every partiipant ompleted one ofthe two tasks desribed above as a member of one group and the other task as a memberof the other group.It is to be expeted that the order of the two tasks matters. After ompleting one task, aprogrammer already knows the program, has gotten used to the programming environment,and is probably more tired than he was at the beginning. These and other reasons anlead to unwanted sequene e�ets. In order to ounterbalane these e�ets, the partiipantswere split into four groups of similar size that went through the experiment on four di�erentpaths:

4.3 First Experiment 9
-
--
- -

--
-

syntaxtraining string funtionswith assertionsnew deriving rulewithout assertionsstring funtionswithout assertionsnew deriving rulewith assertions
new deriving rulewithout assertionsstring funtionswith assertionsnew deriving rulewith assertionsstring funtionswithout assertionsThe group sizes were as follows: three people �rst worked on the hain rule task usingassertions, followed by the string funtion task without assertions. Three other people didthe tasks in the same order, but used assertions only for the string funtion task. Oneperson �rst solved the string funtion assignment without using assertions before workingon the hain rule using assertions (we had to disard the data of the seond member of thisgroup beause he did not �nish the tasks), and two people started working on the stringfuntions using assertions before working on the hain rule without using assertions.Every partiipant was given a syntax training before working on the tasks. This trainingwas a web-based introdution to APP. The web-based sript presented the APP syntax,asked the partiipant to write APP assertions for given funtions, and ommented on theorretness of the partiipant's input. Only when at least half of the training assignmentswere solved orretly, the partiipant was allowed to start working on his �rst task. Beausethe syntax training was ompletely automated, it was idential for every partiipant.Even though the string funtions were neessary for extending the program by adding thehain rule, the string funtion task ould be done after the hain rule task. The partiipantswere simply given the string funtions in the form of objet �les so that the program ouldbe ompiled and tested even though the partiipants did not have aess to the soure odeof the string funtions.The sequene of partiipants' tasks was as follows:� The partiipant is handed a paper-based form for an experiment protool. This formontains a questionnaire, the assignments, and spae for keeping trak of the timespent on its di�erent parts, as well as a desription of APP.� The partiipant �lls in the questionnaire.� The partiipant reads about APP.� The partiipant goes through the web-based APP training.� First task: hain rule or string funtions.� Seond task: string funtions or hain rule. If the �rst task was done using assertions,the seond task is done without and vie versa.

10 4 EXPERIMENTAL SETTINGS4.4 Seond ExperimentThe seond experiment is a repetition of the �rst one. The di�erenes were that we useda di�erent task and that it was only an inter-subjet design. The rest of the design wasthe same: single-fator and posttest-only. The ontrolled independent variable was wetherthe experimental subjets were given ode to reuse that already ontained assertions andwere allowed to write new assertions with jContrat (experiment group) or the ode toreuse ontained the information of the assertions only in the form of JavaDo ommentsin natural language (ontrol group). Eah subjet of either group solved the same taskand worked under the same onditions. The observed dependent variables for eah subjetwere a variety of measurements of the development proess (in partiular working time),and various measurements of the delivered produt (in partiular program lines, programreliability, number of reused methods and quality of reuse).4.4.1 TaskThe task to be solved in this experiment is alled "GraphBase". It onsists of implementingthe main lass of a given graph library [Gol98℄ ontaining only the method delarationsand method omments but not the method bodies. There are methods for adding vertiesand edges and for deleting and loning a whole graph. Other methods are only aessormethods, e.g. for showing the number of verties or edges, for �nding an edge between twogiven verties or for testing if the graph is empty, a weighted or a direted graph.Eah subjet is told that the original ode of GraphBase was lost and, beause there is nobakup, that it should be reimplemented by using the rest of the given graph library. Therequirements for this task were desriped thoroughly in natural language. The subjetswere asked to work and to test on their own until they thought they had �nished the task.4.4.2 ProedureThe experiment took plae between February 2000 and April 2000, mostly during thesemester breaks. Most subjets started at about 9:30 in the morning. The experimentmaterials were printed an paper and onsisted of four parts. The experiment group startedwith a web ourse to learn the syntax of jContrat. The ontrol group did not go throughthe ourse beause they did not need jContrat knowledge. Then, in part two, membersof both groups were handed a task desription and allowed to work on the task. The thirdpart started when the experimental subjet thought it had �nished. At the end of theexperiment, a questionnaire was handed out to every subjet. It ontained questions aboutthe understandability of the doumentation and asked for personal ratings onerningprogram understanding and the reliability of the resulting program.The subjets worked on the task using their spei� Unix aount that provided the au-tomati monitoring infrastruture. It nonintrusively protooled login/logout times, allompiled soure versions and all output from eah program run. The subjet ould modifythe setup of the aount as neessary. The soure ode of the graph library exept for theGraphBase method bodies was provided to the subjets.

4.5 Power analysis 11The subjets' work was divided into three phases.Web ourse phase (WC), during whih the subjet in the experiment group were in-trodued to the syntax of jContrat. The ontrol group skipped this step.Implementation phase (IP), during whih the subjets solved their assignment untilthey thought that their program would run orretly. This phase ended when theylaimed to be done.Corretion phase (CP), during whih the subjets were given more details about theexpeted implementation. The experiment group was given a list of postonditionsfor every method that was to be implemented on paper and in eletroni form. Theontrol group was given a desription for every method in natural language. Thesubjets were asked to hek their implementation with this additional informationand orret it if neessary.4.5 Power analysisCohen [Coh77℄ stresses the importane of power analysis to get a loser look at the qualityof a statistial hypotheses test.The power of a statistial test of a null hypothesis is the probability that it will yieldstatistially signi�ant results. It is de�ned as the probability that it will lead to therejetion of the null hypothesis, i.e., the probability that it will result in the onlusionthat the phenomenon exists under the premise that the phenomenon is really existent.Statistially speaking, 1� power is the probability for an error of the seond kind.EXP1 uses groups with n = 4 and n = 5 subjets. Due to this small number of datapoints, we restrit our analysis to large e�ets. In this ase, Cohen suggests an e�et ofthe size ES = 0:8. We set the signi�ane level of the one sided test to � = 0:1. Thus, thepower analysis with a t-distribution yields a power of 0:410 [IG96℄. The power analysis forEXP2 with n = 6 yields a power of 0:518. That is, we have only a 41% and 51% hane,respetively, to �nd a di�erene between the groups!Aording to Cohen, both experiments have a very poor power. He argues that only ex-periments with a power of more than 0:8 have a real hane to reveal any e�et. Therefore,it is quite reasonable to assume that neither experiment has the hane to show an ef-fet, even if a di�erene exists. But, as we ould not aquire any more subjets for theseexperiments, we had to live with this drawbak.4.6 Threats to internal validityThe ontrol of the independent variable is threatened by the possibility of an imbalanedgroup assignment { we might ompare one group with faster programmers to one groupwith slower programmers. To avoid this e�et, the group assignment was based on thePSP ourse produtivity (the number of lines of odes programmed per hour in the PSP

12 5 RESULTSourse) of eah subjet. For both experiments, the division resulted in groups with similarprodutivity.4.7 Threats to external validityThere are two important threats to the external validity (generalizability) of the experi-ment. First, professional software engineers may have di�erent levels of skill and experienethan the partiipants, whih might make our results too optimisti or too pessimisti: bothhigher and lower levels will our, beause the students are more skilled than most of thenon-omputer-sientists that frequently start working as programmers. A higher skill levelthan the subjets' might leave less room for improvement whih might redue the groupdi�erenes, but higher experiene may also sharpen the eye as to where improvements aremost desirable or most easy to ahieve. Conversely, lower skill may leave more room forimprovement but may also impede applying assertions orretly at all. Seond, the sub-jets used assertions a very short time after being introdued to them. It is oneivablethat the assertion usage of these persons had not yet stabilized and the mid-term bene�tswould be higher than observed in the experiment. Furthermore, work onditions di�erentfrom the experiment onditions may positively or negatively inuene the e�etiveness ofassertions.5 ResultsBox plots are used to show the results of the measurements. The �lled boxes within a plotontain 50% of the data points. The lower (upper) border of the box marks the 25% (75%)quantile. The left (right) t-bar shows the 10% (90%) quantile. The median is marked witha thik dot (�). The M assoiated with the dashed line points to the mean within a rangeof one standard error on eah side.Signi�ane was alulated with the Wiloxon-Test where the signi�ane p denotes theprobability that the observed di�erene is due to hane.5.1 Results of �rst experiment5.1.1 Number of assertionsBefore reading about the e�ets of assertions, it might be interesting to look at how willingthe partiipants of the �rst experiment were to use assertions, and how often the heks ofthese assertions failed. See table 1 for these data.5.1.2 Durations of the workWe �rst present the amounts of time needed for the tasks separately for the groups usingAPP and those not using APP. In order to eliminate the e�et of di�erent programming

5.1 Results of �rst experiment 13
Partiipant Num

ber
Number of pre

onditions
Number of post

onditions
Number of asse

rt onditions
Failed heks fo

r hain rule task
Failed heks fo

r string task
23 1 3 3 504 024 2 5 0 0 025 5 3 13 0 026 2 3 0 27 027 4 3 0 33 028 3 1 0 0 2030 1 3 0 0 031 1 2 0 15 032 0 0 0 0 0Table 1: Assertions and failed heksspeeds, we then present the amounts of time measured in multiples of the time needed forompleting the APP training instead of in minutes.For alulating how long the partiipants worked on their tasks, the beginning and endtimes were reorded automatially by the same sripts that provided the partiipants withthe required �les and deided whether their solutions were orret. Only for the timethat had to be subtrated for interruptions in the work, the handwritten notes of thepartiipants were used.An unexpeted phenomenon when using assertions was that for the group using assertions,the distribution of durations was more dense. The use of assertions therefore might makesoftware development more preditable. See table 2 for details.upper quartilelower quartile upper quartilelower quartilewith assertions without assertionshain rule 1,82 2,24string funtions 1,43 5,44Table 2: Quartile ratios for durationsHere the quotients of the 75 % quantile and the 25 % quantile are list ed. A quotient lose to 1is desirable beause then the duration of the software development is quite preditable.Figures 1 and 2 do not show signi�ant di�erenes that would be aused by the use of

14 5 RESULTS
M

o
o oo o

M
o oo

o
without APP

with APP

200 300 400 500 600 700 800

 Figure 1: Duration for the hain rule task with and without assertions, measured in min-utes.The Wiloxon test shows that the di�erene of medians is not signi�ant (probability for anaidental di�erene: 0.55). The means are di�erent, though: With APP, 271 minutes are neededon average, while without assertions, 398 minutes are needed.

M

ooo o
o

M

o o
oo

without APP

with APP

50 100 150 200

 Figure 2: Duration for the string task with and without assertions, measured in minutes.Result of the Wiloxon test: with a probability of 0.9, the di�erene of medians is only aidental.

5.1 Results of �rst experiment 15assertions. Beause the groups were quite small, di�erenes in the individual programmingspeeds of partiipants had a large inuene on the results of the Wiloxon tests. It ispossible to lower the inuene of individual programming speeds by measuring the timespent on the programming tasks in multiples of the time spent on the APP training insteadof in minutes. This is legitimate beause there is a orrelation between the partiipants'programming speeds and the time they spent on the APP training. The orrelation o-eÆient is 0.84, therefore the time spent on the APP training is a good measure for theprogramming speed. Figures 3 and 4 ompare the durations measured in multiples of thetime spent on the APP training instead of in minutes, so the inuene of di�erenes inprogramming speeds is lowered and the inuene of the use of assertions beomes morevisible.
M

o o ooo

M
o

oo owithout APP

with APP

4 6 8 10

 Figure 3: Relative durations for the hain rule task with and without assertionsFor example, among those who did not use APP, the fastest partiipant needed 6 times longerfor ompleting the hain rule task than for ompleting the APP training. His data point is theleftmost one in the lower half.
M

oo o oo

M

o o o
o

without APP

with APP

1 2 3 4 5 6 7

 Figure 4: Relative durations for the string funtion task with and without assertionsThe di�erene visible in �gure 3 is signi�ant. The Wiloxon test shows that the probabilityfor an aidental di�erene is 0.063. Therefore, assertions seem to save time when software

16 5 RESULTSis maintained, while they tend to inrease the e�ort needed for writing new software. Thedi�erene visible in �gure 4 is not signi�ant (Wiloxon test result: 0.556).5.1.3 Reuse of funtionsSine we were interested in the number of reused funtions as opposed to the number offuntion reuses { the researh question is how the use of assertions ontributed to reusingmany di�erent funtions, not how reuseable the reused funtions were { they were ountedin the following way: For eah partiipant, the �nal version of the extended program wasompared to the version they started with using the UNIX tool diff, thereby isolating theode written by the partiipant. A Perl program was then used to ount the number ofdi�erent funtions that were already de�ned in the original program and alled in the newode. The result for the task with maintenane harater, the hain rule assignment, isshown in �gure 5. The di�erene is signi�ant: the probability for an aidental di�ereneis 0.0688. Users of APP reused 8.6 funtions on average, while programmers who did notuse assertions found only an average of 6.75 funtions that seemed worth reusing. With aprobability of 0.8, the use of assertions inreases reuse of existing funtions by 15 %.The desribed ounting method for funtion reuse inluded funtions that were reused onlywithin assertions. If only funtions that were reused outside assertions are ounted, usersof APP reused 7.6 funtions on average.
M

o o ooo

M

o o o
owithout APP

with APP

5 6 7 8 9 10Figure 5: Number of reused funtions for the hain rule task (p = 0:07).
5.2 Results of seond experiment5.2.1 Number of assertionsTable 3 shows the number of assertions eah of the subjets wrote during the experiment.

5.2 Results of seond experiment 17
M

o oo oo

M

o o
o

o
without APP

with APP

5 6 7 8 9Figure 6: Number of reused funtions outside assertions for the hain rule task (p = 0:19).
Partiipant Num

ber
Number of pre-

onditions
Number of post

-onditions
Number of inva

riants
Number of asse

rt-onditions
Total101 43 21 0 0 64102 3 41 0 0 44103 17 3 0 0 20104 0 0 0 0 0105 30 39 5 0 74106 0 43 0 0 43108 17 0 0 0 17201 0 0 0 0 0202 0 0 0 18 18203 0 0 0 0 0204 0 0 0 0 0205 0 0 0 0 0206 0 0 0 0 0Table 3: Number of assertions

18 5 RESULTSThe upper part of the table shows the number of the partiipants of the experimentalgroup. Two rows are remarkable. Partiipant 104 ought to use jContrat but he did not,and partiipant 202 of the ontrol group used his own assertion environment.5.2.2 ReliabilityIn this experiment, reliability was measured by determining the perentage of the passedassertions among all possible exeutable assertions in the test. The initial behavior of jUnithad to be adjusted to ount all failed assertions. That is, jUnit was modi�ed in suh a waythat it did not abort a test after a failed assertion. Instead, it ontinued the test ase sothat all assertions were exeuted. The failed assertions were ounted and printed out atthe end of the test run.Reliability was measured for a syntheti test with 727,190 method invoations and about7.5 million assertions. The referene implementation runs for about 150 seonds for thisbig test. It alls the methods of the implementation randomly, but with di�erent prob-abilities, and ompares the resulting data struture with the one built by the refereneimplementation. Deivations in the struture are aught by subsequent assertions.First, we look at the reliability of the syntheti test for the �nal programs, see �gure 7.
M

o ooo o
o

o

M

o oo oo owithout jContract

with jContract

0 20 40 60 80 100Figure 7: Reliability of the �nal programs for the synthetial-test in perent.Here we annot see any di�erenes between the groups.Now, the programs right after the IP are examined and the question is asked, what wouldhave happened if the CP had been omitted? This question is interesting in as muh asthese programs represent the output of the subjet's proess without further modi�ationsor enhanement by any external quality ontrol. These programs represent the versions thesubjets are most on�dent with onerning aurateness. The reliability of the programversions at the point when the subjets laimed to be done is shown in �gure 8.The reliability of the experiment group is higher p = 0:112. Exept for two programs, twothirds of the programs in the experiment group are more reliable than the median in theontrol group, whih is only at 3%.We an say that the use of assertions is an advantage ompared to informal informationlike the natural language doumentation.

5.2 Results of seond experiment 19
M

o ooo
ooo

M

o oo oo owithout jContract

with jContract

0 20 40 60 80Figure 8: Reliability of programs after IP for the synthetial-test in perent.5.2.3 Working timeWe now present the working time needed for the IP. Beause only the experiment groupworked on the web ourse, this time annot be part of the working time. There is also alarge di�erene in the duration of the CP: the experiment group got a list of postonditionsfor every method whih they had to implement. All subjets in this group opied thesepostonditions into their implementation whih took a long time for this group. The ontrolgroup ouldn't do this beause they got the same information but in natural language, sothey looked diretly for defets in their program ode after reading this information. If weompare only the minimum and the maximum of both groups, we an see that the ontrolgroup needed between 24 and 55 minutes and the experiment group between 68 and 199minutes for the CP.
M

ooo ooo
o

M
o

o
o o oo

without jContract

with jContract

200 400 600 800Figure 9: Working time in minutes.In �gure 9, we an see that the experiment group tends to need longer for the implemen-tation than the ontrol group. But the di�erene is not signi�ant with p = 0:31.The data point at 1269 minutes in the experiment group an be viewed as a outlier witha fator of 2.9 higher than the median. This is reasonable beause of the programmingexperiene of the subjet: the largest program this person had written before the PSPourse was about 300 lines of ode, and in the PSP ourse, the person was one of theslowest measured in lines of ode per hour. But it worked only very slowly. With all othermeasures we ompared, we ould not see suh an outlier e�et.

20 5 RESULTS5.2.4 Code reuseExamining ode reuse might lead to some results about program understanding. Fourmeasures were olleted to get a pereption of it. There are (1) the number of reusedmethods, (2) the number of reused methods without the written assertions, (3) the numberof failed method alls, and (4) the number of method alls that failed at least twie. Thelast two measures were obtained with silent assertions inserted into the existing graphlibrary (see setion 3.2). Their output was written to a log �le, whih the subjets did notnotie.Figure 10 and 11 show the results for the number of reused methods. In the �gure 11you an see the number of reused methods without the written assertion ode. The �rst�gure shows with p = 0; 23 no di�erene in the number of reused methods. But there is atendeny that with assertions the subjets reused more methods. This tendeny disapearsif you ignore the maximum point at 32 in the experiment group. Figure 11 shows thegroups if you ignore the assertion ode. Now, there is a signi�ant di�erene between thetwo groups: the experiment group reused less methods. An explanation of the di�ereneould be that the validation tests for the method parameters are done either by assertions(experiment group) or by if-statements (ontrol group). If you generally don't ount thereuse within assertions, you ignore a signi�ant aspet of the implementation. Sine theoverall reliability of the implementations is not omparable, as we have seen before, thisould result in a di�erene for both �gures, too.
M

o ooo
o o o

M

ooo
oo o

without jContract

with jContract

22 24 26 28 30 32Figure 10: Number of reused methods.
M

o o o ooo o

M

ooo
oo owithout jContract

with jContract

10 15 20 25Figure 11: Number of reused methods outside assertions.

21Finally, for the number of reused methods, we an not see a di�erene between the twogroups.Both groups made quite similar errors while reusing a method more than one. If we lookat the �gure 12 and 13 we an say that wrong reuse does not happen again that often inthe experiment group.
M

ooooooo

M

o oo o oowithout jContract

with jContract

0 2 4 6 8 10 12Figure 12: Number of assertions that failed at least one.
M

ooo oooo

M

o oo o
oowithout jContract

with jContract

0 2 4 6 8Figure 13: Number of assertions that failed at least twie.6 ConlusionsThis paper presented two ontrolled experiments about the usefulness of assertions as ameans of programming. Partiipants were omputer siene graduate students who tookpart in a pratial training ourse introduing the PSP. Both experiments ompared pro-gramming with assertions to the development without assertions. The study investigatedthe inuene of assertions on programming e�ort and program reliability. The experimentdata led to the following observations.� Assertions redue programming e�ort in maintenane if the maintenane task is de-�ned as a program assignment that requires a deep understanding of the program tomaintain.

22 REFERENCES� Assertions slightly inrease the programming e�ort for the implementation of newfuntions that do not interat muh with the rest of the program.� When we look at the �nal programs of the seond experiment, the usage of assertionsslightly inreased the reliability of the written ode ompared to the ode writtenwithout assertions. The e�et is only marginal. But when we look at the programsafter the implementation phase, the programs of the experimental group, i.e., thegroup that used assertions, were more reliable, though not statistial signi�ant,than those of the ontrol group.� The Usage of assertions also led to a higher number of reused methods that weren'twritten by the subjets themselves.Despite the observed results, this study is far from being a omplete evaluation of program-ming with assertions. There are several irumstanes that weaken the disussed results.First, the number of subjets was very small, whih led to a small power of �nding anexisting e�et. This small power ould be a hindrane not to see any sharper results.But, this is also a result from power analysis, some e�ets that weren't deteted with thisexperimental setting ould still be there and wait for their disovery. Seond, the subjetshave only limited experiene with assertions, and it is quite possible, that more experi-ened programmers show quite di�erent results. But overall, and this is a result applies toprogrammers who are new to assertions, using assertions dereases the programming e�ortin maintenane and inreases the reliability of newly developed ode with only a smallamount of extra e�ort.Referenes[Chr94℄ L. B. Christensen. Experimental Methodology. Allyn and Baon, 1994.[Coh77℄ J. Cohen. Statistial Power Analysis for the Behavioral Sienes. AademiPress, 1977.[Coo97℄ J. Cook. Assertions for the tl language. In 5th Tl Workshop, Boston, Mas-sahusetts, July 1997.[Gol98℄ D. Goldshmidt. Design and implementation of a generi graph ontainer injava. Master's thesis, Rensselaer Polytehni Institute in Tray, New York, April1998.[Hum97℄ W. Humphrey. A disipline for software engineering. Addison-Wesley, 1997.[IG96℄ R. Ihaka and R. Gentleman. R: A language for data analysis and graphis.Journal of Computational and Graphial Statistis, 5(3):299{314, 1996.

REFERENCES 23[jav℄ JavaTM 2 SDK, standard edition, doumentation, version 1.4.0.http://java.sun.om/j2se/1.4/dos/.[LCKS90℄ N. Leveson, S. Cha, J. Knight, and T. Shimeall. The use of self heks andvoting in software error detetion: An empirial study. IEEE Transations onSoftware Engineering, 16(4):432{443, April 1990.[LST91℄ D. Lukham, S. Sankar, and S. Takahashi. Two-dimensional pinpointing: De-bugging with formal spei�ations. IEEE Software, 2(2):9{23, January 1991.[MK96℄ J. MKim. Programming by ontra: Designing for orretness. Journal ofobjet oriented programming, 9(2):70{74, May 1996.[Mey88℄ B. Meyer. Objet-oriented software onstrution. Prentie-Hall, 1988.[Ros℄ D. Rosenblum. APP. http://www.researh.att.om/sw/tools/reuse/.[Ros92℄ D. Rosenblum. Towards a method of programming with assertions. In Interna-tional Conferene on Software Engineering, pages 92{104, Melbourne, 1992.[Ros95℄ D. Rosenblum. A pratial approah to programming with assertions. IEEETransations on Software Engineering, 21(1):19{31, January 1995.[Sh98℄ F. Shneider. On onurrent programming. Communiations of the ACM,40(4):128{128, April 1998.[St�o99℄ J. St�ork. Erzeugung eÆzienter laufzeit�uberpr�ufungen von zusiherungen. Mas-ter's thesis, Department of Computer Siene, University of Karlsruhe, 1999.http://www-is.informatik.uni-oldenburg.de/�stoerk/da/diplomarbeit.html.Only available in german.[Sys℄ Reliable Systems. iContrat. http://www.reliable-systems.om/tools/iContrat/iContrat.htm.[Voa97℄ J. Voas. How assertions an inrease test e�etiveness. IEEE Software, pages118{122, MarhApril 1997.[xun℄ Xprogramming, software downloads. http://www.xprogramming.om/software.htm.

24 A EXPERIMENTAL DATA OF EXP1 AND EXP2A Experimental Data of EXP1 and EXP2Group A apital C stands for \hain rule with assertions", a lower ase for\hain rule without assertions", a apital S for \string funtions withassertions", and a lower ase s for \string funtions without asser-tions". The order of the two letters reets the order of the tasks. Forexample, partiipant 23 belongs to group Cs, i. e. he �rst ompletedthe hain rule assignment with assertions and then the string funtionassignment without assertions.#pre Number of preonditions#post Number of postonditions#assert Number of \assert" onditionsFail Number of failed assertionsDurC Working time for the hain rule task in minutesDurS Working time for the string funtion task in minutesRDurC Relative duration for the hain rule task (DurC divided by the timespent on the web-based syntax ourse)RDurS Relative duration for the string funtion task (DurS divided by thetime spent on the web-based syntax ourse)Reused total Number of reused funtionsReused outside Number of reused funtions outside assertionsTable 4: Data lines in Table 6Rel1 Reliability of the programs after the IP in perentRel2 Reliability of the �nal programs in perentDur Working time in minutesReuse1 Number of reused methodsReuse2 Number of reused methods outside assertionsFail1 Number of assertions that failed at least oneFail2 Number of assertions that failed at least twieTable 5: Data lines in Tables 7 and 8

25subjet no. 23 24 25 26 27 28 30 31 32Group Cs S S sC Cs S Cs sC S#pre 1 2 5 2 4 3 1 1 0#post 3 5 3 3 3 1 3 2 0#assert 3 0 13 0 0 0 0 0 0Fail 504 0 0 27 33 20 0 15 0DurC 154 233 395 265 334 178 183 420 786DurS 230 58 209 34 36 188 181 196 160RDurC 2.7 11.1 10.4 5.8 9.5 5.9 7.0 4.6 7.6RDurS 4.0 2.8 5.5 0.7 1.0 6.3 7.0 2.2 1.5Reused total 6 5 7 9 10 8 10 8 7Reused outside 6 5 7 8 8 8 9 7 7Table 6: Data of EXP1
subjet no. 101 102 103 104 105 106 108Rel1 51.53 79.24 0.79 0.96 83.70 83.70 22.85Rel2 51.53 79.24 0.87 0.96 100.00 73.17 0.43Dur 702 471 399 1148 375 223 282Reuse1 24 32 24 22 23 25 26Reuse2 13 17 20 22 12 9 22Fail1 5 4 3 3 1 0 0Fail2 3 2 1 3 0 0 0Table 7: Data for experimental group of EXP2

subjet no. 201 202 203 204 205 206Rel1 0.83 72.58 0.59 44.84 0.96 4.49Rel2 0.83 85.25 0.60 51.85 5.16 99.12Dur 270 291 276 469 729 392Reuse1 26 24 22 24 22 24Reuse2 26 24 22 24 22 24Fail1 0 2 0 1 12 0Fail2 0 2 0 1 8 0Table 8: Data for ontrol group of EXP2

