
computer science

saarland
university

Master Thesis
Master’s Program in Computer Science

An Experimentation Laboratory for the Automatic
Parallelization of Programs written in the R Language

(ALCHEMY)

submitted by

Michael Mirold

submitted

25.11.2011

Supervisor

Dr. Frank Padberg

Advisor

Prof. Dr. Sebastian Hack

2

Eidesstattliche Erklärung

Ich erkläre hiermit an Eides statt, dass ich die vorliegende Arbeit selbstständig verfasst
und keine anderen als die angegebenen Quellen und Hilfsmittel verwendet habe.

Statement in Lieu of an Oath

I hereby confirm that I have written this thesis on my own and that I have not used
any other media or materials than the ones referred to in this thesis.

Einverständniserklärung

Ich bin damit einverstanden, dass meine (bestandene) Arbeit in beiden Versionen in
die Bibliothek der Informatik aufgenommen und damit veröffentlicht wird.

Declaration of Consent

I agree to make both versions of my thesis (with a passing grade) accessible to the
public by having them added to the library of the Computer Science Department.

Saarbrücken,

Datum Unterschrift

Abstract

The R language is being widely used in fields such as bioinformatics and
statistics, where it is common to process large data sets. R does not exploit
the speed-up that may be gained from current multicore processors. In
this thesis, I present the conception, the design, and the realization of the
ALCHEMY parallelization laboratory and its integration into the R runtime
environment.

I introduce the concept of Transmutators, small software components that
apply transformations to an AST-based intermediate language called AIR,
which is specifically designed to facilitate analysis and code transformation.

3

Contents

1 Introduction 11

2 Approach 13
2.1 Interfacing with the user . 13
2.2 Preprocessing the R Program for Parallelization Analysis 14
2.3 Parallelization Analysis . 15
2.4 Parallel Execution . 18
2.5 Scope of this Thesis . 19

3 Related Work 21
3.1 R . 21

3.1.1 S Expressions . 21
3.2 Approaches to Parallelizing R . 22

3.2.1 Exploit Inherent Data-Parallelism in R 23
3.2.2 Exploit Task-Parallelism Hidden in Sequential R Programs . . . 23

3.3 Parallel Programming Patterns (Skeletons) 23
3.4 Parallel Intermediate Representations 24
3.5 Approaches to Automatic Parallelization 25

4 Requirements Analysis 27
4.1 UC 1: Execute R Program . 28
4.2 UC 2: Perform Interactive R Session . 29
4.3 UC 3: Evaluate R Expression . 29

4.3.1 AIR Expression . 31
4.3.2 XML Representation . 33

4.4 UC 4: Convert R Code to AIR . 33
4.5 UC 5: Transmutate AIR . 34

4.5.1 Transmutator . 36
4.5.2 Transmutation Controller . 37
4.5.3 Rule-Based Transmutation Configuration 38
4.5.4 Static and Dynamic Configuration 41

4.6 UC 6: Configure ALCHEMY . 42
4.7 UC 7: Convert AIR to R . 42
4.8 UC 8: Query AIR . 42
4.9 UC 9: Modify AIR . 43
4.10 Analysis Overview . 43

5 ALCHEMY Software Design and Implementation 44
5.1 System Architecture . 44

5.1.1 Architectural Factors . 44

4

Contents 5

5.1.2 Architectural Decisions . 45

5.1.3 Description of ALCHEMY’s Architecture 46

5.1.4 Package: RAlchemy . 47

5.1.5 Class: RUserInterface (or R UI) 51

5.1.6 Package: AlchemyAdapter . 52

5.1.7 Class: RtoAIRConverter . 53

5.1.8 Class: AIRtoRConverter . 56

5.1.9 Package: RCore . 56

5.1.10 Package: RServices . 56

5.1.11 Package: Communication . 56

5.1.12 Package: Logging . 56

5.1.13 Package: RServer . 56

5.1.14 Package: AlchemyCore . 56

5.1.15 Class: TransmutationService 57

5.1.16 Class: SessionService . 57

5.2 Inter-Process Communication . 58

5.3 R Services . 61

5.3.1 Value Service . 61

5.3.2 Environment Service . 62

5.3.3 AIRtoR Service . 63

5.3.4 R Service Client: EnvServiceProxy class in AlchemyCore 63

5.3.5 R Service Client: ValueServiceProxy in AlchemyCore 64

5.4 AIR Design . 65

5.4.1 Types . 67

5.4.2 Values and Storages . 68

5.5 The AIR Interface . 68

5.5.1 Conversion to/from AIR XML 70

5.6 Transmutation . 70

5.7 Planned: Parallelization Backends . 73

5.8 Planned: Tracing, Single-Step, and Breakpoints 74

6 Implementation 75

7 Transmutators 77
7.1 FuncDefFilter . 77

7.2 EMBA . 78

7.3 RMulticoreBackend . 79

7.4 Planned Transmutators . 79

8 Experimental Evaluation 81
8.1 Test Environment . 81

8.2 End-to-End Parallelization with EMBA and RMulticoreBackend 81

8.2.1 Setup . 81

8.2.2 Execution Analysis . 82

8.2.3 Results . 84

9 Conclusion and Outlook 86

6 Contents

A Installing ALCHEMY 91
A.1 Prerequisites . 91
A.2 Installation . 91

A.2.1 R Installation . 91
A.2.2 ZeroMQ Java Binding . 92
A.2.3 ALCHEMY Core Installation . 92

B Using ALCHEMY 93
B.1 ALCHEMY Configuration . 93

C Sample Core Configurations 94
C.1 Transmutation Controller Configuration 94
C.2 Type Environment Configuration . 95

D Example AIR XML Representation 97

E Numerical Results of Evaluation Chapter 102

F Description of AIR XML Representation 103
F.1 BinopExpr . 103
F.2 BreakStmt . 103
F.3 BuiltinFunc . 103
F.4 ClosureExpr . 103
F.5 ComponentExpr . 104
F.6 ConstantExpr . 104
F.7 ExprList . 104
F.8 ForStmt . 104
F.9 FuncCall . 105
F.10 FuncDef . 105
F.11 IfExpr . 105
F.12 IteratorExpr . 106
F.13 NextStmt . 106
F.14 ParamExpr . 106
F.15 Program . 106
F.16 RepeatStmt . 106
F.17 SkeletonExpr . 107
F.18 SubscriptExpr . 107
F.19 SymbolExpr . 107
F.20 UnaryExpr . 107
F.21 WhileStmt . 108

List of Figures

2.1 ALCHEMY Overview . 13
2.2 Startup of R interpreter with integrated ALCHEMY 13
2.3 Example of Complex Transmutation Configuration 16
2.4 Simple Configuration as Used in Example 17
2.5 Final output of the interactive R session 19
2.6 ALCHEMY collaborations for the introductory example 19

3.2 SEXP tree of sin(42) . 22
3.3 Illustration of REDUCE skeleton operation 24
3.1 SEXP tree . 26

4.1 ALCHEMY Use Cases . 27
4.2 Usecase Realization “UC 1: Execute R Program” 28
4.3 Usecase Realization “UC 2: Perform Interactive R Session” 29
4.4 usecase realization “UC 3: Evaluate R Expression” 30
4.5 AIR Class Hierarchy . 31
4.6 Usecase Realization “UC 4: Convert R to AIR” 33
4.7 Example AIR tree . 35
4.8 Usecase Realization “UC 5: Transmutate AIR” 36
4.9 Transmutator analysis class . 37
4.10 Transmutation Configuration Example 38
4.11 Transmutation Configuration Example 39
4.12 Analysis Activity Diagram “Rule Processing” 40
4.13 Rule dependencies in transmutation configuration 41
4.14 Overall analysis class diagram . 43

5.1 Overall logical design . 48
5.2 Alchemy Deployment . 49
5.3 Alchemy High-Level Collaboration Diagram 49
5.4 1st Part of Use Case 3 Realization . 50
5.5 Call sequence in R with enabled ALCHEMY 52
5.6 (Design) Class hierarchy of SEXP visitors 54
5.7 (Pseudo-)sequence diagram of RtoAIRVisitor processing of x <- 3.1 . . 54
5.8 Collaboration example for transmutation 57
5.9 Collaboration example for transmutation 58
5.10 R design classes participating in R - Alchemy integration 60
5.11 Example request/response cycle for the minimal ALCHEMY protocol . 61
5.12 Classes involved in environment lookup 64
5.13 Execution sequence for a call to an AIRVector with proxy storage strategy 66
5.14 AIR Programs . 67

7

8 List of Figures

5.15 Value class hierarchy . 68
5.16 Call sequence for query() . 69
5.17 Activities involved in transmutation . 71
5.18 Important design classes related to transmutation 72
5.19 Design classes participating in transmutation configuration 72
5.20 Execution sequence for configuration evaluation 73
5.21 Possible backend integration using adapter transmutators 74

6.1 Physical AlchemyCore packages . 76

7.1 EMBA Workflow . 78
7.2 Example of an EMBA AIR modification 80

8.1 Execution times on a multicore machine 84
8.2 Parallel speedups for different numbers of cores for the measured problem

instances . 85

List of Tables

4.1 Meaning of Robustness Icons used in analysis class diagrams 28

E.1 Numerical results of evaluation . 102

9

10

1 Introduction

The R programming language is being widely used in statistics, machine learning, and
bioinformatics. In these areas, it is common to work with large data sets, which renders
processing speed an important factor. However, R being a sequentially interpreted
language does not optimally exploit the speed-up that may be gained from modern,
parallel hardware or cluster environments.

There are several extensions to the R language and its interpreter environment that
allow programmers to explicitly distribute computations to parallel backends (see sec-
tion 3.2). However, these packages are not easily applicable to the existing code base
(e.g. CRAN) and require programmers to introduce code into their programs that may
contain bugs and is irrelevant to the application domain.

A potential alternative is the automatic and transparent parallelization of sequential
programs. This is known to be inherently difficult, but the R language provides char-
acteristics that facilitate parallelization such as offering native vector data types or not
offering reference types.

Goals of this Thesis

There are several techniques for parallelizing sequential programs that approach this
problem from different directions (see [MAS05] for a brief overview of existing methods).

With this thesis, I want to present a framework, ALCHEMY, that allows researchers
to experiment with the application of these techniques to R programs. At the same
time, users from fields such as bioinformatics or statistics are given a tool that enables
them to exploit existing parallel computing resources without the need to manually
adapt their programs.

The framework enables its users to apply different parallelization analysis methods
to R programs and execute these parallelized programs on suitable hardware.

R has been chosen as the base language of this thesis because it appears to be well-
suited for automatic parallelization:

• R programs tend to live on a higher semantic level than e.g. C programs. Hence,
it is easier to deduce programmers’ intentions from the code.

• R programs have no pointers or references.

• R has built-in data-parallel functions operating on container types, e.g. sin()

function on vectors, lists, and matrices.

• R programs tend to be short.

While transparently speeding up existing programs seems to be a goal sufficiently
ambitious and worthwhile for itself, ALCHEMY shall also become a laboratory that
makes it easy to learn what parallelism is and where it hides in scripting languages like

11

12

R. Ideas for parallelization may materialize when we look at a problem from different
perspectives such as the problem domain itself, its algorithmic realization, its con-
crete mapping to a programming language, or the instruction scheduling on a concrete
machine. ALCHEMY shall help getting better insight into where these perspectives
differ, how they depend on the executing machine, and what parallelizations can be
found where.

Results

A software system like ALCHEMY is never completely finished. However, with the
submission of this thesis the following results can already be documented:

• The intermediate language AIR has been created. Although AIR must still prove
its effectiveness as a language for analyzing programs, the creation of first paral-
lelization modules has left the impression that the basic mechanisms might indeed
be useful. AIR can flexibly express parallel programming patterns (skeletons) and
provides a flexible method for querying program elements.

• The Java-based software system ALCHEMY has been created. ALCHEMY con-
trols the analysis and transformation of AIR programs by delegating to specific
software components, so called AIR Transmutators. The flexibility of the “trans-
mutation” process, in that program analysis and transformation take place, has
been a major design goal.

• The R interpreter has been extended to transform R programs to AIR, interact
with ALCHEMY, and transform AIR back to R programs.

• Three simple AIR Transmutators have been created. These Transmutators process
AIR programs or program fragments with different goals, e.g. finding “embarass-
ingly” obvious opportunities for parallelization.

2 Approach

This section presents a high-level overview of the operations of the ALCHEMY frame-
work. Figure 2.1 shows the typical processing steps when ALCHEMY is used to perform
parallelization analysis and parallel execution of an R program. The following sections
describe these steps by help of a simple example program.

It should be noted that ALCHEMY does not strictly impose this workflow. On
the contrary, ALCHEMYs configuration language allows for many different kinds of
execution patterns, including e.g. loops between different analysis modules that may
be useful for e.g. dynamic or semi-dynamic program analysis.

Parallelization

Analysis
Parallelization

Analysis

preprocessed

programStandard Code

Parsing

parallelized

programR Program Parallel

Execution

resultsParallelization

Analysis

Figure 2.1: ALCHEMY Overview

2.1 Interfacing with the user

When the R environment is started up, the interpreter begins evaluating R language
expressions that are either read from a user-provided program file or that are entered
in an interactive console session. If R has been built with ALCHEMY support, R users
can control ALCHEMY processing e.g. by executing ALCHEMY specific R commands.
Figure 2.2 shows the screenshot of the startup of a typical interactive R session that
uses ALCHEMY.

Figure 2.2: Startup of R interpreter with integrated ALCHEMY

13

14 Preprocessing the R Program for Parallelization Analysis

After ALCHEMY has been activated, an R-ALCHEMY adapter intercepts the parsed
R expression before the R interpreter has a chance to perform evaluation. The first
task of the adapter is to transform the expression into a representation that can be
processed by ALCHEMY.

2.2 Preprocessing the R Program for Parallelization Analysis

ALCHEMY uses specialized software components called “Transmutators” that are re-
sponsible for the transformation of R code. In order to simplify the access of those
components to structural program information, ALCHEMY provides means to trans-
form the R source program into an analogous Abstract Syntax Tree (AST) of a language
called “AIR” (Analysis Intermediate Representation) whose design and realization is a
result of this thesis.

AIR design has been inspired by other data-parallel intermediate languages such
as VCODE (see [BC90]) in its explicit integration of primitives that represent Parallel
Programming Patterns (skeletons). The concrete AIR implementation has the following
goals:

• has vectors of arbitrary size as first-class data type

• can express a (non-trivial) subset of the R language

• contains an extensible set of language elements that represent parallel program-
ming patterns (skeletons)

• can represent programs in different parallel computation models, e.g. PRAM,
CSP, etc.

• has an interpreter or compiler that facilitates executing AIR programs on different
backends

• provides means to annotate language constructs, e.g. resource requirements of a
skeleton expression

• facilitates the easy replacement of parts of a program

Not all of these goals have been reached in the first version of AIR. In particular, the
applicability for different computation models has not been a major design goal.

To facilitate the adaption of an AIR program to the needs of specific parallelization
modules, ALCHEMY provides

• an interface that allows querying the AIR program and navigating through the
set of result nodes.

• the possibility to back-transform result nodes (and subtrees) to a corresponding
R expression.

Figure 2.1 shows the XML representation of the AIR program that corresponds to
the R expression sin(c(1,2,3)), which computes the sine of the numbers 1 to 3.

After the R expression has been converted to AIR, ALCHEMY is able to perform
parallelization analysis.

Parallelization Analysis 15

Listing 2.1: AIR Example

1 <AIR environment -proxy="tcp: //127.0.0.1 :1985"

2 value -proxy="tcp: //127.0.0.1 :1985" environment -id="

169965928">

3 <Program >

4 <FuncCall >

5 <funcexpr >

6 <SymbolExpr name="sin"/>

7 </funcexpr >

8 <params >

9 <ParamExpr >

10 <FuncCall >

11 <funcexpr >

12 <SymbolExpr name="c"/>

13 </funcexpr >

14 <params >

15 <ParamExpr >

16 <ConstantExpr type="real">

17 <RealValue data="1.0"/>

18 </ConstantExpr >

19 </ParamExpr >

20 <ParamExpr >

21 <ConstantExpr type="real">

22 <RealValue data="2.0"/>

23 </ConstantExpr >

24 </ParamExpr >

25 <ParamExpr >

26 <ConstantExpr type="real">

27 <RealValue data="3.0"/>

28 </ConstantExpr >

29 </ParamExpr >

30 </params >

31 </FuncCall >

32 </ParamExpr >

33 </params >

34 </FuncCall >

35 </Program >

36 </AIR>

2.3 Parallelization Analysis

As already stated above, in ALCHEMY parallelization analysis and all other AIR trans-
formations are conducted by software components called “Transmutators”. ALCHEMY
makes no assumptions about how these Transmutators operate on AIR programs. In
the context of the TRANSPAR project, preparations have begun to realize various
Transmutators such as

• MATSU, a parallelization technique that provides efficient parallelizations for cer-
tain kinds of dynamic programming problems for vector machines (see [KMM+05]),

16 Parallelization Analysis

• SURE, which aims at finding opportunities for parallelization in loops that access
array data in specific ways based on [Dar97], or

• EMBA, a module for parallelizing apparent data-parallelity in R code.

It is an interesting question if and how a collaboration of multiple, different Trans-
mutators can yield good results. ALCHEMY does not try to automatically find such
collaborations but rather provides a suitable data abstraction and a flexible configura-
tion language that allow researchers and regular R users to specify how single Trans-
mutators should work together. Figure 2.3 shows a complex example of how multiple
Transmutators might be composed to form a transformation graph.

Parallelization Analysis

R Program

Parallelized R Program

Figure 2.3: Example of Complex Transmutation Configuration

Figure 2.4 shows a simple Transmutation configuration that makes ALCHEMY se-
quentially operate on the following Transmutators

1. FuncDefFilter: filters out programs that consist only of a function definition

2. EMBA: finds “embarassingly parallel” expressions and converts them to the data-
parallel “MAP” skeleton

3. RMulticoreBackend: identifies occurrences of the MAP skeleton1 and transforms
them to calls to the R “multicore” library (see section 3.2)

Among these three Transmutators, EMBA is the only one that fully deserves to be
called a “parallelization analyzer” with FuncDefFilter acting like an input validator
and RMulticoreBackend being a (pseudo) parallel backend adapter. This may serve as
an indication that the “Transmutator” concept allows the realization of very different
usage scenarios.

The EMBA Transmutator, however, parallelizes its input in the following way. It
checks whether its input contains special cases of “embarassingly parallel” program
elements, i.e. elements that are parallelizable “by construction”. For instance, in R,
many built-in and 3rd party functions accept arguments of type “vector” or “list” and
perform operations on every element of these compound values without depending on
other value elements. The EMBA transmutator replaces every occurrence of such a
function (for a predefined subset of functions) by an instance of the MAP skeleton.

1In future releases of this Transmutator, other skeletons will be included.

Parallelization Analysis 17

FuncDefFilter

EMBA

RMulticoreBackend

Start

End

Figure 2.4: Simple Configuration as Used in Example

After these AIR modifications have been finished, EMBA output is passed on to the
RMulticoreBackend Transmutator.

Figure 2.2 shows the output AIR of EMBA after processing example 2.1. For bet-
ter readability, ALCHEMY allows the conversion of AIR into R or “pseudo R”2. For
instance, the corresponding conversion of program 2.2 yields

alchemy.applySkeleton(name = "MAP", collection = c(1,2,3), kernel = sin)

Listing 2.2: AIR Example

1 <AIR environment -proxy="tcp: //127.0.0.1 :1985"

2 value -proxy="tcp: //127.0.0.1 :1985" environment -id="

169965928">

3 <Program >

4 <SkeletonExpr name="MAP">

5 <params >

6 <param name="collection">

7 <AIRVector basetype="real">

8 <Data data="1.0 ,2.0 ,3.0" length="3" />

9 </AIRVector >

10 </param >

11 <param name="kernel">

12 <SymbolExpr name="sin"/>

13 </param>

14 </params >

15 </SkeletonExpr >

16 </Program >

17 </AIR>

2The “pseudo” does not mean that the generated R is syntactically invalid but that ALCHEMY may
have introduced function names that are unknown to R

18 Parallel Execution

2.4 Parallel Execution

The most “radical” types of transmutation are the ones that replace a program entirely
or partially by corresponding computation results. Those Transmutators are called
“Executors” within ALCHEMY. Executors are often adapters to concrete (parallel)
computations backends using e.g. OpenMP ([Ope]) or MPI.

As AIR programs may contain parallel programming skeletons, i.e language elements
that bear information about parallelizability without referring to the specifics of a con-
crete machine, Transmutators may often be able to directly transform these skeletons
to backend code.

RMulticoreBackend is an example of an Executor. It

1. identifies certain skeleton expressions in the AIR,

2. transforms them to R code that employs the R “multicore” library (see 3.2),

3. submits that code to an instance of the R interpreter that has the “multicore”
library installed,

4. and replaces the original skeleton expressions in the AIR program with the results
of the backend computation.

It should be noted that in the current release of ALCHEMY, RMulticoreBackend
does not use a specific R instance for computation but effectively only executes steps 1.
and 2. By doing this, the transmutation result that is returned back from ALCHEMY
to R contains the R multicore code that must eventually be interpreted by the client
R instance.

The following listing shows the R code that RMulticoreBackend creates for the EMBA
output from the previous section (2.2):

Listing 2.3: R “multicore” Code

1 {

2 library(multicore)

3 mclapply(c(1, 2, 3), FUN = sin)

4 }

The mclapply function is part of the R “multicore” library. It parallelizes the evalu-
ation of a function on a compound data structure, i.e. vector or a list, by splitting the
data and distributing the computation to the available CPU cores.

If RMulticoreBackend used a specific “backend R”, the resulting AIR output of the
Transmutator would be as follows:

Listing 2.4: Final AIR program

1 <AIR environment -proxy="tcp: //127.0.0.1 :1985"

2 value -proxy="tcp: //127.0.0.1 :1985" environment -id="

169965928">

3 <Program >

4 <ConstantExpr >

5 <AIRVector basetype="real">

Scope of this Thesis 19

6 <Data data="0.8414710 ,0.9092974 ,0.1411200" length

="3"/>

7 </AIRVector >

8 </ConstantExpr >

9 </Program >

10 </AIR>

After that, ALCHEMY decides that Transmutation has been finished and returns the
overall result AIR to the client R instance, which outputs the result in the interactive
R session:

Figure 2.5: Final output of the interactive R session

Figure 2.6 illustrates the communication relationships between high-level ALCHEMY
components of the previous example. The individual elements of the diagram are
explained in section 5.

AlchemyCoreRAlchemy

15: result_r

16: eval(result_r)

14: result_r := convertAIRtoR()

13: air3

4: transmutate(air)

2: sexp := parse(rexpr: String)

12: air3 5: transmutate(air)

TransmutationService

3: transmutate(sexp)

1: enter R
expression

RCore

R User

RUserInterface

AlchemyAdapter

11: air3

10: transmutate(air2)

9: air2

7: air1

6: transmutate(air)

8: transmutate(air1)

RMulticore

EMBA

FuncDefFilter

TransmutationController

Figure 2.6: ALCHEMY collaborations for the introductory example

2.5 Scope of this Thesis

The semantics of an interpreted language such as R is eventually defined by the exe-
cution of its interpreter. The ability to isomorphically map the entire language onto
another language, e.g. AIR, without losing or altering semantics would require to mimic
or respect interpreter behavior in all detail. AIR implements certain “mismatch” strate-
gies for handling those cases, when an R language construct cannot be properly mapped
to AIR.

Additionally, R is a semantically very rich language with more than 20 basic language
types called “S expressions”. Many of these types are never exposed to R users but used
internally, e.g. bytecode types, weak references, etc. Currently, ALCHEMY shows no

20 Scope of this Thesis

defined (or at least useful) behavior when explicitly be confronted with some of these
types.

3 Related Work

3.1 R

The R project [R Db] provides a programming environment for numeric computing. R
consists of an interpreter core, an extensible set of functional libraries, and mechanisms
to visualize data. It is a free implementation of the S language which has wide spread
success among researchers for more than 30 years.

By default, users interact with the R environment via a Read-Eval-Print-Loop (REPL)
interface that repeatedly performs the following steps:

1. The user enters an R language expression.

2. The interpreter checks

• if the expression is not a valid R construct, in which case the interpreter
prompts an error message, and returns to step 1,

• if the expression is a valid, but incomplete R construct, in which case the
interpreter shows a continuation prompt, and returns to step 1,

• if the expression is a valid R construct, in which case the interpreter proceeds
with step 3.

3. The interpreter evaluates the entered expression. This evaluation might create
side-effects like I/O. An important side effect is the modification of the “R envi-
ronment”, i.e. the global symbol table that is used for interpretation.

4. The evaluation result is printed to the screen.

Additionally, R offers a batch interface that allows users to provide a series of R
expressions in a text file.

3.1.1 S Expressions

Parsed R programs and values are internally represented as S expressions (called SEXP
within R), a special type of Abstract Syntax Tree (AST). Among the 24 different node
types that are possible in an SEXP tree, the following ones are particularly important
for the understanding of ALCHEMY (see [R Da] for a detailed description of all SEXP
types):

SYMSXP Represents “symbols” in R, i.e. primarily function and variable names. The
class of “function names” in R does also encompass operators like [, :, or A
SYMSXP is associated with a CHARSXP that represents a character string.

LANGSXP Represents functions (named and anonymous ones) in R. A LANGSXP is usually
associated with a SYMSXP denoting the name of the function to be called and a
list of other SEXPS representing the function parameters.

21

22 Approaches to Parallelizing R

CHARSXP Represents a character string.

LGLSXP, INTSXP, REALSXP Represent vectors of boolean, integer, or real values, respec-
tively.

CLOSXP Represents a “closure”, i.e. an anonymous function with a persistent private
environment.

The evaluation of an R expression can be regarded as a tranformation of an SEXPR
where parts of the tree are recursively replaced by its evaluation results until there are
no further evaluations possible. Figure 3.2 shows a representation of the SEXPR that
is created by the R parser for the language expression sin(42).

Figure 3.1 shows the SEXP graph that corresponds to the following program:

1 u <- function(a,b,c) {

2 return (sin(a) + cos (b+c))

3 }

Syntax and semantics of the R language are well described in [VR00] and [Adl10].
[R Da] gives a good introduction into how the R interpreter internally works.

SEXP LANGSXP SYMSXP

LISTSXP

CHARSXP

REALSXP

R_NilValue

CAR

CDR

pname

CAR

CDR

len: 3

‘s’

‘i’

‘n’

len: 1

42

Figure 3.2: SEXP tree of sin(42)

3.2 Approaches to Parallelizing R

There are several packages available that enable R users to benefit from parallel hard-
ware and cluster environments. [SME+09] provides an overview over the different
approaches that are currently used.

In brief, existing techniques can be coarsely assigned to two major categories: those
that try to provide means to exploit the inherent data parallelity in R data types and
those that adapt to third-party clustering environments like MPI or PVM. Virtually all
packages provide special functions that must be explicitly used by R users to parallelize
their programs. There are only a few approaches that try to parallelize user programs
in a transparent and automatic way.

Parallel Programming Patterns (Skeletons) 23

3.2.1 Exploit Inherent Data-Parallelism in R

This class of techniques can more or less accurately be characterized as the “papply”
solution class, as its members provide replacements for the R apply() function family.
In R, the apply() function family takes different R data types, such as list or vector
and a unary function object as input and applies that function object to all elements
of the given data structure, yielding a data structure that contains the results of these
function applications.

This task belongs to the class of “embarassingly parallel” problems and can be par-
allelized without taking data dependencies into consideration. Hence, most of these
parallelization packages are intended to be simple wrappers around parallel execution
frameworks like MPI or PVM. In order to make use of those libraries, users must modify
their programs.

3.2.2 Exploit Task-Parallelism Hidden in Sequential R Programs

Currently, I know only of one project that tries to tackle the problem of automatically
finding inherent concurrency. The pR package “parallelizes sequential R code without
requiring any source code modification” [MLS07]. It works as follows:

1. automatically R statements are selected that shall be parallelized (also in simple
for statements),

2. “Tomasulo’s algorithm” [Wikc] is applied to find program instructions that have
no prohibited data-dependencies and may be parallelized safely,

3. parallel tasks are distributed via MPI

Additionally, pR provides various wrapper and replacement functions for ordinary R
functions.

Unfortunately, the “full” pR package is not publicly available for testing but only the
somewhat less sophisticated taskpR package that requires users to manually annotate
the R source code with parallelization hints.

3.3 Parallel Programming Patterns (Skeletons)

The term “skeleton” was coined 1989 by Murray Cole ([Col89]). Skeletons are ab-
stracted solutions to commonly occurring problems in parallel programming. Analo-
gously to the more widely known (general) Design Patterns (see [GHJV94]) in software
engineering, skeletons try to help with following goals:

• have a common vocabulary that simplifies communication about parallel pro-
gramming problems with other developers

• hide the complexities of a concrete solution behind a common concept or idea of
the solution

• make a solution to a common parallelization problem reusable by providing
parametrizable skeleton libraries

24 Parallel Intermediate Representations

While the terms “skeleton” and “parallel programming pattern” are often used syn-
onymously, there exist parallel programming patterns that live on a more conceptual
level than the usual programming- or design-level skeletons. [MSM04] provides a de-
tailed categorization of parallel programming patterns

At present, there are more than 20 skeleton libraries or frameworks available that are
implemented in different programming languages and provide different sets of skeletons.
The following list shows some examples of skeletons that can usually be found in those
frameworks:

MAP Applies a computation to every element of a container keeping the structural
properties of the container.

REDUCE Combine all elements of a container using an binary-associative operator.
Figure 3.3 illustrates a specific approach to implementing REDUCE that minimizes
the data dependencies of single operations.

SCAN Iteratively combine the elements of a linear container from start to end, storing
the intermediate results to an array.

PIPE Subdivide a computation into linear, dependent, and elementary steps that, for
independent input, can work independently.

See [Wika] or [Col] for a more comprehensive list of skeletons and skeleton libraries.

SPLIT

Figure 3.3: Illustration of REDUCE skeleton operation

3.4 Parallel Intermediate Representations

[MHD09] has come to the conclusion that there are currently only a few programming
languages that are suitable as intermediate languages and offer more than basic ele-
ments to express concurrency. These languages are often very specific with regards to
their model of concurrency.

VCODE [BC90] is an intermediate language specifically devised for the requirements
of highly data-parallel problems in environments that allow for the efficient computation
of vector operations. VCODE is the basis of the data-parallel NESL language [Ble95]
that, in turn, has prepared the ground for recent developments in parallel computing
such as Intel Ct [Intb] or Intel Array Building Blocks (ARBB) [Inta].

Approaches to Automatic Parallelization 25

3.5 Approaches to Automatic Parallelization

Modern CPUs usually employ techniques that analyze the interdependence of consecu-
tive elements of the instruction stream in a program. These techniques make it possible
to dynamically schedule instructions to processing pipelines in a way that reduces the
number of wait states and avoids dependency conflicts (data hazards). Two well known
mechanisms for this kind of parallelization are e.g. “Scoreboarding” [Wikb] and “Toma-
sulo’s algorithm” [Wikc]. Tomasulo’s algorithm is also used with the pR package (see
section 3.2).

On a compiler level, static mechanisms to identify candidates for parallelization often
aim at finding the dependencies of scalar variables (e.g. [Dar97]) or identifying parts
of arrays that may be processed in parallel. There are also other approaches such as
analyzing the commutativity of code sections (e.g. [DD97]).

More high-level techniques try to find algorithmic or domain specific evidence for
parallelism. For instance, [KMM+05] is able to recognize specific kinds of dynamic-
programming problems and transform them into a form that can be efficiently computed
on vector-machines, [KBR07] is able to parallelize certain kinds of stencil computations.

[CWK93] presents a more general approach that applies pattern matching to a repre-
sentation of C programs. The patterns that are used form an extensible parallelization
knowledge base and are not restricted with regards to a single parallelization idea.

26 Approaches to Automatic Parallelization

F
igu

re
3.1:

S
E

X
P

tree

4 Requirements Analysis

Chapter 2 has presented a high level illustration of ALCHEMY’s basic workflow, which
implies several requirements of the ALCHEMY software architecture. In this chapter,
requirements are refined by detailing the architecturally relevant use-cases by help of
an object-oriented analysis.

Figure 4.1 summarizes what use cases are realized by the ALCHEMY laboratory.

Transmutator UC9: Modify AIR

UC8: Query AIR

UC6: Convert AIR to R

UC7: Configure ALCHEMY

ALCHEMY Experimenter

UC5: Transmutate AIR

UC4: Convert R Code
to AIR

UC3: Evaluate R
Expression

UC2: Perform Interactive
R Session

UC1: Execute R
Program

ALCHEMY

R User

<<Inc lude>>

<<Inc lude>>

<<Inc lude>>

<<Inc lude>>

Figure 4.1: ALCHEMY Use Cases

The following use cases are described in a casual way. For every use case, a cor-
responding analysis-level use case realization has been worked out along with its par-
ticipating analysis classes. Analysis classes are shown with “Robustness icons”, see
[JBR99].

27

28 UC 1: Execute R Program

Table 4.1: Meaning of Robustness Icons used in analysis class diagrams

Control class
Control

Represents a class that coordinates or controls other
objects.

Entity class
Entity

Represents information that is long-lived, often per-
sistent, and conceptually important for the system.

Boundary class Boundary Represents an actor interface to the system.

4.1 UC 1: Execute R Program

An R user starts an ALCHEMY-enabled R interpreter in batch mode providing a text
file containing an R program. The user may specify additional ALCHEMY-related
command-line parameters that influence the way ALCHEMY is executed (logging level,
debugging behavior, etc). The interpreter shall also accept all parameters that are
recognized by a regular, i.e. ALCHEMY-unaware, R interpreter (as for release 2.13.1).

The interpreter executes the given R program in a way that is indistinguishable from
a regular R interpreter execution given the same input, i.e. input and output is the
same and arrives in the same order.

This use case includes UC 3: Evaluate R Expression for any full R expression that
is included in the input file.

R ExpressionR Program

4: program output 3: evaluation result

2: Evaluate R expression

R Interpreter

1: Execute R program

R BatchReader

R User

Figure 4.2: Usecase Realization “UC 1: Execute R Program”

The following analysis classes participate in the realization of this use case:

R BatchReader Reads the text from a user supplied file, splits it to individual (full)
R expressions, calls sequentially the R Interpreter (see UC 3). After the last
expression has been evaluated, “R BatchReader” outputs the final result to the
user.

R Program Text file that contains a sequence of R expressions.

R Interpreter Controls overall R evaluation. Uses the ALCHEMY Transmutation Con-
troller to parallelize/execute its input.

R Expression A valid element of the R language that may be parsed and evaluated by
an R interpreter.

UC 2: Perform Interactive R Session 29

4.2 UC 2: Perform Interactive R Session

An R user may execute an ALCHEMY-enabled R console that is indistinguishable
from an interactive R session. The session is an example of a REPL, i.e. a “Read-Eval-
Print Loop”. In an ALCHEMY-R REPL the following sequence is repeated until the
interpreter terminates:

1. “Read”: The user enters an R expression that is parsed by the interpreter. If the
expression contains an error or is incomplete, the console prints an error message
or prompts for continuation of the expression, respectively. The user may also
enter commands that control the behavior of ALCHEMY.

2. “Eval”: If the expression could be parsed correctly, use case UC 3: Evaluate R
Expression is triggered.

3. “Print”: After UC 3: Evaluate R Expression has finished either an error message,
or, if evaluation has failed, the evaluation result is printed to the console.

R Exression

4: session output 3: evaluation result

2: Evaluate R expression

R Interpreter

1: Interact with R session

R Console

R User

Figure 4.3: Usecase Realization “UC 2: Perform Interactive R Session”

The following new analysis classes participate in the realization of this use case:

R Console Reads user input from standard input and prints user directed output. Calls
the R Interpreter whenever the user has finished a line (has pressed Enter), waits
for the interpretation results and outputs them to the user. If the R Interpreter
signals that the input was incomplete, a continuation prompt is printed and the
input of the following line is appended to that of the former line. The look-
and-feel of the R console should be indistinguishable from that of the original R
console except when using special ALCHEMY features such as debugging. The
externally observable behavior that must be implemented by the R Console is
described in [Adl10].

4.3 UC 3: Evaluate R Expression

This use case is triggered whenever a full expression from an interactive session or
batch processing shall be evaluated. The evaluation result is an arbitrary R expression
[Adl10].

Figure 4.4 shows a use case realization for the first case, when a user has entered a
full R expression at the R console and R evaluation is started. Evaluation for batch
processing is no different from this case.

30 UC 3: Evaluate R Expression

1.

2.
3 .

1 .
2 .
3 .
4 .

1 .
2 .

R Environment

AIR Program

R Expression

9: result

8: evaluate
transmutated R

7: transmutated R6: convert transmutated
AIR to R

AIR-to-R
Converter

5: transmutated AIR

4: Transmutate AIR

Transmutation
Controller

3: AIR

2: Convert R to AIR

R-to-AIR
Converter

1: Evaluate
R Expression

R Console

R Interpreter

Figure 4.4: usecase realization “UC 3: Evaluate R Expression”

In UC 3 the following steps are performed:

1. After the R Interpreter has received the R Expression from the R Console, it uses
the R-to-AIR Converter to generate an AIR Program from the given R expression
and the current R Environment (see UC 4: Convert R Code to AIR).

2. The R Interpreter now sends the resulting AIR expression to the Transmutation
Controller, which manages all AIR processing in ALCHEMY (see UC 5: Trans-
mutate AIR for details).

3. After the R Interpreter receives the fully transmutated AIR Expression, it con-
verts it back to an R expression. (see UC 7: Convert AIR to R).

4. With a regular R Expression at hand, the R Interpreter is now able to perform
normal R evaluation, which includes e.g. computing the R functions of the “base
package”, an R library that contains hundreds of mostly mathematical functions.

5. After evaluation has finished, the result is returned to the R Console.

The following new analysis classes are participating in this use case:

R Environment An assignment of R language symbols, i.e. strings with optional
namespaces, to R Expressions

AIR Expression see 4.3.1

AIR Environment Associative hash mapping symbols, i.e. strings, to AIR Expressions

UC 3: Evaluate R Expression 31

AIR Program Pair of:

• AIR Expression: the root element, i.e. expression, of the given program that
may recursively contain other AIR Expressions.

• AIR Environment: interpreter symbol table at the beginning of program
execution

R-to-AIR Converter Converts an R Expression to an equivalent AIR Expression.

AIR-to-R Converter Converts an AIR Expression to an equivalent R Expression.

4.3.1 AIR Expression

An AIR Expression represents a valid expression of the AIR (Analysis Intermediate
Representation) language that, in turn, represents an R language expression. See sec-
tion 2 for a high-level description of AIR properties.

The AIR language elements are shown as subclasses of the analysis class AIRExpr in
diagram 4.5.

AIR Expression

-funcexpr : AIR Expre...
-params : ParamExpr[]

FuncCall

ConstantExpr

-body : AIR Express...
-condition : AIR Exp...

WhileStmt

-name : String
-value : AIR Exp...

ParamExpr

-body : AIR Expression
-params : ParamExpr[]

FuncDef

-children : AIR Expres...

ExprList

-lhs : AIR Expr...
-rhs : AIR Exp...
-op : Ops

BinopExpr

-body : AIR Express...

ForStmt

-expressions : AIR Expr...

Program

-formals : ParamExpr[]
-environment : AIREnvironment
-body : AIR Expression

ClosureExpr

-name : String

Built inFunc

-name : String
-params : ParamExpr[]

SkeletonExpr RepeatStmt

NextStmt

-iterator : AIR Expre...
-collection : AIR Ex...

ForCondit ion

-condition : AIR Exp...
-body : AIR Express...

I fExpr

-name : String

SymbolExpr

Figure 4.5: AIR Class Hierarchy

AIR consists of the following language elements, i.e. AIR expressions,:

BinopExpr A binary operation with

• an operator from a predefined set of operations, such as “plus”, “minus”,
etc

• a left-hand side operand and a right-hand side operand that both must be
AIR expressions

BreakStmt If used within a loop construction, such as ForStmt or WhileStmt, an eval-
uation of the BreakStmt shall lead to the immediate abortion of loop processing.

BuiltinFunc An expression whose semantics is unknown to ALCHEMY and that must
not be interpreted

32 UC 3: Evaluate R Expression

ClosureExpr An “anonymous function” that bears a body to be executed and an
environment that shall be used for execution.

ComponentExpr Access to components of data frame or individual “named” list items

ConstantExpr A language constant, such as a string or an integer value. For a more
detailed discussion about ALCHEMY’s value types, see 4.3.1.1.

ExprList A list of AIR expressions as represented by e.g. an R code block.

ForStmt An R alike “for” statement that consists of

• a collection that is iterated on

• a body that is executed for every element of the collection

FuncCall A function call that consists of

• a function expression, i.e. either a closure (ClosureExpr) for a call to an
anonymous function or a (SymbolExpr) for a call to a named function

• a mapping to parameter names to parameter values that are AIR language
expressions

• a function body

FuncDef A function definition with

• a list of formal parameters that may have default values

• a function body

IfExpr An “if” expression, representing the conditional execution of a body element.
Optionally, the IfExpr may contain an alternate “else” expression.

NextStmt If used within a loop construction, such as ForStmt or WhileStmt, an eval-
uation of the NextStmt shall lead to the immediate execution of the next loop
iteration ignoring the remainder of the loop body.

ParamExpr Represents a parameter, e.g., of a function call. Consist of the parameter
name and the parameter value, which may be any AIR expression.

Program List of AIR expressions

SkeletonExpr Represents a “skeleton”, i.e. a parallel programming pattern (see 3.3).
Skeletons are modeled as functions with named parameters. A SkeletonExpr has a
name, e.g., “MAP” and a list of ParamExpr constituting the skeleton parameters.

SymbolExpr Represents a language symbol, i.e. a variable or function name.

WhileExpr A “while” loop construct with a condition expression and a loop body that
is repeatedly executed as long as the condition is evaluated true.

UC 4: Convert R Code to AIR 33

4.3.1.1 AIR Types and Values

AIR provides values of the following types, which may appear as the contents of vari-
ables and language literals:

IntegerValue, RealValue, LogicValue, StringValue One of element of “integer”,
“real”, “logic”, or “string”, respectively.

AIRVector Contains an arbitrary number of homogeneous elements of a BaseType.

AIRMatrix Contains an arbitrary number of elements of a BaseType. Contains addi-
tionally information about the dimensionality of the matrix.1

AIRList Contains an arbitrary number of heterogenous, optionally named elements.2

4.3.2 XML Representation

A conceptual AIR Expression has a concrete “canonical” representation as an XML
document. This XML representation is part of the ALCHEMY domain model, as Use
Case 8 (see 4.8) depends on it. Section 2 shows some examples of AIR XML documents.
See also appendix D.2 for a more complex XML representation for program listing D.1.

4.4 UC 4: Convert R Code to AIR

In this use case, which is triggered by the R Interpreter, the R-to-AIR Converter creates
an AIR Expression from an R Expression. AIR is designed to be able to express a large
subset of R, so the output of this conversion results in an AIR object that has very
similar semantics to that of the original expression.

ALCHEMY Experimenter

R Expression AIR Program

R-to-AIR Conversion
Interface

R Interpreter

R-to-AIR Converter

Figure 4.6: Usecase Realization “UC 4: Convert R to AIR”

The conversion is realized by mapping R language elements to AIR language ele-
ments. The mapping rules can be deduced from the element descriptions in the previous
section.
1AIRMatrix is not fully implemented, yet.
2AIRList is not fully implemented, yet.

34 UC 5: Transmutate AIR

Figure 4.7 represents an AIR Program that has been converted from the R program
shown in listing D.13.

Listing 4.1: Example R Program

1 a <- 3

2 while (a < 10) {

3 x <- c(3,1,4,1,5);

4 for (i in x) {

5 a <- a + i;

6 }

7 for (j in x) {

8 a <- a * j;

9 }

10 }

4.5 UC 5: Transmutate AIR

Possible actors for this use case are the R Interpreter that aims at transmutating an AIR
expression or an ALCHEMY experimenter that uses a specific interface for performing
transmutations.

Transmutation consists of the following steps:

1. R Interpreter sends an AIR Expression to the Transmutation Controller for trans-
mutation.

2. Transmutation Controller evaluates its Transmutation Configuration that may,
depending on its Configuration Rules and the state of the Transmutators, modify
the state of the Transmutation Queue.

3. Transmutation Controller takes the first Transmutator out of the Transmutation
Queue and delegates transmutation of an AIR Set (initially containing the input
AIR Expression) to it.

4. Transmutator analyzes the elements of the AIR Set and decides if and where to
perform modifications.

5. Transmutator replaces parts of the AIR Expression.

6. After a Transmutator has finished transmutation, the Transmutation Controller
checks if the termination condition is fulfilled and if so, finishes the transmutation,
handing control back to the R Interpreter

7. Otherwise, if the termination condition has not been reached, yet, the Transmuta-
tion Controller repeats this procedure starting from evaluating its configuration.

3The meaning of the highlighted subtree of diagram 4.7 is described in section 4.8

UC 5: Transmutate AIR 35

P
ro

gr
am

B
in

o
p

Ex
p

r
o

p
 =

 “
<-
“

W
h

ile
St

m
t

1
2

Sy
m

b
o

lE
xp

r
n

am
e

=
“a
”

C
o

n
st

Ex
p

r
ty

p
e

=
in

t,
 v

al
 =

 3

lh
s

rh
s

Ex
p

rL
is

t

co
n

d
it

io
n

b
o

d
y

B
in

o
p

Ex
p

r
o

p
 =

 “
<-
“

Fo
rS

tm
t

Fo
rS

tm
t

B
in

o
p

Ex
p

r
o

p
 =

 “
<“

Sy
m

b
o

lE
xp

r
n

am
e

=
“a
”

C
o

n
st

Ex
p

r
ty

p
e

=
in

t,
 v

al
 =

 1
0

lh
s

rh
s

Sy
m

b
o

lE
xp

r
n

am
e

=
“x
”

Fu
n

cC
al

l

lh
s

rh
s

1
2

3

Sy
m

b
o

lE
xp

r
n

am
e=

”c
”

P
ar

am
Ex

p
r

C
o

n
st

Ex
p

r
ty

p
e

=
in

t,
 v

al
 =

 3

P
ar

am
Ex

p
r

C
o

n
st

Ex
p

r
ty

p
e

=
in

t,
 v

al
 =

 1

fu
n

ce
xp

r
1

2

Fo
rC

o
n

d
it

io
n

it
er

va
r=
”i
”

co
n

d
it

io
n

Sy
m

b
o

lE
xp

r
n

am
e=

”x
”

co
n

ta
in

er

Ex
p

rL
is

t

B
in

o
p

Ex
p

r
o

p
 =

 “
<-
“

B
in

o
p

Ex
p

r
o

p
 =

 “
+“

Sy
m

b
o

lE
xp

r
n

am
e=

”a
”

b
o

d
y

1

lh
s

rh
s

Sy
m

b
o

lE
xp

r
n

am
e

=
“a
”

Sy
m

b
o

lE
xp

r
n

am
e

=
“i
”

lh
s

rh
s

Fo
rC

o
n

d
it

io
n

it
er

va
r=
”j
”

Sy
m

b
o

lE
xp

r
n

am
e=

”x
”

co
n

ta
in

er

Ex
p

rL
is

t

B
in

o
p

Ex
p

r
o

p
 =

 “
<-
“

B
in

o
p

Ex
p

r
o

p
 =

 “
*“

Sy
m

b
o

lE
xp

r
n

am
e=

”a
”

1

lh
s

rh
s

Sy
m

b
o

lE
xp

r
n

am
e

=
“a
”

Sy
m

b
o

lE
xp

r
n

am
e

=
“j
”

lh
s

rh
s

co
n

d
it

io
n

b
o

d
y

F
ig

u
re

4.
7:

E
x
am

p
le

A
IR

tr
ee

36 UC 5: Transmutate AIR

The capability to set breakpoints, do debugging during transmutation, and send trace
messages to the R session is a future extension that must not necessarily be included
in the first ALCHEMY release, but should be considered in its architecture.

AIR Transmutation
Interface 6: Replace parts

5: Query parts

AIR Program

AIR Set

Configuration Rules

9: transmutated AIR

7: transmutated AIR

8: Check termination
condition

4: Transmutate
AIR

3: Get next scheduled
Transmutator

Transmutation
Queue

2: Update Transmutation
Queue

Transmutator

Transmutation
Configuration

1: Transmutate AIR

R Interpreter

Transmutation
Controller

Figure 4.8: Usecase Realization “UC 5: Transmutate AIR”

The following new analysis classes participate in the realization of this use case:

AIR Set A set or list of AIR Programs

Transmutation Controller See 4.5.2

Transmutation Configuration See 4.5.2

4.5.1 Transmutator

An AIR Transmutator takes an AIR Set as input, processes its enclosed AIR Programs,
and returns the resulting AIR Set. Transmutators may serve different purposes, e.g.

• Act as a filter to identify AIR Programs that should not be processed by ALCHEMY.

• Transform an AIR Program. This is, how Transmutators are used most often.

• Simplify an AIR Program by computing the value of the entire program or frag-
ments thereof.

Each ALCHEMY transmutator has one Input Port. After a transmutator has been
scheduled, its Input Port contains the AIR Set, i.e. the set of AIR programs, that it
should process. Likewise, each ALCHEMY transmutator has one Output Port. After
the transmutation has been finished, the result is put into the Transmutator’s Output
Port. Figure 4.9 shows the structure of the transmutator analysis class.

UC 5: Transmutate AIR 37

Transmutator AIR Set

AIR Program

EMBAFuncDefFilter RMulticoreBackend

0..1

0..*

output port

Figure 4.9: Transmutator analysis class

Transmutator execution is scheduled by the Transmutation Controller (see 4.5.2).

At present, ALCHEMY provides the following Transmutators (see chapter 7 for a
detailed description): FuncDefFilter, EMBA, RMulticoreBackend.

4.5.2 Transmutation Controller

As described in section 4.5.1, a Transmutator transforms an input AIR Set, i.e. a list
of AIR Programs into an output AIR Set. Thus, as input and output are of the same
type, it is possible to apply a “Pipes and Filters” pattern [BMR+96] to execute multiple
Transmutators in sequence.

It is the responsibility of the Transmutation Controller to decide what this sequence
looks like and when it terminates. The combination of a Transmutator and that input
AIR Set, which it shall process, is called a Transmutation. The Transmutation Con-
troller delegates the decision what Transmutation to schedule next to a Transmutation
Configuration, which, following some strategy, modifies the so called Transmutation
Queue.

The Transmutation Controller simply relies on the order of Transmutations in this
Transmutation Queue to decide what Transmutator to call next using what input.
Transmutation terminates when the Transmutation Queue is empty after the Trans-
mutation Configuration has been evaluated. When transmutation terminates, the trans-
mutation result is the first element of the resulting AIR Set of the last Transmutation
that has taken place.

There are many Transmutation Configurations conceivable, e.g. ones that strictly
hard-code the order of Transmutations or ones that dynamically or even randomly
choose the next Transmutation. By default, ALCHEMY uses a configuration based
Transmutation Configuration that is described in more detail in the following section.

As the Transmutation Controller transforms an input AIR Set into an output AIR
Set, it can be regarded a Transmutator itself. Hence it might be (recursively) used in
higher-level transmutation strategies, making complex scenarios with different, nested,
and isolated Transmutation Configurations possible.

Figure 4.10 shows an imaginary complex configuration that is built from a main
configuration with focus on parallelization analysis and a sub-configuration with focus
on AIR execution.

38 UC 5: Transmutate AIR

“Executor”

Sub-Configuration

FuncDef

Execution Controller

MPI ARBB R multicore

EMBA

MATSU SURE

Merger

Labeler

Executor

Splitter

Default Transmutation Controller

Figure 4.10: Transmutation Configuration Example

In the following sections, I describe a rule-based Transmutation Configuration.

4.5.3 Rule-Based Transmutation Configuration

The Rule-based Transmutation Configuration is composed of a list of Rules. Every rule
consists of

• a Condition part that defines when a rule “matches”

• an Input part that forms the Transmutation input

• an Action part that is used to, e.g. schedule a Transmutation, i.e. put a Trans-
mutation onto the Transmutation Queue. There are also other Actions possible.

Additionally, the Transmutation Configuration defines a set of Transmutator in-
stances that can be used in rule specifications.
Figure 4.11 shows a schematic overview of an Transmutation Configuration instance.

When the configuration is evaluated, the conditions of all rules are evaluated and
the actions of matching rules put on the Transmutation Queue. Rules are processed in
order of occurrence in the rules list, so their order has an impact on the action schedule.

An important rule is that one Transmutator may consume one input AIR Set only
exactly once. This is necessary because the Transmutation Configuration is evaluated
anew after each round and multiple repeated “firings” of rule instances is prohibitive.
Without this rule, a repeated scheduling of rules would happen naturally, as Transmu-
tator output ports are not automatically cleared of AIR Sets to make deferred Trans-
mutator execution possible.

UC 5: Transmutate AIR 39

Transmutation Configuration

Transmutation Rules

Rule 1 Rule 2 Rule 3 Rule n

Condition
OutputReady (emba1)

OutputReady (matzu)

Action ScheduleTransmutator (executor)

Input MergeAIRsets (emba1, matzu)

Transmutators

emba1 org.transpar.alchemy.transmutators.EMBA

matzu org.transpar.alchemy.transmutators.MATZU

test de.mm.testtransmutator

inline_funcs=1

sp_mode=0, debug=1

instance label class name parameters

emba2 org.transpar.alchemy.transmutators.EMBA inline_funcs=0

Figure 4.11: Transmutation Configuration Example

Figure 4.12 shows the sequence of actions that happen during the evaluation of a
configuration rule.

4.5.3.1 Transmutator Instances

Throughout the configuration, Rules refer to specific instances of Transmutators that
are created within a special section of the configuration that contains instance spec-
ifications. An instance specification creates a Transmutator instance from its type,
a symbolic name using that rules can refer to the instance, and an optional set of
configuration options4.

4.5.3.2 Conditions

A Condition consists of a list of Predicates and matches if all Predicates match, i.e. are
evaluated true. Other matching strategies are possible, e.g. matching if the first or any
Predicate matches.

4In the current implementation of ALCHEMY, it is not possible to provide configuration options via
the configuration file.

40 UC 5: Transmutate AIR

Check if all Conditions match

Check if InputModifier present

Evaluate Input Modifier
Use output port of Transmutator
of first OutputReady predicate of

Condition

Execute all actions
with computed input

Check if this input has been
applied to this rule earlier

[yes]

[no]

[no]

[no] [yes]

[yes]

Figure 4.12: Analysis Activity Diagram “Rule Processing”

A Predicate has a set of predicate-specific named arguments that are used when the
Predicate is evaluated. ALCHEMY currently provides the following Predicates:

OutputReady The OutputReady Predicate matches if the Transmutator that is refer-
enced by the argument “at” has a non-empty output port.

OutputLabelSet This Predicate matches if the label that is specified by the argument
“label” is set at the output port of the Transmutator that is referenced by the
argument “at”.

OutputLabelEquals This Predicate matches if the the label that is specified by the
argument “label” at the output port of the Transmutator that is referenced by
the argument “at” is equal (character-wise) to the string that is specified in the
argument “text”.

The dependencies that are imposed by the rule conditions may be represented as a
directed graph. Figure 4.13 shows a graph that results from an example configuration
that is printed in section C.1.

UC 5: Transmutate AIR 41

start

funcdef

emba1 matzu sure

emba2

executor

Figure 4.13: Rule dependencies in transmutation configuration

4.5.3.3 Input Modifiers

By default, a Rule provides the content of the output port of the Transmutator that is
specified in the first OutputReady predicate of the Condition to the Rule Action.

If an Input Modifier is specified for a rule, this Input Modifier is executed at schedul-
ing time to create the input for the Action part. The Input Modifier may create the
input freely, e.g. from the output port of a Transmutator that is referenced in the
Condition part or anything else.

However, ALCHEMY only guarantees that the assertions that are made in the Con-
dition part are actually met, i.e. if an Input Modifier depends on the output of a
Transmutator that was not checked in the corresponding condition part, there is a
possibility of failure.

An Input Modifier results in exactly one AIR Set that is provided to the Rule Action.

ALCHEMY knows the following Input Modifiers:

MergeAIRSets Creates a new AIR Set from the output ports of a given set of Trans-
mutator instances and provides that as input.

SimpleInput Provides the output port of a given Transmutator instance as input.

4.5.3.4 Rule Action

A Rule Action consists of a list of Actions that are all applied when the rule matches.

There is no semantic difference between one Rule Action with multiple Actions and
multiple Rules with same Condition and an individual Rule Action for each Action.

Currently, only the following Rule Action is provided by ALCHEMY

ScheduleTransmutator Add the transmutator that is referenced by the “transmutator”
attribute to the scheduling queue.

4.5.4 Static and Dynamic Configuration

The static configuration is provided by the user when ALCHEMY starts. A concrete
XML-based example of a static configuration is shown in C.1. Alternatively, Trans-
mutators are allowed to modify the Transmutation Configuration dynamically, by e.g.
adding or removing Rules.

42 UC 6: Configure ALCHEMY

4.6 UC 6: Configure ALCHEMY

General R users and ALCHEMY experimenters must be able to configure ALCHEMY
behavior and specific technical parameters of the system. “Configuration points” are
restarts of the ALCHEMY system, i.e. it is not necessary to detect dynamically that
the configuration has changed.

4.7 UC 7: Convert AIR to R

As ALCHEMY does not enforce the full evaluation of AIR Programs by Transmutators,
after AIR processing has finished the AIR Program might still consist of a complex AIR
Expression. For that reason, the R Interpreter must be able to perform “normal” R
evaluation on the ALCHEMY results. At the same time, an ALCHEMY experimenter
might sometimes be interested in seeing the R equivalent of an AIR Expression.

This use case converts a given AIR Expression or AIR Program into a corresponding R
Expression. Ideally, that conversion is the inverse operation to the R-to-AIR conversion
use case in 4.4. However, some special cases have to be taken care of, such as when the
R-to-AIR mapping was not completely injective or when ALCHEMY has introduced
AIR Expressions that are unknown to R, e.g., SkeletonExpr.

A general mechanism to resolve the first case does not exist because, depending on
the concrete problem instance, the AIR-to-R Converter

• may sometimes be able to safely map an AIR Expression to a R construct that
is different from the original one without changing semantics. For example, the
valid, yet rarely used, assignment operator = may be mapped to <- without dan-
ger.

• might have to take the context of an AIR Expression into account, when mapping
it to an R Expression. Until now, it has not been necessary to employ this
resolution strategy.

For the second case, i.e., to convert AIR Expressions that have no obvious counterpart
in R, there is also no general strategy. For instance, the SkeletonExpr mentioned above
can be expressed as an R function expression with named parameters. However, if
the chosen function is not known to R, this will result in an R runtime error. Hence,
ALCHEMY Transmutation Configuration must ensure that no such AIR Expressions
“leak” to R.

4.8 UC 8: Query AIR

The main task of a Transmutator is to analyze an (AIR) program for certain charac-
teristics and modify the program based on these findings. Hence, it is important that
Transmutators are able to conveniently inspect every detail of a program. For a given
AIR Expression, a Transmutator must have easy access to all attributes and possible
sub-expressions, e.g. to the left-hand side of a binary operation, i.e. a BinopExpr.

To further simplify element access, Transmutators may query a given expression
to receive a list of matching descendants. The query is represented as an “XPath”

UC 9: Modify AIR 43

R Integration ALCHEMY CoreAIR

AIR
Environment

Transmutat ion

Conf igurat ion
Rules

Transmutat ion
Conf igurat ion

Transmutat ion
Queue

AIR Set

R Environment
TransmutatorR- to -A IR

Converter

Transmutat ion
Control ler

A IR- to -R
Converter

R Expression

AIR Program

R Console

AIR
Expression

R Interpreter

R BatchReader

0..*

0..*

Figure 4.14: Overall analysis class diagram

based query string ([W3C07]). XPath is a language for selecting nodes from an XML
document. In the context of AIR, it uses the AIR XML representation (see 4.3.2).

As an example, the highlighted subtree of figure 4.7 corresponds to the following
XPath query:

/Program/WhileStmt/body/*/ForStmt[./ForCondition/@itervar="i"]

4.9 UC 9: Modify AIR

A Transmutator may replace AIR Expressions by other AIR Expressions. ALCHEMY
provides programmatic aids for creating new expressions.

4.10 Analysis Overview

Figure 4.14 shows all analysis classes that participate in the identified use cases. Classes
have been assigned to three analysis packages: R Integration, AIR, and ALCHEMY
Core.

This partitioning in analysis packages is based on the principles of high cohesion, i.e.,
the containing classes are highly related, and loose coupling, i.e., dependencies between
packages are minimized. Among the three packages, two contain the main functionality
of the system (“R Integration” and “ALCHEMY Core”). “AIR” has been factored out
as a package of its own, as it is heavily used by either of the other packages and putting
it in one of them would increase coupling considerably.

5 ALCHEMY Software Design and
Implementation

This section describes the software design of ALCHEMY, i.e., how the object-oriented
analysis of chapter 4 is realized in software, taking all functional and nonfunctional
requirements into consideration.

Section 5.1 depicts the overall system-architecture of ALCHEMY, i.e., the major
building-blocks or components this software is constructed from. The following sections
focus on specific architectural relevant, complex, or otherwise important elements of
ALCHEMY’s software design. The description always starts with a refinement of the
original requirements and goes as much into detail as it seems necessary to explain the
topic.

5.1 System Architecture

An architectural sound design model answers the question of how to fulfill the functional
requirements given all other constraints in a way that makes system’s future evolution
and variation as easy as possible. This section tries to develop such an architecture
based on the requirements identified in section 4. The description follows roughly a
structure that is known as “Software Architect Document” (or SAD document) from the
4+1 Architectural View model (see [Kru95]). In contrast to the common organization
of an SAD document, the description of the individual architectural views, e.g. logical
or physical view, is interwoven in the illustration of a design-level use-case realization.

5.1.1 Architectural Factors

The analysis-level partitioning of ALCHEMY classes in chapter 4 has resulted in the
identification of three major packages (see diagram 4.14), with two of them, i.e., R
Integration and ALCHEMY Core, responsible for the main functionality of the system,
and the third one, AIR being the most important data or entity class.

It makes sense to take the analysis-level break-up of these three conceptual pack-
ages as a blueprint of ALCHEMY’s software design. It is instructing to reiterate the
major requirements of each of these packages individually with special focus on their
supplementary requirements:

Package “R Integration” The main responsibility of “R Integration” is to provide a
user interface that behaves like the original R infrastructure, most of the time.
In addition, it intercepts an R expression before evaluation, converts it to AIR,
sends the AIR to the ALCHEMY Core Transmutation Controller, waits for its
response, evaluates the response, and reports the result back to the user.

44

System Architecture 45

The most important nonfunctional requirement for this package is that its be-
havior must differ from that of R as little as possible, i.e. it must adopt its user
interface and all its nonfunctional properties, such as interaction latency. If that
requirement is not satisfied, ALCHEMY is at risk of losing user acceptance.

Additionally, as R is an active project that publishes about two releases every
year, “R Integration” must be able to adapt easily to changes in R that are visible
to the user.

Package “AIR” AIR represents an abstract access to the AIR language and provides
means to search for AIR Expressions and replace them by others.

Although the R language itself and accordingly the R related subset of AIR can be
considered stable, AIR must nonetheless be prepared for change as other skeletons
or data types might turn out useful in the future.

Whether AIR is an abstract representation of a concrete language or there exists
a concrete “verbalization” of AIR, which is abstract in nature: it is important to
have a good representation that can be used to present AIR instances to users or
exchange AIR instances between different software processes.

Package “ALCHEMY Core” This package is responsible for driving the transmutation
of AIR Expressions, i.e. selecting and running Transmutators.

As ALCHEMY puts much emphasis on being an experimentation laboratory for
parallelization, it has a few natural points of evolution and variation. First, the
set of available Transmutators will change frequently. Experimenters will create
Transmutators or modify old ones on an ad-hoc basis. These changes must be
easy to perform.

Secondly, the sequence in that Transmutators are executed will vary. This re-
quirement has already been captured during analysis with the introduction of the
Transmutation Configuration. However, it must even be possible to integrate a
completely different transmutation strategy.

As a third requirement, the Transmutation Configuration, as described in section
4, uses various Predicates, Input Modifiers, and Actions. It must be easy to extend
each of these sets.

Additionally, transmutation performance might not be the most important re-
quirement but must still not be neglected. Moreover, the design must make
preparations to implement the optional requirements to be able to set break-
points and let ALCHEMY Core send informational messages to the R session.

5.1.2 Architectural Decisions

In order to fulfill the requirements stated above, the following architectural decisions
have been made:

1. The “R Integration” package is realized as an extension to the original R infras-
tructure, which is named RAlchemy from now on. By doing this, the danger of R
users missing features or experiencing incompatibilities is completely removed.

46 System Architecture

2. The “ALCHEMY Core” package is realized as a stand-alone Java application
with plugin mechanisms for Transmutators and other object types, which is called
AlchemyCore as of now. With R being implemented in C and C being considered
not adequate for experimenters, Java seems like a natural choice, because it is of-
ten taught as a first object-oriented language at universities. Additionally, Java’s
reflection capabilities simplify the dynamic or configuration-based integration of
plugins.

3. AIR Environment objects are realized as Proxies. The complete, i.e., global R
environment (including the “base environment” that contains the R base package)
contains hundreds of objects. Even without the base environment, a serialization
of the environment would be very expensive and, depending on the actions the
Transmutators, might be necessary several times per transmutation.

For that reason, RAlchemy does only communicate proxy objects (see [GHJV94])
to AlchemyCore. See section 5.3 for details.

4. Value objects may be realized as Proxies. R values may become huge, in particular
in scenarios that ALCHEMY tries to be useful for, i.e. computations on large data
sets. Even a single serialization of such a value may be prohibitive. Therefore,
RAlchemy transmits only Proxy objects for vectors or lists whose size exceeds a
certain threshold. See 5.3 for details.

5. Stateless operation of AlchemyCore will be prepared. Any architecture but in
particular a distributed system like ALCHEMY should avoid unnecessary com-
plexity. The requirement to set a breakpoint and making transmutator execution
“wait” for an R user to resume the transmutation would, in a naive implemen-
tation, suspend server execution and leave the running AlchemyCore process in
a client dependent state. This is error-prone, e.g. as the server won’t be able to
react to client failures. For that reason, it is good practice to implement server
software in a “stateless” way.

These decisions have consequences on the design, the implementation, and the de-
ployment of ALCHEMY:

• RAlchemy and AlchemyCore must be deployed as distinct operating system pro-
cesses, i.e., active components that don’t (automatically) share memory. As there
exists a “one-way” dependency from RAlchemy to AlchemyCore, this effectively
leads to a client-server architecture with RAlchemy being in the client role and
AlchemyCore being in the server role.

• RAlchemy must offer services to allow clients of a Value or Environment Proxy
access to the corresponding full object. This creates a (logical) dependency from
the server, i.e. AlchemyCore, to the client, i.e., RAlchemy. It is important to
localize these dependencies in classes that are local to AlchemyCore.

5.1.3 Description of ALCHEMY’s Architecture

Package diagram 5.1 shows a high-level view of ALCHEMY’s architecture, diagram 5.2
a typical deployment scenario with component dependencies. In the following sections,

System Architecture 47

the depicted packages are described in more detail. The presentation of the architec-
ture does encompass elements of all levels of abstraction and kinds of representation,
i.e. analysis, design, implementation, dynamic, or static, as long as the presented
information helps to understand the system.

The next few sections will explain the main architectural classes, as they participate
in the use case UC 2: Perform Interactive R Session as described in section 4.2.

Figure 5.3 shows the high-level communication between ALCHEMY components for
a simple transmutation scenario that does not involve parallel backends.

As explained in the previous section, the user interacts with an “ALCHEMY enabled”
version of the original R runtime environment, RAlchemy, that is further discussed in
the next section.

5.1.4 Package: RAlchemy

The illustration of RAlchemy in diagram 5.1 reveals a loose multi-layer architecture
with layers that contain R interfaces, services, its domain model, and commonly used
infrastructure classes. This structure may appear somewhat artificial on the side of
the original R environment, as there is no known R design model and this illustration
assigns the C modules to their corresponding design classes based on their “assumed
intention”.
RAlchemy realizes the analysis package “R Integration” with the following design

classes and packages:

• RUserInterface realizes R Console and R BatchReader

• R Core realizes R Interpreter

• AIRtoRConverter realizes AIR-to-R Converter

• RtoAIRConverter realized R-to-AIR Converter

Additionally, RAlchemy contains the following artifacts that are necessary for satis-
fying the architectural decisions from section 5.1.2:

AlchemyAdapter a proxy or business delegate (see [BHS07]) for AlchemyCore

RServer provides services that are implemented in RServices to clients

RServices services that are required to implement the proxy mechanisms for environ-
ment lookup, value access, and transformation from AIR to R

Logging Helper functions for logging and pretty-printing R data structures

Communication Low-level classes for inter-process communication

5.1.4.1 Implementation

RAlchemy bases on the existing R runtime environment and enriches it with functional-
ity to interact with ALCHEMY. R is implemented in C. So some design patterns, e.g.
Visitor (see [GHJV94]), that heavily rely on object-oriented features such as runtime-
polymorphism cannot be implemented in a completely clean way.

48 System Architecture

A
lch

e
m

yC
o

re

D
o

m
a

in

R
A

lch
e

m
y

T
ra

n
sm

u
ta

tio
n

T
ra

n
sm

u
ta

to
rs

A
lch

e
m

yA
d

a
p

te
r

A
lch

e
m

yS
e

rvice

In
fra

stru
ctu

re

A
IR

In
te

rfa
cin

g

In
fra

stru
ctu

re

A
IR

A
IR

to
R

C
o

n
ve

rte
r

R
to

A
IR

C
o

n
ve

rte
r

T
ra

n
s

m
u

ta
tio

n
C

o
n

tro
lle

r

T
ra

n
sm

u
ta

tio
n

C
o

n
fig

C
o

m
m

u
n

ica
tio

n

R
S

ervices

E
n

viro
n

m
e

n
tS

vc
A

IR
to

R
S

vc
V

a
lu

e
S

vc

In
te

rfa
ce

<
<

O
rig

in
a

l R
>

>
R

U
se

rIn
te

rfa
ce

R
 S

e
rve

r

<
<

O
rig

in
a

l R
>

>
R

C
ore

L
o

g
g

in
g

C
o

m
m

u
n

ica
tio

n

T
ra

n
s

m
u

ta
tio

n
S

e
rv

ic
e

S
e

ssio
n

S
e

rvice

U
tilitie

s
Log4J

F
igu

re
5.1:

O
verall

logical
d

esign

System Architecture 49

ALCHEMY Node

<<component>>
<<executable>>

R(Client)

<<component>>
<<executable>>

AlchemyCore

<<component>>
<<executable>>

ArBBBackend

<<component>>
<< l ib ra ry>>

Transmutators

<<component>>
<<executable>>

RMulticoreBackend

RtoAIRSvc

TransmutationSvcTransmutationSvc

ValueSvcEnvironmentSvc

TransmutationSvc

ZMQZMQ

ZMQ

Figure 5.2: Alchemy Deployment

AlchemyCoreRAlchemy

15: result_r

16: eval(result_r)

14: result_r := convertAIRtoR()

13: air3

4: transmutate(air)

2: sexp := parse(rexpr: String)

12: air3 5: transmutate(air)

TransmutationService

3: transmutate(sexp)

1: enter R
expression

RCore

R User

RUserInterface

AlchemyAdapter

11: air3

10: transmutate(air2)

9: air2

7: air1

6: transmutate(air)

8: transmutate(air1)

RMulticore

EMBA

FuncDefFilter

TransmutationController

Figure 5.3: Alchemy High-Level Collaboration Diagram

50 System Architecture

In general, RAlchemy’s code style tries to mimic the structure of object-oriented or
object-based languages, where possible. In particular, in correspondence to e.g. C++,
most design classes are implemented having an individual header file and translation
unit. The names of C functions that belong to such “classes” have a prefix that is
related to the design class name. The “method name” is appended to the prefix. The
instance object of a method call, i.e., the textttthis in a JAVA or C++ analogy, is
provided as the first argument of the call. For example, the corresponding C code to
the Java snippet

1 AlchemyAdapter adapter = new AlchemyAdapter ();

2 adapter.transmutate ();

would be

1 AlchemyAdapter* adapter = AlchemyAdapter_new ();

2 AlchemyAdapter_transmutate (adapter);

In order to be prepared for new releases of R, one of the main implementory con-
straints is to integrate ALCHEMY in a non-invasive way, i.e., without making too
many modification to the R code base. To achieve that goal, ALCHEMY code has
been extracted to unique modules that are referenced from R code only at a few places.

Figure 5.4 shows the first activities for the realization of an instance of use case 2 on
the part of RAlchemy as a UML communication diagram. This example is continued
in the following sections as the program flow reaches other design elements.

10: printValueEnv(result_sexp)

9: result_sexp
8: eval(transmutated_sexp)

RCore

7: transmutated_sexp

6: perform IPC with AlchemyCore

3: R_Parse1Buffer

2: R_ReadConsole()

4: transmutateFromSEXPtoSEXP()

5: makeAIRfromSEXP()

RtoAIRConverter

AlchemyAdapter

1: Enter expression in REPL

R UI

R User

Figure 5.4: 1st Part of Use Case 3 Realization

On startup, the R runtime environment performs various initialization tasks such
as preparing the base (symbol) environment, i.e. the R Environment known from
analysis, preparing Input/Output channels, initializing the R memory management1,
and setting up the R error handling subsystem. These actions are performed in main/

main.c:setup_Rmainloop().2.

1which is out of the scope of this thesis, but to summarize: R employs a custom generational garbage
collector

2As of now, this means that the corresponding implementation is located in the function
setup_Rmainloop() that is defined in the R source file main.c in the src/main subdirectory
of an R source installation.

System Architecture 51

After startup is completed, the R interpreter enters the REPL (Read-Eval-Printloop),
which is located in the design class RUserInterface.

ALCHEMY is not automatically enabled after system startup. The user must ini-
tialize the subsystem by executing the R function alchemy.enable() that is added to
the list of R built-in functions at startup, along with alchemy.disable and alchemy.

loglevel. The assignment of R built-in function names to C functions takes place in
main/names.c.

At initialization, the function main/alchemy.c:do_alchemy_enable() that is associated
with alchemy.enable() performs the following steps:

1. A new AlchemyAdapter instance is created. (see 5.1.6)

2. An IPC strategy is instantiated and associated with the adapter instance. At
present, this is always ZMQConnection. (see 5.2)

3. An new instance of AlchemySession is created. AlchemySession encapsulates
or references all data that belongs to a specific R session. In the current release,
AlchemySession is a pure design element in RAlchemy and AlchemyCore and
has no domain- or analysis-level counterpart. However, in future releases, it is
planned to add transmutation management to ALCHEMY, as described in 9.

4. A new RServer instance is created that is used to accept incoming requests for
services like the environment service or the value service. (see 5.2)

5. A new ValueRepository object is created and associated with the session.

6. A new ValueService object is created and initialized with the ValueRepository.
The ValueService is registered at the RServer.

7. A new EnvironmentService is created and registered with the RServer.

8. A new AIRtoRService is created and registered with the RServer.

5.1.5 Class: RUserInterface (or R UI)

The RUserInterface design class realizes the analysis classes R BatchReader, R Con-
sole, and implements some responsibilities of the R Interpreter class, i.e. parsing the
input and delegating control to transmutation and R evaluation. In fact, from an ar-
chitectural point of view, that might be too many responsibilities for an interface class.
However, as the existing R realization does not allow a strict separation of interface,
service, and domain logic, this ugliness is tolerated in this context.

As RUserInterface is responsible for parsing the user input, thereby converting it
to an “S Expression” (R’s internal language representation, see 3.1.1). S Expressions
or “SEXP”s, as they are called within the R source code, realize the analysis class R
Expression.
RUserInterface is realized as a set of functions that are contained in src/main/main.c:

main/main.c:R_ReplConsole() and main/main.c:Rf_ReplIteration(). Rf_ReplIteration

() is responsible for the REPL. It controls the user interaction, R parsing, and eval-
uation by delegating to specific functions: first, it calls main/main.c:R_ReadConsole

(), which implements the “Read” part of the R REPL by reading user input from

52 System Architecture

the console. After that Rf_ReplIteration() uses the R parser by calling main/main

.c:R_Parse1Buffer() until a complete R expression could be parsed or an error is
detected. The parser routine returns a “parse SEXP” of the entered expression.

In an original, i.e. unmodified R, or if the R ALCHEMY integration is not acti-
vated the parse SEXP is directly evaluated by calling main/eval.c:eval(). However,
when ALCHEMY is integrated and enabled, before evaluation takes place, the parsed
expression is sent to the the AlchemyAdapter design class that is implemented by

main/AlchemyProxy.c:AlchemyAdapter_transmutate_fromSEXP_toSEXP().

Diagram 5.5 shows the sequence of calls that follows user input.

R_ReplConsole Rf_ReplIteration R_ReadConsole

R_Parse1Buffer

AlchemyProxy_transmutate_fromSEXP_toSEXP

1 2

3

4

Figure 5.5: Call sequence in R with enabled ALCHEMY

After the call to AlchemyAdapter_transmutate_fromSEXP_toSEXP() returns a (possi-
bly transmutated) SEXP, RUserInterface checks if transmutation was successful, i.e.
that AlchemyCore has not reported an error or declined transmutation. Depending on
whether an error has been detected, the original, untransmutated or the transmutated
SEXP is chosen for further processing. At this point, ALCHEMY’s interception finishes
and R continues as usual by evaluating the SEXP and printing the result to the user.

Every access to AlchemyCore happens in the context of an AlchemySession that
encapsulates R session specific state within AlchemyCore and hence will facilitate asyn-
chronous operation.

5.1.6 Package: AlchemyAdapter

AlchemyAdapter offers the services of AlchemyCore, delegates their execution to the
AlchemyCore Java process, and transparently manages the necessary inter-process com-
munication (IPC) with this process. In this sense, it matches the description of a Proxy
or Business Delegate. However, AlchemyAdapter also acts as an Adapter and enriches
the AlchemyCore interface with operations that are specific to the needs of R, e.g. is
allows the transmutation of an SEXP (instead of an AIR expression).

From an analysis level perspective, most important operation of AlchemyAdapter is
transmutate_fromSEXP_toSEXP() that performs a transmutation of an SEXP and waits
for the result. For this call, there is also a non-blocking variant in preparation called
transmutate_fromSEXP_toSEXP_async() that returns a AlchemyTransmutateFuture (see
[BHS07] for a description of the Future synchronization pattern) instead of an SEXP.
The asynchronous call will become necessary as soon as ALCHEMY’s debugging facil-
ities such as breakpointing will be integrated.

In order to be able to trigger transmutation at AlchemyCore, AlchemyAdapter has
to convert the given R SEXP into a corresponding AIR expression. AlchemyAdapter

delegates this conversion to RtoAIRConverter.

System Architecture 53

After RtoAIRConverter has returned an XML representation of the AIR expression,
this result must be communicated to AlchemyCore via inter-process communication.
See section 5.2 for an in-depth explanation of the proxying mechanism and how the
communication is realized.

The AIR object returned by AlchemyCore is converted back into an SEXP by
AIRtoRConverter. This SEXP is returned to RUserInterface.

5.1.7 Class: RtoAIRConverter

RtoAIRConverter converts an R SEXP into its AIR equivalent. The design class is
implemented in main/RtoAIRConverter.c and applies a Visitor pattern (see [GHJV94]
for a detailed explanation). The class is used by AlchemyAdapter to prepare trans-
mutation, by ValueService to generate the AIR representation of an R value, and
by EnvironmentService to create the AIR expression associated with a symbol table
entry.

While a Strategy pattern may be used to decouple a class from a specific algorithm,
i.e. a specific way to perform an action, a Visitor is a tool to encapsulate (often
related) behavior for a set of classes with a common superclass. In most cases (but not
necessarily) this is used to process object hierarchies in an extensible way that does
not pollute the interfaces of the classes used in the hierarchy.

For a concrete realization of this pattern all objects of an object hierarchy implement
a method called accept() that takes a Visitor object as an argument. The target object
usually “calls the Visitor back” by executing a method on the Visitor that is specific
to the type of the caller. For instance, a common scenario is that an object of type
SpecificNodeType has a method with a signature like accept(GeneralNodeVisitor vis

). When this method is called, it directly executes vis.visitSpecificNodeType(this)

and returns afterwards.
As Visitor operation in most cases involves traversing the object hierarchy, there is

a degree of freedom in choosing where tree traversal is performed: in the visitor, the
visited object, or in an iterator.

Class diagram 5.6 shows the design model for so-called SEXPVisitors that ALCHEMY
has introduced to process S expressions.3. As can be seen, every visitor provides an
operation for every possible SEXP type.

Sequence diagram 5.7 shows the call sequence for the conversion of a simple R ex-
pression. As RtoAIRConverter is realized in C, the sequence diagram shows a “pseudo-
objectified” illustration of the call sequence.

Every visit() method of RtoAIRConverter is responsible for converting one specific
SEXP type to the XML representation of its corresponding AIR node. RtoAIRConverter
uses libxml (available at [Gno]) and creates the final XML document recursively as it
traverses the SEXP tree.

The following conversions are currently performed by RtoAIRConverter:

CLOSSXP used for closures, i.e. anonymous functions and function definitions in the
environment

3The visitor PrettyprintVisitor can be used to generate a beautified text representation of SEXPs,
which has proven invaluable while debugging. The visitor GraphmlVisitor creates a “GraphML”
document from an SEXP. GraphML can be processed by common graph drawing utilities such as
yED (see [ywo]). Diagram 3.1 has been created with this visitor.

54 System Architecture

-recursion_depth

+visit_nil_sxp()
+visit_list_sxp()
+visit_sym_sxp()
+visit_clos_sxp()
+visit_env_sxp()
+visit_prom_sxp()
+visit_lang_sxp()
+visit_special_sxp()
+visit_builtin_sxp()
+visit_char_sxp()
+visit_lgl_sxp()
+visit_int_sxp()
+visit_real_sxp()
+visit_cpl_sxp()
+visit_dot_sxp()
+visit_any_sxp()
+visit_expr_sxp()
+visit_bcode_sxp()
+visit_extptr_sxp()
+visit_weakref_sxp()
+visit_raw_sxp()
+visit_s4_sxp()

SEXPVisitor

-use_val_proxies : int
-max_vec_size : int
-airenv : AIREnvironment*
-valrepos : ValueRepository*
-rserver : RServer*

+dump_AIR_to_string() : char *
+dump_AIR() : void

RtoAIRConverter

+dump_to_string() : char *
+dump() : void

Prettypr intVisi tor

+print_graph(file : FILE *) : void

GraphMLVisitor

Figure 5.6: (Design) Class hierarchy of SEXP visitors

REALSXPSYMBOL_SEXP

AIRVisitor

LANG_SEXP

Actor

9: dump_AIR()

8: visitor

7: vitis_real_sxp(this)

6: sexp_accept_visitor(this)

5: visit_symbol_sxp(this)

4: sexp_accept_visitor(this)

3: visit_lang_sxp(this)

1: create

2: sexp_accept_visitor (airvis)

Figure 5.7: (Pseudo-)sequence diagram of RtoAIRVisitor processing of x <- 3.1

System Architecture 55

LANGSXP used for function calls of all kinds. RtoAIRConverter maps SEXPS of this
type to a variety of AIR expressions such as WhileStmt, BinopExpr, etc.

SPECIALSXP used for internal R functions. Mapped to BuiltinFunc

BUILTINSXP used for internal R functions. Mapped to BuiltinFunc

CHARSXP used for representing strings. Mapped to a ConstantExpr with AIRType
“string”.

LGLSXP used for representing boolean vectors. Currently mapped to a ConstantExpr

with a value of AIRType “logic” or a corresponding AIRVector type.

INTSXP used for representing pure integer vectors. Currently mapped to a ConstantExpr
with a value of AIRType “integer” or a corresponding AIRVector type.

CPLSXP used for representing vectors of complex numbers. Not implemented, yet.

REALSXP used for representing vectors of real numbers. Currently mapped to a ConstantExpr
with a value of AIRType “real” or a corresponsing AIRVector type.

STRSXP used for representing vectors of strings. Currently mapped to a ConstantExpr

with a value of AIRType “string”. Vectors with length greater than one are not
implemented, yet.

DOTSXP ellipsis operator, i.e. “...”, is not fully implemented, yet.

ANYSXP not used in R.

VECSXP used for lists, factors, etc. Not fully implemented, yet (can’t be received via
ValueProxy)

EXPRSXP “language vectors” that may have been returned by e.g. R’s parse() function.
Not implemented.

BCODESXP Object of R Bytecode compiler. Not implemented.

WEAKREFSXP Not implemented.

EXTPTRSCP Not implemented.

RAWSXP Not implemented.

S4SXP S4 object. Not implemented, yet.

It should be noted, however, that most of these SEXP types are not of interest to
an ALCHEMY transmutator until it tries to e.g. lookup a variable containing one of
them. In this case, there is no defined behavior in the current ALCHEMY release.

56 System Architecture

5.1.8 Class: AIRtoRConverter

AIRtoRConverter converts an AIR expression in XML representation into a corre-
sponding R expression. This class is used by the AIRtoRService and by AlchemyAdapter

to transform a transmutation result back to R. It is implemented in main/AIRtoRConverter

.c:AIRtoRConverter_convert_AIRXML().

The operation AIRtoRConverter uses the libxml XML parser to create a DOM rep-
resentation of the AIR XML document and generates the resulting SEXP by traversing
that DOM tree.

5.1.9 Package: RCore

The RCore design package realizes the R Interpreter analysis package. In particular, it
has the responsibility to evaluate parsed S expressions and implement the R base library.
In principle, one could contend that the whole remaining R source code realizes RCore
with most of the existing C and Fortran files being in charge of realizing the library
functions of the R language.

5.1.10 Package: RServices

The package RServices contains various services that RAlchemy provides to external
clients via RServer. See 5.3 for a detailed description.

5.1.11 Package: Communication

This infrastructure package contains currently only AlchemyZMQConnection which is
described in 5.2

5.1.12 Package: Logging

Logging provides basic logging facilities that is ubiquitously used in the ALCHEMY
R code.

5.1.13 Package: RServer

RServer is used to provide services to external clients via an AlchemyConnection. See
5.3 for details.

5.1.14 Package: AlchemyCore

AlchemyCore realizes the ALCHEMY Core analysis package. Hence, its main respon-
sibility is the transmutation of AIR expressions. Depending on AlchemyCore’s config-
uration, its behavior may differ significantly. Figures 5.8 and 5.9 show two possible
workflows resulting different AlchemyCore configurations.

The high-level design of AlchemyCore matches a layered architecture quite well.
From top to bottom, the following layers can be identified:

Interfacing Responsible for providing AlchemyCore services its clients, e.g. RAlchemy.
Interfacing is described in section 5.2.

System Architecture 57

AlchemyCore

RAlchemy
RAlchemy

15: air3

1: transmutate(air)

AlchemyAdapter

7: myfun_air

6: lookup("myfun")

12: R representation

11: convertAIRtoR (air)

AIRtoRSvc
13: printTransmutationResult()

EnvironmentSvc
14: air3

10: air3

9: transmutate(air2)

8: air2

4: air1

3: transmutate(air)

5: transmutate(air1)

2: transmutate(air)

TransmutationService

RMulticore

EMBA

FuncDefFilter

TransmutationController

Figure 5.8: Collaboration example for transmutation

Service Responsible for encapsulating use case or domain object specific functions that
are offered to clients by the Interfacing layer. This layer contains currently the
classes TransmutationService (see transmsvc and SessionService (see sesssvc.

Domain Responsible for implementing the domain logic that is currently mostly related
with the transmutation of AIR. See 4.5.2 for a detailed explanation of the design
of ALCHEMY’s transmutation subsystem. Another responsibility of the Domain

layer is the handling of AIR expressions.

In future releases (with asynchronous operations), Domain will also manage the
relationships between sessions, transmutations and other entity classes.

Infrastructure AlchemyCore provides various infrastructural services to its compo-
nents. Among others, in every class Log4J can be used for logging, there are
several utilities to work with XML documents or AIR expressions, and IPC is
encapsulated in multiple classes.

5.1.15 Class: TransmutationService

The TransmutationService class provides the transmutate() operation and is used by
interface classes. It realizes transmutate() by instantiating a concrete TransmutationController
and delegating transmutation to this controller.

5.1.16 Class: SessionService

The SessionService provides session relates services to its clients. In particular,
it is responsible for creating new sessions, removing sessions but also for managing
session parameters. The SessionService is currently not fully implemented, as a full
“session management” will not be necessary until ALCHEMY is ready for asynchronous
operation. However, RAlchemy already uses the initSession() operation to generate a
new session ID.

58 Inter-Process Communication

AlchemyCore

RAlchemy

20: air6

1: transmutate(air)

AlchemyAdapter

18: air6

16: ARBB result

15: execute ARBB function

ARBBBackend

12: evaluation result11: evaluate R

RMulticoreBackend

13: air6

10: transmutate(air5)

RMulticoreAdapter

17: air5

14: transmutate(air4)

ArBBAdapter

9: transmutate(air4)

8: air4

7: transmutate(air3)

Executor BackendLabeler

19: air3
6: air2

4: air1

3: transmutate(air)

5: transmutate(air1)
2: transmutate(air)

TransmutationService
EMBA

FuncDefFilter

TransmutationController

Figure 5.9: Collaboration example for transmutation

5.2 Inter-Process Communication

In RAlchemy AlchemyAdapter encapsulates the logic for executing operations between
the R process and the running ALCHEMY Core Java application. AlchemyAdapter is
instantiated with an AlchemyConnection object (see class diagram 5.10).

An RServer is used to provide services to external clients (such as AlchemyCore).
The server is also associated with an AlchemyConnection that is used to communicate
with the client.
AlchemyConnection provides a generic abstraction for the communication between

two peers. It can be used for establishing a client connection to a server or (passively)
accepting a server connection from a client. Concrete connection classes must imple-
ment operations for setting a local or remote connection endpoint (setServerURI()),
where the “URI” is interpreted by the concrete connection technology. For instance,
by an HTTP connection type, “URI” might be interpreted as the HTTP URL to send
the request to or to await a request at. To connect to the server designated by the
“server URL”, a connection user calls (open()).

All data that is sent over a connection is structured as a list of strings. The members
of that list are called “message parts”, as of now. User may send messages (consisting
of multiple parts) to a peer and receive messages from a peer.

A concrete connection type must realize the following functions (the function sig-
natures are represented in a Java notation. The RAlchemy C implementation uses
analogous C types, instead):

void setServerURI(String) Set the “address” of the connection’s server peer. The
address is interpreted by the underlying transport protocol, as described above.

void open() The calling peer adopts the “client” role in this connection and tries to
establish a connection to the peer that is denoted by the “server URI” of the

Inter-Process Communication 59

connection.

void bind() The calling peer adopts the “server” role in this connection and awaits
connection requests on the address that is defined in the “server URI”.

void send(String[]) The caller sends a list of strings to its peer. The call is con-
sidered successful, if all list members have been received by the peer in the same
order as they have been sent.

String[] receive() The caller blocks while waiting for data from its peer. The call
does not return until the full list of strings has been received.

Currently, the only connection type that is implemented in ALCHEMY uses the
ZeroMQ networking API (see [Zer]). ZeroMQ has been chosen over e.g. HTTP or pure
socket based TCP or UDP communication for the following reasons:

• ZeroMQ has atomic message semantics. Data is sent in messages with “deliver
atomically or failure” semantics.

• ZeroMQ naturally allows dividing messages into “parts”, which makes it easy to
realize “list of strings” semantics.

• ZeroMQ is very performant.

• ZeroMQ has a very simple API.

• ZeroMQ has a portable API over many operating systems and programming
languages.

• ZeroMQ provides internal message buffering to reduce client latencies.

In RAlchemy the state of a connection is kept in the type AlchemyZMQConnection.
AlchemyZMQConnection realized the operations as described above.

In AlchemyCore the analogous Java class is called ZMQConnection.

Figure 5.10 shows the relationships of the R classes, i.e. modules, that are involved
in integrating RAlchemy and AlchemyCore.

On a higher level ALCHEMY communication relies on a minimal protocol on top of
the message abstraction that bases on the following conventions:

• A message from a “client” to a “server” is called a “request”.

• A message from a “server” to a “client” is called a “response”.

• The first part of a request does always contain the service name that is requested.

• The following parts of a request contain the (positional) service parameters.

• The first part of a response always contains the response status. The response
status may be one of “OK” or “ERROR”.

• If the response status is “ERROR”, the next part contains a description of the
error.

60 Inter-Process Communication

R UI

+transmutate_fromSEXP_toSEXP_async(AlchemySession, SEXP exp, SEXP env) : AlchemyTransmutateFuture
+transmutate_fromSEXP_toSEXP(AlchemySession, SEXP exp, SEXP env) : SEXP
+init_session() : AlchemySession
+teardown_session(AlchemySession)
+setConnection(AlchemyConnection)
+getConnection() : AlchemyConnection

AlchemyAdapter

- i d

+init()
+setTrace(boolean)
+setServer(boolean)
+getTrace() : boolean
+getSingleStep() : boolean
+setSingleStep(boolean)
+getID() : int
+setID(int)
+getEnvRepository()
+getValRepository()
+getEnvironment(id)
+getValue(id)

AlchemySession

+open()
+send_command(name, args)
+close()
+setServerURI()
+getServerURI()

AlchemyConnection

ZMQConnection HTTPConnection

EnvironmentSEXP ValueSEXP

+init()
+registerServiceHandler(service)
+runEventLoop(once : boolean)
+teardown()

RServer

+getName()
+doService(arglist) : arglist

RServiceHandler

+lookup(envid, name) : AIR
Ex...

EnvironmentLookupSvc

+getValue(id) : AIR
Expression
+exportValue(id, storagetype) : storageparams
+importValue(id, storagetype, storageparams)

ValueStorageSvc

+getEnvironment(id)
+setEnvironment(id, env)
+lookup(id, name) : AIR
Ex...
+addEnvironment(env) : id

EnvironmentRepository

+getValue(id) : AIR
Exp...

ValueRepository

ResponseHandler

- i d
- i d

uses response
handler to react

to responses

registers response handler
at server

0..*

uses connection
to send requests

uses connection
to receive requests

Figure 5.10: R design classes participating in R - Alchemy integration

R Services 61

AlchemyCore RAlchemy

EnvSvc.lookup

1231241

OK

<AIR>…</AIR>

T
im
e myfun

Figure 5.11: Example request/response cycle for the minimal ALCHEMY protocol

• If the response status is “OK”, the following parts contain a list of response data
items.

Figure 5.11 shows an example, in which AlchemyCore uses the EnvironmentService

of RAlchemy to look up the symbol “myfun” in the environment with the id 1231241.
Section 5.3 describes the existing R services and their serializations.

5.3 R Services

R provides several services to AlchemyCore, transmutators, and parallel execution back-
ends that are necessary to realize the virtual proxies that provide lazy access to the
environment and values. Additionally, R provides a service that converts an AIR ex-
pression that is given in its XML representation into a corresponding R expression
string.

R services are provided by an RServer (see figure 5.10) that is composed of an
AlchemyConnection4, which is used to communicate with the client, and a list of
RServiceHandlers that realize R’s services. The following sections describe what
services are currently implemented.

In principle, R Services can be used by any client. Their main purpose, however,
is providing the value proxies and SymbolExpr, i.e. the “environment proxies” in
AlchemyCore the means to work as intended.

5.3.1 Value Service

The Value Service provides access to the data of a value, e.g. a large vector that is
processed within an R program or stored within R memory. The main motivation
behind the Value Service is that values that are physically large, i.e. that have a large
physical representation, must not be serialized and transported between components
unnecessarily.

Instead of large values, proxy documents are introduced to AIR programs that refer
to a Value Service instance. Whenever a value is needed, e.g. because a parallelization

4The visualization in 5.10 is idealized because C does not support inheritance as known from object-
oriented languages. Currently, in RAlchemy inheritance is “by intention” in the sense that “sub-
classes” guarantee to realize methods as intended.

62 R Services

strategy requires knowledge of the structure of data, clients can use the Value Service
to obtain the actual data.

Within RAlchemy the Value Service uses a ValueRepository (see 5.10) to keep track
of the proxied values. The ValueRepository is, in principle, a list of pairs of “value ids”
and SEXPs. Whenever a part of RAlchemy (i.e. usually the RtoAIRConverter) wants to
introduce a value proxy, this can be achieved using the function ValRepository_addVal

() that requires an SEXP as argument and that returns the id that can be used in the
proxy.

The Value Service provides the following operations:

ValSvc.getVal This operation returns the AIR representation of a value. Warning:
the value is serialized, regardless of its size. The first and only argument of this
operation is the value id that is associated with a value. On success, the XML
serialized AIR expression is contained in the first response part.

ValSvc.setVal (PLANNED) This is the inverse operation to ValSvc.getVal. By
using this operation, a client can set the value that is associated with a value id
to an AIR expression that is provided as argument. The first argument of this
operation is the id of the value to be imported or “-1” if a new value shall be
created. The second argument is the XML representation of an AIR expression
that shall be stored as the value. On success, the operation provides the id of the
stored value in the first response part.

ValSvc.publish (PLANNED) This operation makes the Value Service “publish” a
value avoiding its serialization. “Publishing” in this sense means to make it
available to a client in some way, e.g. using Shared Memory. The first argument
of this operation is the id of the value to be published. The second argument
designates the publishing channel, e.g. “shared mem”. The following arguments
are specific to the publishing channel and documented accordingly. On success,
message parts contain information on the published value that is specific to the
publishing channel.

ValSvc.slurp (PLANNED) This is the inverse operation to ValSvc.publish, mean-
ing that a client wants RAlchemy to (synchronously) import a value over a channel.
The first argument of this operation is the id of the value to be imported or “-1”
if a new value shall be created. The second argument specifies the import chan-
nel, e.g. “shared mem”. The following arguments are specific to the publishing
channel and documented accordingly. On success, the operation provides the id
of the stored value in the first response part.

5.3.2 Environment Service

The Environment Service provides access to R’s symbol environment(s). Within ALCHEMY,
the Environment Service is realized by the AlchemyEnvironmentSvc that uses an
EnvironmentRepository (see 5.10. The EnvironmentRepository is composed of a
list of EnvironmentSEXP instances, i.e. of SEXPs of type ENVSXP. With the different
environments it is possible to represent and make accessible, e.g. the local environment
of a closure along with the global interpreter environment.

The Environment Service provides the following operations:

R Services 63

EnvSvc.lookup This operation returns an AIR expression that is associated with a
symbol. The first argument of this call is the environment id of the environment
to look the symbol up in. The second argument is the name of the symbol to
look up. On success, the XML serialized AIR expression is contained in the first
response part. If the “length” of the value exceeds a certain limit, i.e. 256 in
the current implementation, the value is not serialized but returned as a proxy,
giving clients a chance to access the value by other means than serialization. The
meaning of “length” depends on the value type, e.g. the number of elements for
AIRVector.

EnvSvc.install (PLANNED) This operation installs an AIR expression with a given
symbol in an environment. The first argument is the environment to install the
symbol in. The second argument is the XML representation of the AIR expression
to be installed. If a Value Proxy is given as the second argument, the proxy is
dereferenced and the actual value is stored in the environment.

5.3.3 AIRtoR Service

The AIRtoR Service provides the R representation to a given AIR expression. The
service applies the AIRoRConverter of RAlchemy followed by a call to R’s built-in
deparse() function that converts an SEXP into an R string.

AIRtoR Service provides the following operation:

AIRtoR.convert Converts an AIR expression string into an R expression string. The
first argument is the XML representation of the AIR to convert. On success, the
operation returns the resulting R expression in the first response part.

5.3.4 R Service Client: EnvServiceProxy class in AlchemyCore

SymbolExpr instances in AIR consist of a name and an optional namespace. To
lookup an AIR expression that is associated with a name, AlchemyCore provides one
or more AIREnvironments. For instance, every instance of AIRprogram has one main
AIREnvironment that represents the R symbol table at the instant when transmutation
has been triggered. This AIREnvironment instance is created when the AIRprogram is
generated from its XML representation. The environment id is encoded as an XML
attribute, as shown in the following AIR fragment:

1 <?xml version="1.0" encoding="UTF -8"?>

2 <AIR environment -proxy="tcp: //127.0.0.1 :1985" value -proxy="tcp:

//127.0.0.1 :1985" environment -id="154445984">

3 <Program >

4 [...]

The decision to instantiate a concrete ZMQProxyEnvironment is currently hard-coded
in the factory of the AIRprogram. If there will be more communication types in the
future, an optional attribute, e.g. “envservertype”, could be added to the AIR XML
representation or the proxy type could be (heuristically) deduced from the value of the
“environment-proxy” attribute.

64 R Services

AlchemyCore

-environment_id

+lookup(symbol : String) : AIR
Expression

EnvServiceProxy

AIRprogram AIREnvironment

ZMQProxyAIREnvironment NativeAIREnvironment

Connection

RAlchemy

+lookup()

EnvironmentLookupSvc

ZMQConnection

RServer Connection

AlchemyZMQConnection

Transmutator

< < u s e > >

Figure 5.12: Classes involved in environment lookup

Class diagram 5.12 shows the main classes from AlchemyCore and RAlchemy that
participate in the lookup of a symbol. While AIREnvironment provides the interface
EnvServiceProxy represents the communication strategy (see [GHJV94]).

5.3.5 R Service Client: ValueServiceProxy in AlchemyCore

Compound AIRValues such as AIRVector contain a storage strategy that determines
how and where the actual data of the value may be accessed. One possible storage
strategy is the ZMQAIRValueStorage. The XML representation of an AIRValue differs
with regard to its storage strategy.

Listing 5.1 shows an excerpt of the resulting AIR XML for a vector with 245 elements
that was generated by executing the R command seq(1,123,0.5). Listing 5.2 shows
the resulting AIR XML for the command seq(1,129,0.5) holding 257 elements (the
limit, when to use a proxy, is currently hard-coded to 256 in RAlchemy).

As can be seen in 5.2, the complete address to the Value Service is not specified in
the proxy but only the value id corresponding to the AIRValue.

An AIRVector instance delegates to its storage strategy whenever a concrete data
access is performed via the object interface. For instance, a call to AIRVector.asList()

leads to the execution sequence as depicted in figure 5.13. The class relationships for
AIRValues are shown in class diagram 5.15

AIR Design 65

Listing 5.1: AIRVector without proxy

1 <ConstantExpr >

2 <AIRVector basetype="real">

3 <Data data="

1.000000 ,1.500000 ,2.000000 ,2.500000 ,3.000000 ,3.500000 ,

4 4.000000 ,4.500000 ,5.00000 ,5.500000 ,6.000000 ,6.500000 ,7.000000 ,

5 7.500000 ,8.000000 ,11.000000 ,11.500000 ,12.000000 ,12.500000 ,

6 13.000000 ,13.500000 ,14.000000 ,14.500000 ,15.000000 ,15.500000 ,

7 [...]

8 116.500000 ,117.000000 ,117.500000 ,118.000000 ,118.500000 ,

9 119.000000 ,119.500000 ,120.000000 ,120.500000 ,121.000000 ,

10 121.500000 ,122.000000 ,122.500000 ,123.000000" length="245"/>

11 </AIRVector >

12 </ConstantExpr >

Listing 5.2: AIRVector with proxy

1 <ConstantExpr type="Vector">

2 <AIRVector basetype="real">

3 <ZMQValueProxy id="851319081"/>

4 </AIRVector >

5 </ConstantExpr >

5.4 AIR Design

Chapter 2 has already introduced into the high-level requirements of the AIR language.
An instance of an AIR tree represents an abstract syntax tree of the source, i.e. R,
program under analysis.

Class diagram 5.14 shows the most relevant classes for AIR.

AIRset A list (not a set5) of AIRprograms. Realized the AIR Set analysis class. An
AIRset contains a (possibly empty) list of string-based key-value pairs that are
called “labels” and that may be used, e.g. in transmutation configuration.

AIRprogram Realizes the AIR Program analysis class. In instance is composed of a root
AIRExpr that represents the root of the AST, a list of labels, an AIREnvironment,
and a QueryModel that has no domain-specific meaning but is used to realize the
query() method.

AIRNode All elements of an AIR tree are of type AIRNode. Every AIRNode knows its
parent in the AIR tree and the AIRprogram it is part of. AIRNode offers many
method to facilitate working with AIR expressions, e.g. query() or replaceBy().

AIRExpr AIRExpr are AIRNodes that can be evaluated. Currently, it is not clear,
whether for ALCHEMY the distinction between AIRNode or AIRExpr offers any

5The name is misleading and will be changed in refactoring

66 AIR Design

vec :
AIRVector

ZMQConnection

ValueServiceProxy

ZMQAIRValueStorageAIRVector

Transmutator

19:

18:

17:
16: convert to Java list

15: asList()

14: vec

13: fromXML()

12: extract value
from response

11: response

10: msg from RAlchemy

9: receive()

8: msg to RAlchemy

7: send(msg)

6: connect()

5: msg := makeValueSvcGetValCmd(valueId)

4: getVal(valueId)

3: new (connection)

2: asList()
1: asList()

Figure 5.13: Execution sequence for a call to an AIRVector with proxy storage strategy

AIR Design 67

benefit. In future releases, AIRExpr or AIRNode may be omitted. The many
subclasses of AIRExpr that represent the AIR language elements have been intro-
duced earlier in 4.3.1.

AIRType The type of an AIRExpr. For compound types such as AIRVector, the
AIRType designates the base type of the individial elements.

AIREnvironment Represents the symbol table of R at the instant the given R expression
has been converted to AIR. See 5.12 for a more detailed explanation.

QueryModel A representation of the AIRprogram that makes querying the AIR tree
possible. See 5.5 for a description.

-labels : Map<String, String>

AIRprogram

-labels : Map<String, String>
-attr ibute

+replaceBy(AIRNode)
+replaceChild(current : AIRNode, new : AIRNode)
+getChildren() : List<AIRNode>
+clone() : AIRnode
+query(xpath : String) : List<AIRNode>
+queryGetFirst(xpath : String) : AIRNode
+accept(AIRNodeVisitor)
+toXML() : String
+notifyObservers()

AIRNode

+lookup(String)

AIREnvironment

+query(String)
+update()

<<Interface>>
QueryModel

DOMQueryModel

XMLDOM

+fromDOM(XML::Element) : AIRExpr
+operation()

AIRExpr

+getName()
+makeValueBuilder() : AIRValueBuilder

AIRType

BaseType VectorType Matr ixType

-labels : Map<String, String>

AIRset

0..*

program

parent

root

Figure 5.14: AIR Programs

5.4.1 Types

AIR provides the following primitive types:

• Basic types for integers, floating point data, strings, boolean and complex values

• Vector types for all basic types.

• Matrix types for all basic types.

68 The AIR Interface

• Functional types representing AIR expressions.

5.4.2 Values and Storages

AIR programs must be easily transferred between different processes that may live on
different systems. As values in AIR programs tend to contain lots of data, unneccessary
copying of value data between processes must be avoided. For this reason, AIR values
make heavy use of virtual proxies, called “storages”. Storage proxies are described in
section 5.3.5.

The following Storage types are created for this thesis or planned for future releases:

ZMQAIRValueStorage The actual value can be retrieved from the given proxy server
using a ZMQ connection. The value is identified by an ID.

SharedMemoryStorage (PLANNED) The actual value can be retrieved by accessing
a shared memory region.

The design of AIRValue and its subclasses, as shown in class diagram 5.15, makes it
easy to introduce new proxy types.

+getType() : AIRType

<<Interface>>
AIRValue

+getAt(IntegerList)
+setAt(IntegerList, value)

AIRMatrix

+getAt(int) : AIRValue
+setAt(int, AIRValue)
+append(AIRValue)
+getLength() : int
+getAsList() : List<AIRValue>

AIRVector

-data : double

+fromDouble(double)
+asDouble() : double

RealValue

-data : int

+fromInt(int)
+asInt() : int

IntegerValue

-data : boolean

+fromBoolean(boolean)
+asBoolean() : boolean

LogicValue

-data : String

+fromString(String)
+asString() : String

StringValue+asList() : List<AIRValue>
+getAt(int) : AIRValue
+setAt(int, AIRValue)

<<Interface>>
AIRVectorStorage

-data : List<AIRValue>

JavaAIRVectorStorage

- type
-zmq_uri

ZMQAIRValueStorage

+asLoL() : List<List<AIRValue>>
+getAt(int, parameter) : AIRValue
+setAt(int, parameter, AIRValue)

AIRMatrixStorage

ValueServiceProxy

ZMQConnection

Figure 5.15: Value class hierarchy

5.5 The AIR Interface

One of the reasons for creating AIR is that it should be easy for experimenters to
programatically process AIR programs and program fragments. For that reason, AIR

The AIR Interface 69

offers an interface that helps programmers to find and modify AIR trees.

In addition to the accessors of the individual AIRExpr objects that allow access to
its direct children, every AIRNode offers the following operations:

List<AIRNode> query(String xpath) The call returns all AIRNodes of the document
that match the XPath expression (see [W3C07]).

void replaceBy(AIRNode) The call replaces the current AIRNode in the AIR tree
and performs any actions that are necessary to bring the AIR tree back into a
sane state, e.g. in particular it updates the QueryModel.

void replaceChild(AIRNode curchild, AIRNode newchild) That call replaces a child
of an AIRNode by a new one and brings AIR management back in order.

The query() operation bases on the “canonical XML representation” of an AIR
expression as described in section 4.3.2. All xpath strings that conform to the XPath
standard can be used to selecting AIR nodes in a tree.

The DOMQueryModel is the only QueryModel currently implemented in ALCHEMY.
It uses the XML library libxml2 (see [Gno]) and works by holding a parallel represen-
tation of the current AIRprogram as DOM Document in memory. The DOM document
must be updated, whenever changes to the AIR tree have been performed.

Sequence diagram 5.16 illustrates the execution of a query() call. As can be seen
in step 4, the AIR model is updated at query time (and only then), as I assume that
modifying an AIR node might be a more frequent operation than querying the AIR. In
updateAIRModel() the expensive update operation is not executed if the model has not
been marked “dirty” by an earlier modification operation.

XML : :XPathExpressionDOMQueryModelAIRprogramBinopExpr

Transmutator

12:

11:

10:
9: convertElementListToAIRNodes()

8: evaluate (element)

7: compile(xpath)

6: query (xpath, element)

5: getElementForNode(node)

4: updateAIRModel()

3: query(xpath, node)

2: query(xpath, node)

1: query(xpath)

Figure 5.16: Call sequence for query()

70 Transmutation

5.5.1 Conversion to/from AIR XML

Conversion from a given AIR expression or AIR program is performed by the class
AIRNodeDOMVisitor. AIRNodeDOMVisitor implements “visit” methods for all sub-
classes of AIRExpr that contain code to maps the given subclass instance to an XML
DOM Element.

Listing 5.3: Example of visit method in AIRNodeDOMVisitor.java

1 public void visit (SymbolExpr node) {

2 Element symbol_elem = (Element) _doc.createElement("

SymbolExpr");

3 symbol_elem.setAttribute("name", node.getName ());

4

5 getNodeElementMap ().put(node , symbol_elem);

6 getElementNodeMap ().put(symbol_elem , node);

7

8 setCurElem(symbol_elem);

9 }

Conversion from XML elements to AIR objects is carried out by a factory method
called fromDOM() that is provided by all subclasses of AIRExpr.

5.6 Transmutation

The ALCHEMY transmutation logic is realized by DefaultTransmutationController

that is used by the TransmutationService class6 for serving transmutate() requests
by RAlchemy.

See section 4.5 for a high-level explanation of the transmutation workflow and basic
concepts.

When a new transmutate() request arrives, the DefaultTransmutationController

first initializes a new instance of the Config class using a static XML-based configura-
tion file (see C.1) that has the hard-coded name “txmut control.xml” and is loaded as
a Java Resource. Next, a pseudo Transmutator called StartTransmutator is instan-
tiated that serves as the (artificial) entry point into the transmutation process.

Class diagram 5.18 shows the design classes that participate in the transmutation
process activity diagram 5.17 visualizes the steps that are performed during transmu-
tation.

What makes that simple workflow flexible enough for the requirements of an ex-
perimentation laboratory is the realization of the Config class. Class diagram 5.19
shows the classes that are associated with the transmutation config. Config provides
an evaluate() method that processes all Rules that are associated with it. See section
4.5.2 for a general description of rule processing in the transmutation configuration.

One of the most important design criteria for the Config class was facilitating exten-
sion and variation. For that reason, transmutation configuration can be dynamically
extended with new functionality. Appendix C.2 shows an example of the “type envi-
ronment” configuration file that determines what Predicates, Input Modifiers, and
Actions are available in the configuration.

6Currently, this is not configurable.

Transmutation 71

Create start Transmutation with
pseudo "StartTransmutator"

Fill "start" Transmutation
output port with input AIR

Return "result" as
transmutation result

Remove Transmutation from
Transmutation Queue

Execute transmutation, i.e. call
"transmutate()"

Set Transmutator output
port with transmutation result

Set "result" to transmutation result

Evaluate configuration

Put "start" Transmutation on
Transmutation Queue

[Transmutation Queue is not empty]

[Transmutation Queue is empty]

Figure 5.17: Activities involved in transmutation

72 Transmutation

+transmutate(AIRset)

Transmutator

AIRset

AIRprogram

transmutators

DefaultTransmutat ionControl ler

FuncDefFilter

StartTransmutator

EMBA

RMulticoreBackend

TransmutationQueue

Transmutat ion

+evaluate()

Conf ig modifies

0..*

0..*

output_port

Figure 5.18: Important design classes related to transmutation

+evaluate()

Conf igurat ion

+evaluate()

Condi t ion

-name : String

+getArguments(String) : ConfigExpr
+setArguments(String, ConfigExpr)

ConfigExpr

Act ions

SeenSet

+evaluate()

Predicate

Rule

ANDCondit ion

IsOutputLabelSet

No t

Transmutator TypeEnvironment

OutputReady

-arguments : String

InputModi f ierAct ion

ScheduleTransmutation MergeAIRSetsSimpleInput

0..*

0..*

0..*

Figure 5.19: Design classes participating in transmutation configuration

Planned: Parallelization Backends 73

[foreach rule]

[foreach Predicate]

loop

loop

break

[input_airset
already in SeenSet]

loop

[foreach action]

ActionInputModifierPredicateANDConditionConfig

DefaultTransmutationController

8: process(transqueue, cloned_input_set)

7: clone input_set

6: input_airset

5: evaluate()

4 :

3: evaluate()

2: evaluate()

1: processConfig(transqueue)

Figure 5.20: Execution sequence for configuration evaluation

All these classes that represent configuration elements inherit from the common su-
perclass ConfigExpr, which provides an infrastructure that can be used to access at-
tributes and child elements of the configuration file.

Sequence diagram 5.20 shows the chain of activities that take place when the trans-
mutation configuration is evaluated.

5.7 Planned: Parallelization Backends

Parallelization backends, i.e. (active) components the compute an AIR program entirely
or in parts, might be integrated into ALCHEMY by providing backend-specific “adapter
transmutators” as sketched in figure 5.21.

74 Planned: Tracing, Single-Step, and Breakpoints

RAlchemy AlchemyCore

Backend 1 Backend 2 Backend n

Transmutators

Backend 1

Adapter

Backend 1

Adapter

Backend n

Adapter

EMBA MATSU SURE

Value Proxy access

Environment access

Figure 5.21: Possible backend integration using adapter transmutators

5.8 Planned: Tracing, Single-Step, and Breakpoints

The capability to observe transmutation behavior is paramount to ALCHEMYs func-
tionality. In the current release, these features have been implemented only in a very
rudimentary way as debugging messages that can be displayed in R and in the Alche-
myCore server console output.

In future releases, this functionality must be completed. There are various technical
possibilities how to achieve this goal. First, extending RServer by a ServiceHandler

that accepts logging output and displays it in the R console session is very straightfor-
ward.

Giving users the possibility to interrupt transmutation processing at specific points is
more difficult. For one, bringing AlchemyCore into a suspended state for an undefinite
amount of time increases the overall system complexity considerably, as situations
such as a crashed client process must be handled, properly. From an architectural
point of view this point becomes even more demanding when ALCHEMY must handle
multiple user sessions concurrently as proposed in chapter 9. In this case, the only
viable and scalable solution would involve persisting ALCHEMY’s transmutation state
during breakpoints. This requires major design efforts. The second challenge is to
convey transmutation state to the breakpointing R session in a way that allows for
close inspection of transmutation behavior.

6 Implementation

As a consequence of ALCHEMY’s design, the implementation has resulted in two major
artifacts. The first one being the realization of of the C based RAlchemy component
and the second one being the Java based AlchemyCore.

RAlchemy consists of about 15 C modules that contain the code for the design classes
that have been identified in chapter 5. The ALCHEMY related parts have 5.000 lines
of code. Most of them contribute to the RtoAIRConverter and AIRtoRConverter and
the helper visitors GraphMLVisitor and PrettyprintVisitor. While implementing
RAlchemy it has been an important principle to modify the original R code in as few
locations as possible to facilitate maintenance of future releases.

AlchemyCore is a Maven 2 based “multi-project” project with the following physical
sub-projects or packages:

alchemy-commons Responsible for functionality that may be used in various location of
AlchemyCore. For instance, alchemy-commons contains the classes of the AIRNode
hierarchy and the realization of classes of the Infrastructure design package,
e.g. Connection. alchemy-commons does not depend on any other ALCHEMY
package.

alchemy-core Responsible for the realization of the transmutation code and the AlchemyCore
Service package. alchemy-core depends on the ALCHEMY packages
alchemy-commons and alchemy-core.transcommon.

alchemy-core.transcommon This package contains classes that are important for the
realization of Transmutators.

alchemy-core.applications This package contains the active classes that can be run
by an ALCHEMY user. In particular, this package contains the ZMQServer and a
few command line clients that have been used during development. The package
depends on alchemy-core, alchemy-commons, and alchemy-core.transcommon.

Figure 6.1 shows the dependencies between these physical packages.

The packages have been divided in two Subversion projects:

• commons containing alchemy-commons and

• core containing alchemy-core, alchemy-core.transcommon, and
alchemy-core.applications

to simplify parallel development on those packages. All subversion projects follow the
“standard” subversion convention of having a separate subtree for

trunk that contains the current development head,

75

76

alchemy-commonsalchemy-core

alchemy-core.transcommon

alchemy-core.applications

Figure 6.1: Physical AlchemyCore packages

tags that contain development snapshots, e.g. for specific software releases.

branches that contain development branches for feature development or performing
bug fixes on specific releases.

AlchemyCore consists of about 130 Java classes that contain about 10.000 lines of
code.

7 Transmutators

Every transmutator can roughly be assigned to one or more functional classes:

• Filter transmutators identify AIRprograms that shall not be modified by AlchemyCore.
As they decline transmutation globally, they are effectively a dynamic mechanism
for transmutation control. FuncDefFilter belongs to this class.

• Utility transmutators modify the AIR as a service for other transmutators. For
instance, they can label AIRNodes in a way that can be exploited later or deref-
erence symbolic FuncCall.

• Parallelization Analysis Modules (PAMs) analyze an AIR and replace parts by
parallel skeletons, effectively also acting as a helper for later Backend Adapters.

• Executors compute parts of an AIRprogram and replace the corresponding expres-
sions by the computation results.

• Backend adapters act much like Executors in that they replace AIR expressions by
computed results. However, they do not perform these computations themselves
but delegate them to computation backends. Depending on the implementation,
these actual backends may be considered Executor transmutators, i.e. when they
directly act on the AIR, or communicate with the Backend adapter in a way that
is completely opaque to ALCHEMY, e.g. by constructing a CUDA program and
using the operating system for their compilation and execution.

• Transmutation control transmutators actively influence the transmutation config-
uration or the labeling of AIRNodes, AIRprograms, or AIRsets.

• Delegation transmutators do not perform AIR modifications themselves but use
other transmutators to “do the work”. In principle, they can also use and evaluate
a local instance of a transmutation Config.

A number of transmutators have already been implemented in ALCHEMY or are
planned for the near future. These transmutators are described in the following sections.

7.1 FuncDefFilter

The FuncDefFilter filter transmutator checks whether an AIRprogram consists only
of an function definition, i.e. an FuncDef or an assignment whose right-hand side is a
function definition. The transmutator globally declines transmutation in these cases.
FuncDefFilter is an optimization in cases where function analysis is performed when

they are used instead of when they are defined, e.g. because analyzers want to take the
environment or data into consideration. Depending on the overall configuration, this
optimization may be useful or not.

77

78 EMBA

7.2 EMBA

EMBA represents a Parallelization Analysis Module (PAM). EMBA analyzes a given
AIRprogram for the existence of “embarassingly parallel constructs” such as apply()-
like functions that uniformly operate on all elements of a data structure.

After EMBA has identified such an expression, it replaces it by the corresponding
parallel skeleton “MAP”. The transmutator does not replace subtrees of the AIR that
have already been processed by EMBA in order to avoid (possible) inefficiencies with
nested parallel skeletons. Future versions of EMBA may make this behavior configurable.
The set of AIR expressions that is identified as “embarassingly parallel” is currently
hard-coded into the transmutator.

Furthermore, EMBA performs “constant folding” on the c() function that is used in
R to create vectors from single elements.

Activity diagram 7.1 shows the individual steps that are performed by EMBA. Figure
7.2 shows an example of how EMBA modifies an AIR expression.

Find "lapply" function calls

Find function calls with one
parameter with vector type

Replace lapply calls by
corresponding MAP skeletons

Verify whether function is one of the
known "benign" functions

Verify that function has not already
been modified by EMBA

Replace function by
corresponding MAP skeleton

Return modified AIR
[no function found]

[function found]

[lapply calls found]

[no lapply calls found]

Figure 7.1: EMBA Workflow

RMulticoreBackend 79

7.3 RMulticoreBackend

The RMulticoreBackend transmutator identifies MAP skeleton expressions in an AIR
and converts them to analogous function calls from the R “multicore” package. The
transmutator does also introduce an R call at the beginning of the code to load the
“multicore” library.
RMulticoreBackend does not fully belong to one of the functional classes listed

above.

7.4 Planned Transmutators

The following transmutators are planned or currently worked at:

BackendLabeler A utility transmutator that labels AIRNodes in a way that can later be
used to assign execution backends to specific subtrees of the AIR. The BackendLabeler
uses a static configuration file that matches the desires AIR subtrees using XPath
expressions.

ExecutionController A delegation transmutator that distributes AIR computation
to other Backends depending on the labeling of AIRNodes.

MATSU A PAM that is able to transform certain classes of Dynamic Programming prob-
lems (“maximum marking problems”) into equivalent programs that use data
parallel skeletons. The basic principle behind MATSU is an assignment of input
data items to “generations” such that the computation on input items in one
generation only depends on items in the same or earlier generations. [KMM+05]
shows that a good assignment strategy leads to a reformulation of the problem
that allows the efficient application of the data-parallel skeletons ZIP, REDUCE,
MAP, and SCAN.

SURE A PAM that identifies opportunities to reorder nested loops in a way that partially
allows their parallel computation. SURE (as described in [Dar97] and [KMW67])
analyzes the data dependencies of program statements that are used in nested
“for” loops and results in a reformulation of the program that contains loops that
can safely be computed in parallel.

InteractiveTransmutator A transmutator that allows experimenters to interactively
control the transmutation process, query the AIR, and perform modifications at
the AIR.

ArBBAdapter A backend adapter that converts a given AIR program that contains
skeleton expressions into an equivalent C++ program using the Intel ArBB par-
allelization library.

80 Planned Transmutators

Program

1

lhs rhs

SymbolExpr

name = “x”

2

lhs rhs

SymbolExpr

name = “y”

SkeletonExpr

skeleton = “MAP”

SymbolExpr

name=”sin”

kernel collection

ConstantExpr

type = vector, val = [3,1]

ProgramExpr

1

lhs rhs

SymbolExpr

name = “x”
FuncCall

SymbolExpr

name=”c”
ParamExpr

ConstExpr

type = int, val = 3

ParamExpr

ConstExpr

type = int, val = 1

funcexpr
1

2

2

lhs rhs

SymbolExpr

name = “y”
FuncCall

SymbolExpr

name=”sin” ParamExpr

funcexpr 1

Constant

Folding

Skeletonization

BinopExpr

name=”<-”

BinopExpr

name=”<-”

BinopExpr

name=”<-”

FuncCall

SymbolExpr

name=”:”
ParamExpr

ConstantExpr

type = int, val = 1

ParamExpr

ConstantExpr

type = int, val = 1000

funcexpr
1

2

FuncCall

SymbolExpr

name=”:”
ParamExpr

ConstantExpr

type = int, val = 1

ParamExpr

ConstantExpr

type = int, val = 1000

funcexpr
1

2

BinopExpr

name=”<-”

Figure 7.2: Example of an EMBA AIR modification

8 Experimental Evaluation

The following experiments shall reveal if ALCHEMY’s parallelization analysis yields
reasonable results, i.e. if analysis results match human expectations with regards to
the selection and integration of parallel skeletons. Furthermore, the performance of the
resulting, parallelized programs is evaluated.

As ALCHEMY is currently not optimized towards optimizing transmutation speed,
no experiments have been performed that measure that behavior. Subjectively, at least
for a simple transmutator such as EMBA, transmutation speed is satisfactory, with
overall, i.e. ALCHEMY wide, transmutation time well below one second.

8.1 Test Environment

All tests were conducted on a standard PC with the following characteristics:

• Processor: AMD FX-120 with eight CPU cores (64bit)

• 8 GB RAM (2 x 4GB DDR3-1333 MHz)

• Operating System: Ubuntu 11.10 64bit

During the tests, no other programs were running except of system processes.

8.2 End-to-End Parallelization with EMBA and
RMulticoreBackend

This experiment verifies the correctness of ALCHEMY parallelization for one example
and measures the performance of the parallelized program.

8.2.1 Setup

Listing 8.1 shows a template for the input program that is used for this test. The
program is designed to be embarassingly parallel, i.e. it is easily possible to separate
the the program into a number of parallel tasks. In the example program, this separable
task is the helper() subfunction. Furthermore, each single task is computationally more
or less expensive. This assumption has been made to make the results of this experiment
stick out more visibly. This decision obviously has an impact on the interpretation of
the results and is discussed later. The program computes helper() for all integer
numbers in the range [1, ..., < numelements >].

AlchemyCore is prepared by configuring a transmutation sequence of FuncDefFilter
 EMBA RMulticoreBackend. RMulticoreBackend has one parameter that repre-
sents the number of cores that shall be use by the generated R “multicore” code. Every
measurement has been repeated using 1, 2, 4, 6, and 8 cores.

81

82 End-to-End Parallelization with EMBA and RMulticoreBackend

Listing 8.1: Experiment 1 input R program

1 myfun <- function (vec) {

2 helper <- function (x) {

3 sum <- 0

4 for (i in 1:100) {

5 sum <- sum + 1/(sin(x) + i*cos(x))^2

6 }

7 return(sum)

8 }

9

10 lapply (vec , helper)

11 }

12

13 alchemy.loglevel (6)

14 alchemy.enable ()

15

16 system.time(myfun (1:<numelements >))

The program template must be preprocessed before it is runnable. For this, the
<numelements> parameter must be replaced by a concrete numeric value. In prepara-
tion of the experiment, 10 R programs have been instantiated from the template with
equidistant values for <numelements> ranging from 100,000 to 1,000,000.

Thus, overall 10 program instances have been tested with 5 different Alchemy con-
figurations. To create the same conditions for all test instances, AlchemyCore has been
restarted before each run. AlchemyCore was started on the command line with alchemy

-1.0/core/trunk/bin/startserver.sh. 5 seconds after the restart has been triggered,
an R session has been started in batch mode with the shell command R -q --vanilla

<$scriptname with $scriptname being the path to one of the 50 prepared R scripts.

8.2.2 Execution Analysis

When R is started up, the R interpreter first reads and parses the myfun() function
definition. It does not send the function definition to AlchemyCore because evaluation
interception has not been activated a this point. Instead, the assignment to myfun() is
evaluated by R resulting in the function being added to the environment.

The next expressions, alchemy.loglevel(6) and alchemy.enable() activate config-
ure ALCHEMY related logging in R and activate the interception logic. From now
on, all expressions that are parsed on the command line are sent to RAlchemy via
AlchemyAdapter.

Hence, the expression system.time(myfun (1:<numelements>)) is sent to ALCHEMY.

The first Transmutator that analyzed this expression is FuncDefFilter. It ignores
the expression, as its filter criterion is not matched, i.e. the expression does not repre-
sent a function definition.

The next Transmutator, EMBA, starts with the following input1:

1Note, that to improve readability not the actual input to EMBA, which would be an AIR expression,
is shown but its corresponding R representation, that has been created using AIRtoRSvc

End-to-End Parallelization with EMBA and RMulticoreBackend 83

1 {

2 system.time(myfun(1:1e +05))

3 }

As described in chapter 7, before analysis takes place EMBA substitutes named func-
tion calls, i.e. function calls that are designated by their function name, for equivalent
anonymous function calls if they can be retrieved via EnvironmentSvc. After this
transformation, the R representation of EMBA looks like this:

1 system.time(function (vec)

2 {

3 helper <- function(x) {

4 sum <- 0

5 for (i in 1:100) {

6 sum <- sum + 1/(sin(x) + i * cos(x))^2

7 }

8 return(sum)

9 }

10 lapply(vec , helper)

11 }(1:1e +05))

12 }

EMBA converts the lapply() call into an analogous SkeletonExpr. Due to EM-
BAs “only one parallelization per subtree” policy, the possible parallelization of the
anonymous function does not take place. EMBA output is:

1 system.time(function (vec)

2 {

3 helper <- function(x) {

4 sum <- 0

5 for (i in 1:100) {

6 sum <- sum + 1/(sin(x) + i * cos(x))^2

7 }

8 return(sum)

9 }

10 alchemy.applySkeleton(name = "MAP", collection = vec ,

11 kernel = helper)

12 }(1:1e +05))

13 }

The next configured transmutator, RMulticoreBackend, emulates a complete back-
end by introducing function calls for the “R multicore” package to be evaluated by
the client R interpreter. In this case, it replaces the “MAP” skeleton as suggested by
EMBA by a call to mclapply(). mclapply is given the following arguments: the collec-
tion to operate on, the function to execute on collection elements, and the number of
multicore CPU cores to use. This last parameter is defined in RMulticoreBackends
configuration. The following listing shows the result of RMulticoreBackend that is
also the final output of AlchemyCore:

1 {

2 library(multicore)

3 system.time(function (vec)

4 {

5 helper <- function(x) {

84 End-to-End Parallelization with EMBA and RMulticoreBackend

6 sum <- 0

7 for (i in 1:100) {

8 sum <- sum + 1/(sin(x) + i * cos(x))^2

9 }

10 return(sum)

11 }

12 mclapply(vec , FUN = helper , mc.cores = 8)

13 }(1:1e +05))

14 }

This result is returned to RAlchemy that passes it back to RUserInterface which
proceeds with calling the standard R evaluator on that R expression.

8.2.3 Results

Figure 8.1 shows the running, i.e. wall-clock, times for executing the test programs
for the different numbers of cores and problem instances. Please note that data items
that are labeled as “1 Core” represent the execution of the normal, i.e. unparallelized,
version of the program and not a parallelized execution that is restricted to one core.

Figure 8.1: Execution times on a multicore machine

Figure 8.2 puts the parallelized execution into relation to a completely sequential
execution, i.e. the “Speedup” for a given problem instance is computed as

Speedup =
ExecutionT ime(Pserial)

ExecutionT ime(Pn)
(8.1)

with ExecutionT ime(Pn) being the measured running time of the parallelized R pro-
gram for the problem instance and ExecutionT ime(Pserial) being the corresponding
running time of the sequential program.

The numerical results are listed in appendix E.

End-to-End Parallelization with EMBA and RMulticoreBackend 85

Figure 8.2: Parallel speedups for different numbers of cores for the measured problem
instances

9 Conclusion and Outlook

This thesis describes the concepts, design, and realization of the parallelization labo-
ratory ALCHEMY and its integration into the R runtime environment. As proof of
concept, the transmutators EMBA and RMulticoreBackend have been created that show
that ALCHEMY is able to modify existing R code in a way that eventually makes a
parallelization of R programs possible.

As the potential of ALCHEMY is considered to grow with the number and quality
of its Transmutator plugins, a final proof that the project will be able to reach its
ambitious goals is still to be presented.

There are multiple ways in that ALCHEMY may be improved or extended in the
future.

First, the current implementation is still lacking some important features:

• debugging facilities are insufficient for regular users

• not all R types and operators are fully supported

• many operations of the R Services are not implemented like ValueSvc.publish

• there is currently only one skeleton node available in the AIR, important types
are missing

Additionally, as it has already been pointed out, ALCHEMY’s capabilities grow with
the availability of transmutators. For the majority of existing automatic parallelization
methods, it should be possible to write a corresponding PAM transmutator. Like-
wise, there exist many powerful parallel middlewares and libraries such as Intel ArBB,
OpenMP, CUDA, MPI, etc. that can be used as parallel backends with corresponding
backend adapters.

During the implementation of ALCHEMY no effort has been put into enhancing the
usability of the system. In particular, it would be worthwhile to have a graphical user
interface for working with the transmutation configuration or inspecting AIR trees.

Although the transmutation configuration provides the capabilities to be modified
dynamically, i.e. at runtime, the configuration is currently static in nature. After some
experience has been acquired with the capabilities of static transmutator graphs, it
could be interesting to play with the automatic generation of transmutation configura-
tions or more advanced transmutation control transmutators that automatically learn
from earlier experiences.

Finally, the knowledge of how to parallelize a given program in the best possible
way is a valuable good. With ALCHEMY it could be possible to build a library of
transmutators and transmutation strategies. This library could even be provided as an
internet service that is regularly updated by contributors.

86

Bibliography

[Adl10] Joseph Adler. R in a Nutshell - A Desktop Quick Reference. O’Reilly,
2010.

[BC90] Guy Blelloch and Siddhartha Chatterjee. Vcode: A data-parallel interme-
diate language. In In Proceedings of the 3rd Symposium on the Frontiers
of Massively Parallel Computation, pages 471–480, 1990.

[BH93] Richard S. Barr and Betty L. Hickman. Reporting Computational Experi-
ments with Parallel Algorithms: Issues, Measures, and Experts’ Opinions.
ORSA Journal On Computing, 5:2–18, Winter 1993.

[BHS07] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-
Oriented Software Architecture, Volume 4: A Pattern Language for Dis-
tributed Computing. Wiley, Chichester, UK, 2007.

[Ble95] Guy Blelloch. Nesl: A nested data-parallel language. Technical Report
CMU-CS-95-170, Carnegie Mellon, 1995.

[BMR+96] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad,
and Michael Stal. Pattern-Oriented Software Architecture, Volume 1: A
System of Patterns. Wiley, Chichester, UK, 1996.

[Col] Murray Cole. Skeletal parallelism. http://homepages.inf.ed.ac.uk/mic/
Skeletons/.

[Col89] Murray Cole. Algorithmic Skeletons: Structural Management of Parallel
Computation. MIT Press, Research Monographs in Parallel and Dis-
tributed Computing edition, 1989.

[CWK93] Wolfgang J. Paul Christoph W. Keßler. Automatic parallelization by
pattern-matching. Lecture Notes in Computer Science, 734(978-3-540-
57314-2):166–181, 1993.

[Dar97] Alain Darte. Mathematical tools for loop transformations: From systems
of uniform recurrence equations to the polytope model. Technical Report
RR97-26, ENS-Lyon, 1997.

[DD97] M. Diniz and P. Diniz. Commutativity analysis: A new analysis tech-
nique for parallelizing compilers. ACM Transactions on Programming
Languages and Systems, 19:942–991, 1997.

[DMI96] B. Di Martino and G. Iannello. PAP recognizer: A tool for automatic
recognition of parallelizable patterns. In Proc. 4th IEEE Workshop on
Program Comprehension. Los Alamitos: IEEE Computer Society Press.
Citeseer, 1996.

87

http://homepages.inf.ed.ac.uk/mic/Skeletons/
http://homepages.inf.ed.ac.uk/mic/Skeletons/

88 Bibliography

[Edd09] Dirk Eddelbuettel. Presentation: R HPC Tutorial USER Conference.
http://dirk.eddelbuettel.com/papers/useR2009hpcTutorial.pdf, 2009.

[GB98] Sergei Gorlatch and Holger Bischof. A generic MPI implementation for a
data-parallel skeleton: Formal derivation and application to FFT. Parallel
Processing Letters, 8(4):447–458, 1998.

[GHJV94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, 1994.

[GMS99] Manish Gupta, Sayak Mukhopadhyay, and Navin Sinha. Automatic par-
allelization of recursive procedures. In In Proceedings of the 1999 Con-
ference on Parallel Algorithms and Compilation Techniques (PACT) ’99,
1999.

[Gno] Gnome Project. The XML C parser and toolkit for Gnome. http://
xmlsoft.org.

[GP94] Zvi Galil and Kunsoo Park. Parallel algorithms for dynamic program-
ming recurrences with more than o(1) dependency. J. Parallel Distrib.
Comput., 21(2):213–222, 1994.

[Hag95] S.B.J.R. Hagemeister. A Pattern-matching Approach for Reusing Soft-
ware Libraries in Parallel Systems. First International Workshop on
Knowledgebased Systems for the ReUse of Program Libraries, 1995.

[HT01] K. Hornik and Luke Tierney. Compiling r: A preliminary report. In
DSC 2001 Proceedings of the 2nd International Workshop on Distributed
Statistical Computing, 2001.

[Inta] Intel. Intel Array Building Blocks. http://software.intel.com/en-us/
articles/intel-array-building-blocks/.

[Intb] Intel. Intel Ct Wikipedia. http://en.wikipedia.org/wiki/Intel Ct.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Soft-
ware Development Process. Addison-Wesley, Reading, Mass., 1999.

[KBR07] Sriram Krishnamoorthy, Muthu Baskaran, and Uday Bondhugulaj Ra-
manujam. Effective automatic parallelization of stencil computations. In
In ACM SIGPLAN PLDI 2007, 2007.

[Keß96] Christoph W. Keßler. Pattern-driven automatic parallelization. SCIEN-
TIFIC PROGRAMMING, 5:251–274, 1996.

[KMM+05] Kazuhiko Kakehi, Kiminori Matsuzaki, Akimasa Morihata, Kento Emoto,
and Zhenjiang Hu. Parallel dynamic programming using data-parallel
skeletons. Proceedings of the 22nd JSSST Conference, Sep 2005.

[KMW67] Richard Karp, Raymond Miller, and Shmuel Winograd. The Organization
of Computations for Uniform Recurrence Equations. Journal of the ACM,
14:563–590, 1967.

http://dirk.eddelbuettel.com/papers/useR2009hpcTutorial.pdf
http://xmlsoft.org
http://xmlsoft.org
http://software.intel.com/en-us/articles/intel-array-building-blocks/
http://software.intel.com/en-us/articles/intel-array-building-blocks/
http://en.wikipedia.org/wiki/Intel_Ct

Bibliography 89

[Kru95] Philippe Kruchten. The 4+1 view model of architecture. IEEE Software,
12(6):42–50, 1995.

[LOMPM05] Rita Loogen, Yolanda Ortega-Mallen, and Ricardo Pena-Mari. Parallel
functional programming in eden. Journal of Functional Programming,
15:431–475, May 2005.

[LP10] Mario Leyton and Jose Piquer. Skandium: Multi-core programming with
algorithmic skeletons. Euro-micro PDP 2010, 2010.

[Mar96] Robert C. Martin. The dependency inversion principle. C++ Report,
May 1996.

[MAS05] MASPLAS05: Mid-Atlantic Student Workshop on Programming Lan-
guages and Systems, University of Delaware. Comparative Survey of Ap-
proaches to Automatic Parallelization, 2005.

[Mat] Timothy Mattson. Blog: Parallel programming environments: less
is more. http://blogs.intel.com/research/2007/10/parallel programming
environme.php.

[MH08] M.Poldner and H.Kuchen. On implementing the farm skeleton. Parallel
Processing Letters, Vol. 18(No. 1):117–131, March 2008.

[MHD09] Stefan Marr, Michael Haupt, and Theo D’Hondt. Intermediate language
design of high-level language virtual machines: Towards comprehensive
concurrency support. In Proceedings of the 3rd Workshop on Virtual
Machines and Intermediate Languages, pages 3:1–3:2, New York, NY,
USA, October 2009. ACM. (extended abstract).

[MLS07] Xiaosong Ma, Jiangtian Li, and Nagiza F. Samatova. Automatic Paral-
lelization of Scripting Languages: Toward Transparent Desktop Parallel
Computing. IPDPS, pages 1–6, 2007.

[MSM04] Timothy Mattson, Beverly Sanders, and Berna Massingill. Patterns for
Parallel Programming. Addison Wesley, 2004.

[Ope] OpenMP Architecture Review Board. OpenMP. http://www.openmp.
org.

[PF01] Christoph Paum and Robert D. Falgout. Automatic parallelization with
expression templates. Technical Report UCRL-JC-146179, Lawrence Liv-
ermore National Laboratory, 2001.

[R Da] R Development Core Team. R Internals. http://cran.r-project.org/doc/
manuals/R-ints.pdf.

[R Db] R Development Core Team. The R Project for Statistical Computing.
http://www.r-project.org.

[R Dc] R Development Core Team. Writing r extensions. http://cran.r-project.
org/doc/manuals/R-exts.pdf.

http://blogs.intel.com/research/2007/10/parallel_programming_environme.php
http://blogs.intel.com/research/2007/10/parallel_programming_environme.php
http://www.openmp.org
http://www.openmp.org
http://cran.r-project.org/doc/manuals/R-ints.pdf
http://cran.r-project.org/doc/manuals/R-ints.pdf
http://www.r-project.org
http://cran.r-project.org/doc/manuals/R-exts.pdf
http://cran.r-project.org/doc/manuals/R-exts.pdf

90 Bibliography

[SME+09] Markus Schmidberger, Martin Morgan, Dirk Eddelbuettel, Hao Yu, Luke
Tierney, and Ulrich Mansmann. State-of-the-art in Parallel Computing
with R. Technical Report 47, Department of Statistics University of
Munich, 2009.

[SPT10] Christoph A. Schaefer, Victor Pankratius, and Walter F. Tichy. Engineer-
ing parallel applications with tunable architectures. ICSE ’10 Proceedings
of the 32nd ACM/IEEE International Conference on Software Engineer-
ing, 1, 2010.

[SW81] T.F. Smith and M.S. Waterman. Identification of common molecular
subsequencees. J. Mol. Biol., 147:195–197, 1981.

[Tom67] R. M. Tomasulo. An efficient algorithm for exploiting multiple arithmetic
units. IBM Journal, 1967.

[Uni] Uniprot. Uniprot protein database. http://www.uniprot.org.

[VR00] William Venables and B.D. Ripley. S Programming. Springer, 2000.

[W3C07] W3C XSL/XML Query Working Groups. The XPath 2.0 Standard, 2007.

[Wika] Wikipedia. Algorithmic skeletons. http://en.wikipedia.org/wiki/
Algorithmic skeleton.

[Wikb] Wikipedia. Scoreboarding wikipedia. http://en.wikipedia.org/wiki/
Scoreboarding.

[Wikc] Wikipedia. Tomasulo Wikipedia entry. http://en.wikipedia.org/wiki/
Tomasulo algorithm.

[ywo] yworks. yEd - Graph Editor. http://www.yworks.com/en/products%
5Fyed%5Fabout.html.

[Zer] ZeroMQ Project. Zeromq. http://www.zeromq.org.

http://www.uniprot.org
http://en.wikipedia.org/wiki/Algorithmic_skeleton
http://en.wikipedia.org/wiki/Algorithmic_skeleton
http://en.wikipedia.org/wiki/Scoreboarding
http://en.wikipedia.org/wiki/Scoreboarding
http://en.wikipedia.org/wiki/Tomasulo_algorithm
http://en.wikipedia.org/wiki/Tomasulo_algorithm
http://www.yworks.com/en/products%5Fyed%5Fabout.html
http://www.yworks.com/en/products%5Fyed%5Fabout.html
http://www.zeromq.org

A Installing ALCHEMY

A.1 Prerequisites

Installation has been tested in the following environment:

• Operating system: Ubuntu 10.04.

• Required Ubuntu packages:

– libzmq (> 2.1)

– libx11-dev

– libxt-dev

– libxml2-dev

– maven2

– git

• Additional requirements:

– JDK (> 1.6)

– ZeroMQ Java Binding

A.2 Installation

Installation of ALCHEMY includes the installation of a modified R environment and the
Java based ALCHEMY Core subsystem. A source based installation of ALCHEMY is
possible using the archive alchemy 1.0.tgz. First, extract the archive alchemy-1.0.tgz
to a directory of your choice. Perform the following steps:

A.2.1 R Installation

• Change to the directory alchemy-1.0/R-src/R-2.13.1.

• Execute the command ./configure. Check output for errors and e.g. install
missing items. If ALCHEMY shall be installed locally, use the option --prefix.
Consult the documentation for further information.

• Execute the command make. Check output for errors.

• Execute the command sudo make install to perform a system-wide installation
(or make install if a local installation has been chosen, earlier.)

91

92 Installation

A.2.2 ZeroMQ Java Binding

First, ensure that libzmq-dev is installed on the system. Then download the ZMQ
Java Binding using git:

git clone https://github.com/zeromq/jzmq.git

Next, change to the directory where jzmq has been cloned to and call ./configure,
make, and sudo make install in sequence. Now, the ZMQ jar should be installed at
/usr/local/share/java/zmq.jar.

A.2.3 ALCHEMY Core Installation

First, change to the directory alchemy-1.0. Then, execute the following command:

1 for i in commons/trunk/alchemy -commons commons/trunk/alchemy -

commons.parent/ core/trunk/alchemy -core.parent/ core/trunk/

alchemy -core core/trunk/alchemy -core.transcommon/ core/trunk/

alchemy -core.applications /;

2 do

3 oldpwd =$(pwd); cd $i; mvn install; cd $oldpwd;

4 done

To install the Alchemy ZMQServer, change into the directory
alchemy-1.0/core/trunk/alchemy-core.applications

Now execute the command mvn package that bundles all required libraries and re-
sources into the jar file

target/alchemy-core.applications-1.0-SNAPSHOT-jar-with-dependencies.jar

B Using ALCHEMY

After ALCHEMY has been installed (see A), the ALCHEMY ZMQServer can be started
by executing the script

alchemy-1.0/core/trunk/bin/startserver.sh

Now start an R that has been compiled with ALCHEMY support. After the in-
terpreter appears on the screen, the user can enable ALCHEMY by executing the
command alchemy.enable(). After that all R commands are intercepted and sent to
the ALCHEMY server.

To disable ALCHEMY, type alchemy.disable(). The amount of logging can be
adjusted by executing the command alchemy.loglevel(<n>) where <n> is a number
between 1 and 6. The lower the number, the more verbose the ALCHEMY logging.

B.1 ALCHEMY Configuration

All AlchemyCore configuration files are located in the directory alchemy-1.0/core/

trunk/conf/. The following configuration files are available:

core.xml Global settings for AlchemyCore

core environment.xml Defines what predicates, input modifiers, and actions are avail-
able in the transmutation configuration. See section [?] for an example.

tx control.xml Static configuration for DefaultTransmutationController

All configuration files are described inline.

93

C Sample Core Configurations

C.1 Transmutation Controller Configuration

Listing C.1: Example Transmutation Controller Configuration

1 <TransmutationConfig >

2 <Transmutators >

3 <Transmutator id="funcdef" class="org.transpar.alchemy.

transmutators.FuncDefFilter" />

4 <Transmutator id="emba" class="org.transpar.alchemy.

transmutators.EMBA2" />

5 <Transmutator id="matzu" class="org.transpar.alchemy.

transmutators.MATZU" />

6 <Transmutator id="sure" class="org.transpar.alchemy.

transmutators.SURE" />

7 <Transmutator id="emba2" class="org.transpar.alchemy.

transmutators.EMBA2" />

8 <Transmutator id="executor" class="org.transpar.alchemy.

transmutators.Executor" />

9 </Transmutators >

10 <Rules>

11 <Rule>

12 <Condition >

13 <!-- list of conditions. implicitely "ANDed" -->

14 <OutputReady at="start" />

15 </Condition >

16 <Action >

17 <!-- by default , every action is called with

exactly one argument (named "arg1"),

18 i.e. the output of the first OutputReady

condition -->

19 <ScheduleTransmutation transmutator="funcdef" />

20 </Action >

21 </Rule>

22

23 <Rule>

24 <Condition >

25 <OutputReady at="funcdef" />

26 </Condition >

27 <Action >

28 <ScheduleTransmutation transmutator="emba1" />

29 <ScheduleTransmutation transmutator="matzu" />

30 <ScheduleTransmutation transmutator="sure" />

31 </Action >

32 </Rule>

94

Type Environment Configuration 95

33

34 <Rule>

35 <Condition >

36 <OutputReady at="matzu" />

37 </Condition >

38 <Action >

39 <ScheduleTransmutation transmutator="emba2" />

40 </Action >

41 </Rule>

42

43 <Rule>

44 <Condition >

45 <OutputReady at="emba1" />

46 <OutputReady at="emba2" />

47 <OutputReady at="sure" />

48 </Condition >

49 <Input>

50 <MergeAIRsets strategy="unify_by_id">

51 <Output at="emba1" />

52 <Output at="emba2" />

53 <Output at="sure" />

54 </MergeAIRsets >

55 </Input>

56 <Action >

57 <ScheduleTransmutation transmutator="executor" />

58 </Action >

59 </Rule>

60

61 <Rule>

62 <Condition >

63 <OutputReady at="executor" />

64 <Not><OutputLabelSet at="executor" label="done" /

></Not>

65 </Condition >

66 <Action >

67 <ScheduleTransmutation transmutator="executor" />

68 </Action >

69 </Rule>

70 </Rules>

71 </TransmutationConfig >

C.2 Type Environment Configuration

Listing C.2: Example R Program

1 <Environment >

2 <!-- Predicates -->

3 <Entry name="IsOutputLabelSet" class="org.transpar.alchemy.

core.transmutationcfg.predicates.IsOutputLabelSet" />

4 <Entry name="OutputReady" class="org.transpar.alchemy.core.

transmutationcfg.predicates.OutputReady" />

96 Type Environment Configuration

5 <Entry name="Not" class="org.transpar.alchemy.core.

transmutationcfg.predicates.Not" />

6

7 <!-- Input Modifiers -->

8 <Entry name="SimpleInput" class="org.transpar.alchemy.core.

transmutationcfg.inputmod.SimpleInput" />

9 <Entry name="MergeAIRsets" class="org.transpar.alchemy.core.

transmutationcfg.inputmod.MergeAIRsets" />

10

11 <!-- Actions -->

12 <Entry name="ScheduleTransmutation" class="org.transpar.

alchemy.core.transmutationcfg.actions.

ScheduleTransmutation" />

13 </Environment >

D Example AIR XML Representation

Original R program:

Listing D.1: Example R Program

1 a <- 3

2 while (a < 10) {

3 x <- c(3,1,4,1,5);

4 for (i in x) {

5 a <- a + i;

6 }

7 for (j in x) {

8 a <- a * j;

9 }

10 }

XML representation of corresponding AIR (a visualization of this AIR can be found
at 4.7).

Listing D.2: Example AIR XML representation for D.1

1 <?xml version="1.0" encoding="UTF -8"?>

2 <AIR environment -proxy="tcp: //127.0.0.1 :1985" value -proxy="tcp:

//127.0.0.1 :1985" environment -id="154445984">

3 <Program >

4 <ClosureExpr >

5 <formals/>

6 <body>

7 <ExprList >

8 <BinopExpr op="<-">

9 <lhs>

10 <SymbolExpr name="a"/>

11 </lhs>

12 <rhs>

13 <ConstantExpr type="real">

14 <RealValue data="3.000000"/>

15 </ConstantExpr >

16 </rhs>

17 </BinopExpr >

18 <WhileStmt >

19 <condition >

20 <FuncCall >

21 <funcexpr >

22 <SymbolExpr name="<"/>

23 </funcexpr >

24 <params >

25 <ParamExpr >

97

98

26 <SymbolExpr name="a"/>

27 </ParamExpr >

28 <ParamExpr >

29 <ConstantExpr type="real">

30 <RealValue data="10.000000"/>

31 </ConstantExpr >

32 </ParamExpr >

33 </params >

34 </FuncCall >

35 </condition >

36 <body>

37 <ExprList >

38 <BinopExpr op="<-">

39 <lhs>

40 <SymbolExpr name="x"/>

41 </lhs>

42 <rhs>

43 <FuncCall >

44 <funcexpr >

45 <SymbolExpr name="c"/>

46 </funcexpr >

47 <params >

48 <ParamExpr >

49 <ConstantExpr type="real">

50 <RealValue data="3.000000"/>

51 </ConstantExpr >

52 </ParamExpr >

53 <ParamExpr >

54 <ConstantExpr type="real">

55 <RealValue data="1.000000"/>

56 </ConstantExpr >

57 </ParamExpr >

58 <ParamExpr >

59 <ConstantExpr type="real">

60 <RealValue data="4.000000"/>

61 </ConstantExpr >

62 </ParamExpr >

63 <ParamExpr >

64 <ConstantExpr type="real">

65 <RealValue data="1.000000"/>

66 </ConstantExpr >

67 </ParamExpr >

68 <ParamExpr >

69 <ConstantExpr type="real">

70 <RealValue data="5.000000"/>

71 </ConstantExpr >

72 </ParamExpr >

73 </params >

74 </FuncCall >

75 </rhs>

76 </BinopExpr >

77 <ForStmt >

78 <condition >

99

79 <IteratorExpr >

80 <itervar >

81 <SymbolExpr name="i"/>

82 </itervar >

83 <collection >

84 <SymbolExpr name="x"/>

85 </collection >

86 </IteratorExpr >

87 </condition >

88 <body>

89 <ExprList >

90 <BinopExpr op="<-">

91 <lhs>

92 <SymbolExpr name="a"/>

93 </lhs>

94 <rhs>

95 <FuncCall >

96 <funcexpr >

97 <SymbolExpr name="+"/>

98 </funcexpr >

99 <params >

100 <ParamExpr >

101 <SymbolExpr name="a"/>

102 </ParamExpr >

103 <ParamExpr >

104 <SymbolExpr name="i"/>

105 </ParamExpr >

106 </params >

107 </FuncCall >

108 </rhs>

109 </BinopExpr >

110 </ExprList >

111 </body>

112 </ForStmt >

113 <ForStmt >

114 <condition >

115 <IteratorExpr >

116 <itervar >

117 <SymbolExpr name="j"/>

118 </itervar >

119 <collection >

120 <SymbolExpr name="x"/>

121 </collection >

122 </IteratorExpr >

123 </condition >

124 <body>

125 <ExprList >

126 <BinopExpr op="<-">

127 <lhs>

128 <SymbolExpr name="a"/>

129 </lhs>

130 <rhs>

131 <FuncCall >

100

132 <funcexpr >

133 <SymbolExpr name="*"/>

134 </funcexpr >

135 <params >

136 <ParamExpr >

137 <SymbolExpr name="a"/>

138 </ParamExpr >

139 <ParamExpr >

140 <SymbolExpr name="j"/>

141 </ParamExpr >

142 </params >

143 </FuncCall >

144 </rhs>

145 </BinopExpr >

146 </ExprList >

147 </body>

148 </ForStmt >

149 </ExprList >

150 </body>

151 </WhileStmt >

152 </ExprList >

153 </body>

154 <env envuri="tcp: //127.0.0.1 :1985" envid="296463126"/>

155 </ClosureExpr >

156 </Program >

157 </AIR>

101

Listing D.3: Example AIR XML response from RMulticore Transmutator

1 <?xml v e r s i o n=” 1 .0 ” encoding=”UTF−8”?>
2 <AIR>
3 <Program>
4 <FuncCall>
5 <funcexpr>
6 <SymbolExpr name=” l i b r a r y ”/>
7 </ funcexpr>
8 <params>
9 <ParamExpr>

10 <SymbolExpr name=” mul t i co re ”/>
11 </ParamExpr>
12 </params>
13 </ FuncCall>
14 <FuncCall>
15 <funcexpr>
16 <SymbolExpr name=”pvec”/>
17 </ funcexpr>
18 <params>
19 <ParamExpr>
20 <FuncCall>
21 <funcexpr>
22 <SymbolExpr name=”c”/>
23 </ funcexpr>
24 <params>
25 <ParamExpr>
26 <ConstantExpr type=” r e a l ”>
27 <RealValue data=” 1 .0 ”/>
28 </ConstantExpr>
29 </ParamExpr>
30 <ParamExpr>
31 <ConstantExpr type=” r e a l ”>
32 <RealValue data=” 2 .0 ”/>
33 </ConstantExpr>
34 </ParamExpr>
35 <ParamExpr>
36 <ConstantExpr type=” r e a l ”>
37 <RealValue data=” 3 .0 ”/>
38 </ConstantExpr>
39 </ParamExpr>
40 </params>
41 </ FuncCall>
42 </ParamExpr>
43 <ParamExpr name=”FUN”>
44 <SymbolExpr name=” s i n ”/>
45 </ParamExpr>
46 </params>
47 </ FuncCall>
48 </Program>
49 </AIR>

E Numerical Results of Evaluation Chapter

Table E.1: Numerical results
of elements # of cores running time (sec) speedup (to sequential)

100000 2 14.557 1.78491447413615
100000 4 9.158 2.83719152653418
100000 6 7.358 3.53125849415602
100000 8 5.422 4.7921431206197
200000 2 30.202 1.77746506853851
200000 4 17.201 3.12092320213941
200000 6 14.255 3.76590669940372
200000 8 10.700 5.01710280373832
300000 2 45.767 1.77311163065091
300000 4 26.402 3.07363078554655
300000 6 21.579 3.76060058390101
300000 8 16.073 5.04883966901014
400000 2 61.210 1.8714752491423
400000 4 40.805 2.80732753339052
400000 6 29.356 3.90220057228505
400000 8 21.651 5.29088725693963
500000 2 77.042 1.90686898055606
500000 4 51.093 2.87532538703932
500000 6 41.519 3.53835593342807
500000 8 27.482 5.34564442180336
600000 2 93.655 1.89463456302386
600000 4 66.599 2.6643342993138
600000 6 49.568 3.57976920593932
600000 8 37.970 4.67321569660258
700000 2 111.301 1.86778196062928
700000 4 82.606 2.51659685737114
700000 6 62.757 3.31255477476616
700000 8 44.046 4.71974753666621
800000 2 127.357 1.90125395541666
800000 4 92.107 2.62887728402836
800000 6 77.751 3.11427505755553
800000 8 56.296 4.30115816399034
900000 2 148.129 1.86162736533697
900000 4 100.453 2.74517436014853
900000 6 79.639 3.46263765240648
900000 8 62.503 4.41196422571717
1000000 2 165.548 1.8634595404354
1000000 4 119.279 2.58630605555043
1000000 6 93.761 3.29019528375337
1000000 8 71.847 4.29373529862068

102

F Description of AIR XML Representation

The following sections describe for every AIR expression its corresponding XML rep-
resentation. The description is not formal, e.g. following XML Schema or something
similar, but shall give a quick intuition about how an AIR instance is constructed.

F.1 BinopExpr

1 <BinopExpr op=”#opname#”>
2 < l h s>
3 #AIRExpr#
4 </ l h s>
5 <rhs>
6 #AIRExpr#
7 </ rhs>
8 </BinopExpr>

#opname# is the name of the operator. Currently, only the <− operator can appear
here. On the left-hand side (<lhs>) as well as on the right-hand side (<rhs>) can appear
any AIR expression.

F.2 BreakStmt

1 <BreakStmt />

F.3 BuiltinFunc

1 <Bui lt inFunc name=”#name#” />

#name# is the name of an internal function.

F.4 ClosureExpr

1 <ClosureExpr>
2 <body>
3 #AIRExpr#
4 </body>
5 <f o rmal s>
6 #ParamExpr#
7 #ParamExpr#
8 . . .
9 #ParamExpr#

10 </ formal s>
11 <env envid=”#envid#” envur i=”#envur i#” />
12 </ ClosureExpr>

103

104 ComponentExpr

The <body> element contains the closure body that can be any AIR expression. The
<formals> element contains the formal parameters of the closure. If an <env> element
is present, it represents the environment that was active when the closure has been
created.

F.5 ComponentExpr

Not implemented, yet. Appears as FuncExpr with function name $, first argument
equal to the data structure that is accessed and second parameter a SymbolExpr that
refers to the component name.

F.6 ConstantExpr

Listing F.1: AIR XML for ConstantExpr

1 <ConstantExpr type=”#type#” value=”#optvalue#”>
2 #AIRValue#
3 </ConstantExpr>

#type# is the string representation of the AIRType that this constant holds. If the value
attribute is present, #optvalue# is the string, i.e. not XML, representation of a value.

F.7 ExprList

Listing F.2: AIR XML for ExprList

1 <ExprList>
2 #AIRExpr#
3 #AIRExpr#
4 . . .
5 #AIRExpr#
6 </ ExprList>

Contains a list of AIR expressions.

F.8 ForStmt

1 <ForStmt>
2 <cond i t i on>
3 #Ite ra to rExpr#
4 </ cond i t i on>
5 <body>
6 #AIRExpr#
7 </body>
8 </ForStmt>

FuncCall 105

The <condition> element contains an IteratorExpr, the <body> an arbitrary AIR ex-
pression that is repeatedly evaluated.

F.9 FuncCall

1 <FuncCall>
2 <funcexpr>
3 #AIRExpr#
4 </ funcexpr>
5 <params>
6 #ParamExpr#
7 #ParamExpr#
8 . . .
9 #ParamExpr#

10 </params>
11 </ FuncCall>

A function call consists of a <funcexpr> that either contains a <SymbolExpr> or a
<ClosureExpr>. The <params> children are a sequence of <ParamExpr> elements.

F.10 FuncDef

1 <FuncDef>
2 <params>
3 #ParamExpr#
4 #ParamExpr#
5 . . .
6 #ParamExpr#
7 </params>
8 <body>
9 #AIRExpr#

10 </body>
11 </FuncDef>

A function definition consists of a list of function parameters that must be ParamExpr
elements and a body that may be of any type.

F.11 IfExpr

1 <I fExpr>
2 <cond i t i on>
3 #AIRExpr#
4 </ cond i t i on>
5 <body>
6 #AIRExpr#
7 </body>
8 </ I fExpr>

106 IteratorExpr

The <condition> element contains an arbitrary AIR expression that determines if the
<body>, which can also be any AIR expression, is evaluated.

F.12 IteratorExpr

1 <I t e ra to rExpr>
2 < i t e r v a r>
3 #AIRExpr#
4 </ i t e r v a r>
5 <c o l l e c t i o n>
6 #AIRExpr#
7 </ c o l l e c t i o n>
8 </ I t e ra to rExpr>

IteratorExprs are used in ForStmt elements. They specify an iteration variable
<itervar> and a collection that is iterated over. There are no restrictions on the types
of these parameters.

F.13 NextStmt

Not implemented, yet.

F.14 ParamExpr

1 <ParamExpr name=”#name#”>
2 #AIRExpr#
3 </ParamExpr>

A ParamExpr that represents an AIR parameter has a name and a value that may
be an arbitrary AIR expression.

F.15 Program

1 <Program>
2 #AIRExpr#
3 #AIRExpr#
4 . . .
5 #AIRExpr#
6 </ParamExpr>

A Program is a sequence of AIR expressions.

F.16 RepeatStmt

Not implemented, yet.

SkeletonExpr 107

F.17 SkeletonExpr

1 <SkeletonExpr name=”#name#”>
2 <params>
3 <param name=”#paramname#”>
4 #AIRExpr#
5 </param>
6 <param name=”#paramname#”>
7 #AIRExpr#
8 </param>
9 . . .

10 <param name=”#paramname#”>
11 #AIRExpr#
12 </param>
13 </params>
14 </ SkeletonExpr>

A SkeletonExpr has a #name#, e.g. “MAP”, and a list of named parameters that
may refer AIR expressions.

F.18 SubscriptExpr

1 <Subscr iptExpr>
2 <c o l l e c t i o n>
3 #AIRExpr#
4 </ c o l l e c t i o n>
5 <s u b s c r i p t s>
6 #AIRExpr#
7 #AIRExpr#
8 . . .
9 #AIRExpr#

10 </ s u b s c r i p t s>
11 </ Subscr iptExpr>

The child AIR expression of <collection> is the argument, i.e. having type list or
array, that the subscript is applied to. The subscript may be an arbitrarily long list of
AIR expressions.

F.19 SymbolExpr

1 <SymbolExpr name=”#name#” />

#name# is the name of the Symbol expression.

F.20 UnaryExpr

1 <UnaryExpr op=”#opname#”>
2 #AIRExpr#
3 </UnaryExpr>

108 WhileStmt

#opname# determines the kind of the unary expression, e.g. !. The #AIRExpr# is an
arbitrary AIR expression that is used as argument.

F.21 WhileStmt

1 <WhileStmt>
2 <cond i t i on>
3 #AIRExpr#
4 </ cond i t i on>
5 <body>
6 #AIRExpr#
7 </body>
8 </WhileStmt>

The <condition> element contains an arbitrary AIR expression that determines if the
<body>, which can also be any AIR expression, is evaluated.

	Introduction
	Approach
	Interfacing with the user
	Preprocessing the R Program for Parallelization Analysis
	Parallelization Analysis
	Parallel Execution
	Scope of this Thesis

	Related Work
	R
	S Expressions

	Approaches to Parallelizing R
	Exploit Inherent Data-Parallelism in R
	Exploit Task-Parallelism Hidden in Sequential R Programs

	Parallel Programming Patterns (Skeletons)
	Parallel Intermediate Representations
	Approaches to Automatic Parallelization

	Requirements Analysis
	UC 1: Execute R Program
	UC 2: Perform Interactive R Session
	UC 3: Evaluate R Expression
	AIR Expression
	XML Representation

	UC 4: Convert R Code to AIR
	UC 5: Transmutate AIR
	Transmutator
	Transmutation Controller
	Rule-Based Transmutation Configuration
	Static and Dynamic Configuration

	UC 6: Configure ALCHEMY
	UC 7: Convert AIR to R
	UC 8: Query AIR
	UC 9: Modify AIR
	Analysis Overview

	ALCHEMY Software Design and Implementation
	System Architecture
	Architectural Factors
	Architectural Decisions
	Description of ALCHEMY's Architecture
	Package: RAlchemy
	Class: RUserInterface (or R UI)
	Package: AlchemyAdapter
	Class: RtoAIRConverter
	Class: AIRtoRConverter
	Package: RCore
	Package: RServices
	Package: Communication
	Package: Logging
	Package: RServer
	Package: AlchemyCore
	Class: TransmutationService
	Class: SessionService

	Inter-Process Communication
	R Services
	Value Service
	Environment Service
	AIRtoR Service
	R Service Client: EnvServiceProxy class in AlchemyCore
	R Service Client: ValueServiceProxy in AlchemyCore

	AIR Design
	Types
	Values and Storages

	The AIR Interface
	Conversion to/from AIR XML

	Transmutation
	Planned: Parallelization Backends
	Planned: Tracing, Single-Step, and Breakpoints

	Implementation
	Transmutators
	FuncDefFilter
	EMBA
	RMulticoreBackend
	Planned Transmutators

	Experimental Evaluation
	Test Environment
	End-to-End Parallelization with EMBA and RMulticoreBackend
	Setup
	Execution Analysis
	Results

	Conclusion and Outlook
	Installing ALCHEMY
	Prerequisites
	Installation
	R Installation
	ZeroMQ Java Binding
	ALCHEMY Core Installation

	Using ALCHEMY
	ALCHEMY Configuration

	Sample Core Configurations
	Transmutation Controller Configuration
	Type Environment Configuration

	Example AIR XML Representation
	Numerical Results of Evaluation Chapter
	Description of AIR XML Representation
	BinopExpr
	BreakStmt
	BuiltinFunc
	ClosureExpr
	ComponentExpr
	ConstantExpr
	ExprList
	ForStmt
	FuncCall
	FuncDef
	IfExpr
	IteratorExpr
	NextStmt
	ParamExpr
	Program
	RepeatStmt
	SkeletonExpr
	SubscriptExpr
	SymbolExpr
	UnaryExpr
	WhileStmt

