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Abstract—Nominalizations in natural language requirements
specifications can lead to imprecision. For example, in the phrase
“transportation of pallets” it is unclear who transports the pallets
from where to where and how. Guidelines for requirements
specifications therefore recommend avoiding nominalizations.
However, not all nominalizations are problematic. We present
an industrial-strength text analysis tool called DeNom, which
detects problematic nominalizations and reports them to the user
for reformulation.

DeNom uses Stanford’s parser and the Cyc ontology. It classi-
fies nominalizations as problematic or acceptable by first detect-
ing all nominalizations in the specification and then subtracting
those which are sufficiently specified within the sentence through
word references, attributes, nominal phrase constructions, etc.
All remaining nominalizations are incompletely specified, and
are therefore prone to conceal complex processes. These nomi-
nalizations are deemed problematic.

A thorough evaluation used 10 real-world requirements spec-
ifications from Daimler AG consisting of 60,000 words. DeNom
identified over 1,100 nominalizations and classified 129 of them
as problematic. Only 45 of which were false positives, resulting
in a precision of 66%. Recall was 88%. In contrast, a naive
nominalization detector would overload the user with 1,100
warnings, a thousand of which would be false positives.

I. INTRODUCTION

Engineers are no poets. Furthermore, they are under pres-
sure to get to the “real work” of developing products. Hence,
requirements specifications are often of mediocre quality.
Because of that there is a need for tools that identify flaws
in requirements specifications. Flaws in requirements spec-
ifications fall into three categories: deletion, generalization,
and distortion [1]. Nominalizations belong to the category of
distortion and are often overlooked. A nominalization is the
noun form of a verb – which is not problematic by itself
but it may make a complex process sound like a simple
event. Authors tend to forget to mention necessary details
when they use nominalizations. In “transportation of pallets”,
for example, “transportation” is the nominalized form of “to
transport”. But that hides from the reader that “transport”
is a (potentially complex) process. Using the verb form “to
transport” instead, the author is urged to answer the questions
“Who?”, “How?”, and in that case also “From where to
where?”.

To minimize the number of defects in requirements specifi-
cations, many demand to use structured documents, templates,
and to strictly follow writing rules. A common rule is not to
use nominalizations. The rule “Thou shall not use nominaliza-
tions!” is fine when writing requirements. But the rule “Find
and eliminate all nominalizations!” is too strict for inspections:
One can give all the details and still use a nominalization.
Identifying (and rewriting) acceptable nominalizations is te-
dious and unnecessary.

Previous work showed that linguistic flaws can be auto-
matically detected [2]. Körner and Brumm presented RESI,
a tool that scans documents for linguistic flaws and reports
them to the user (see Section II-C). But RESI overloads the
user with the sheer number of (possible) flaws. It reports
all nominalizations including the acceptable ones. The false
positive rate is high. Recent work [3] showed that RESI can be
used to detect defects in real world requirements specifications,
but the high number of false positives prohibits the actual use
of the tool in a real-world scenario.

This paper presents four categories for nominalizations;
only one of which contains truly problematic nominaliza-
tions (see Figure 1). We identified the categories by manually
inspecting requirements from Daimler AG and found that most
of the nominalizations classify as acceptable. We show in the
second part of the paper how to identify the problematic nom-
inalizations and how we built this functionality into DeNom.
DeNom only reports problematic nominalizations to the user.
Section II reviews related work. Sections III and IV detail the
categories and the automatic classification. We are following
the recommendations of Ivarsson with regard to improving
relevance and rigor [29]. Section V shows an evaluation of
DeNom with requirements from Daimler AG and the last
section concludes the paper with future work.

II. RELATED WORK

Many publications discuss problems in requirements spec-
ifications. They describe how to avoid and detect flaws and
how to assess the quality of requirements specifications. We
give a brief overview of these three areas.
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Fig. 1. A categorization of linguistic flaws. We split nominalizations in four
categories.

A. Avoiding Flaws when Writing Requirements

Numerous approaches and advice exist on how to write
good requirements. A well-known approach is to control the
language. Controlled languages restrict grammar and/or vocab-
ulary of the natural language to avoid problems. A widespread
representative of controlled languages is Attempto Controlled
English (ACE) [4]. Similarly, Denger et al. advocate pattern-
based writing [5], but admit that converting existing require-
ments specifications to a pattern-based form can be difficult.
Smith et al. combine formal models of the requirements
(i.e. finite state machines) and requirements in a so-called
disciplined natural language [6]. Therefore all requirements
must be accompanied by state machines. Keeping them and the
natural language requirements synchronized is a huge effort.

Berry et al. wrote a handbook on avoiding ambiguities,
but their rules can also be used for inspections [7]. Rupp
dedicates a chapter on linguistic problems in requirements [1].
She defines three categories of linguistic defects: Deletion,
generalization, and distortion. Nominalizations are a distortion.
Her advice is to adhere to writing rules and to use templates.
A similar approach is EARS [8]. It provides five templates
for different types of requirements and guides authors through
the writing process. Pisan takes a different direction: He
matches incomplete requirements to existing known-to-be-
good requirements [9]. The good requirements are used to aug-
ment the requirements specification at hand. Yet, his method
requires a database of good requirements.

B. Assessing the Quality of Requirements

Davis et al. evaluate 24 criteria with metrics to determine
the overall quality of a requirements specification [10]. Some
of the criteria affect or even contradict each other. Therefore
the authors point out that a perfect requirements specification
does not exist. Wilson et al. count the occurrences of certain
expressions in a document to evaluate its quality [11]. Their
quality indicators include completeness and consistency.

Fabbrini et al. present the Quality Analyzer for Require-
ment Specifications (QuARS), a tool that checks requirements
specification using predefined word lists [12]. The lists give
indicators for problems. QuARS marks a phrase as problematic
if the number of indicators in the phrase exceeds a given
threshold. Fantechi et al. use QuARS as conceptual base of

TABLE I
RESULTS OF THE MANUAL PREPARATORY STUDY

Words Nom. Cat. 1 Cat. 2 Cat. 3 Cat. 4
SRS 1 9,942 85 0.0% 70.6% 29.4% 0.0%
SRS 2 23,104 158 0.0% 59.5% 36.7% 2.5%
SRS 3 2,129 21 0.0% 81.0% 14.3% 0.0%
SRS 4 3,687 62 0.0% 95.2% 4.8% 0.0%
SRS 5 1,598 30 0.0% 56.7% 43.3% 0.0%
Sum 40,460 356 0 247 102 4

0.0% 69.4% 28.7% 1.1%

their metrics-based analyses [13]. Berry et al. extended the
quality model of QuARS [14].

C. Detecting Flaws in Requirements

There are some approaches to detect specific flaws in re-
quirements specifications. Fagan pioneered the idea of design
and code inspections [15]. Requirements inspections have been
used for decades, but still hugely depend on the inspector’s
proficiency [16], [17], [18]. In 2000, Kamsties and Paech
proposed an improved inspection type to detect ambiguities in
natural language requirements [19]. Chantree et al. presented
a tool that identifies ambiguities [20]. They train a classifier
with word distributions and human judgments about whether
the respective requirement is ambiguous or not. The classifier
is used to report only problematic ambiguities for rewriting.

In 2008, Verma et al. presented their Requirements Analysis
Tool (RAT) [21]. RAT is a word processor plug-in that
analyzes natural language requirements by using a user-defined
glossary and constrained language. RAT highlights problem-
atic requirements directly in the requirements specifications,
but requires training. Accenture had used RAT in larger project
with some success, but the overall need of specifically trained
users and the time consumption lead to the decommissioning.

Körner and Brumm present the Requirements Engineer’s
Specification Improver (RESI), a tool that checks requirements
specifications for linguistic flaws [2]. RESI uses natural lan-
guage processing (NLP) tools from Stanford, WordNet [22],
and the ResearchCyc ontology [23]. It identifies flaws such as
incomplete process words (i.e. a verb that lacks arguments),
ambiguities (i.e. a word that has multiple meanings), and nom-
inalizations. Through RESI’s user interface, the user directly
fixes flaws in the specification. Extensive case studies showed
that RESI has an excellent recall and user studies showed that
no special training is needed to use RESI [24].

In recent work, Krisch and Houdek discuss the impact of
passive voice and weak words on requirements [25]. Both
should be avoided when writing down requirements, but a
simple text search is not suitable for an automatic flaw
detector: whether passive voice and weak words are acceptable
or not depends on the context in which they are used in.
Passive voice is almost never problematic and only 12 % of
the weak words lead to problematic requirements.

III. NOMINALIZATIONS: PROBLEMATIC OR NOT?

A nominalization becomes problematic when misinter-
preted. This is mostly because it leaves out descriptive infor-
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TABLE II
RESI’S RESULTS IN THE PREPARATORY STUDY

Words Nom. Cat. 1 Cat. 2 Cat. 3 Cat. 4
SRS 3 2,158 25 0.0% 88.0% 8.0% 0.0%
SRS 4 3,687 56 0.0% 83.9% 1.8% 0.0%
SRS 5 1,598 15 0.0% 73.3% 6.7% 6.7%
SRS 6 6,069 116 0.0% 91.4% 5.2% 0.0%
SRS 7 12,581 133 0.0% 84.2% 5.3% 0.0%
SRS 8 7,403 154 0.0% 74.7% 16.2% 0.0%
Sum 33,496 499 0 413 42 1

0.0% 82.8% 8.4% 0.2%

mation. Studies show that misinterpretation leads to problems
in the development stage with the same impact as ambiguous
wording, incompletely specified process words, and wrong
quantifiers [26].

In a preparatory study, we inspected requirements spec-
ifications manually, then supported by RESI. The analysis
showed that nominalizations can be classified in four different
categories (see Figure 1). Nominalizations of categories one
and two are sufficiently specified and therefore acceptable.
The third category borders on being problematic depending on
how explicitly context and domain can be determined from the
corresponding requirement to sufficiently specify the possibly
problematic nominalization. Category 4 is problematic since it
does not include enough information. We manually determined
the distribution of nominalizations across the 4 categories
in eight specifications with a total of over 66.000 words.
The requirements specifications come from various projects
of Daimler AG. Tables I and II show the results of this
preparatory study. Category 1 and category 4 nominalizations
turn out to be rare.

Then, we implemented DeNom to improve RESI, which
detects all nominalizations without categorizing them. The
main focus in this paper lies on correctly categorizing category
2 and category 3 nominalizations to withhold these from the
user: we expect a much better user acceptance of the tool once
it shows problematic nominalizations only.

A. Category 1 Nominalizations: Acceptable

Category 1 nominalizations are self-descriptive and there-
fore unproblematic. They are fully specified independent of the
sentence and do not need further references to other objects
or sentences. Therefore, they cannot be misinterpreted. An
example is the word “troubleshooting” where the sentence’s
subject referenced by the nominalization is easily inferred
from context. Mostly, category 1 also includes words that are
self-descriptive due to the specific domain they are used in.
Words that are defined in a glossary are also in category 1.

B. Category 2 Nominalizations: Acceptable

Category 2 nominalizations can be determined through con-
text, i.e. the including sentence carries words or phrases that
refer directly to the nominalization and specify it. The category
can be split in two sub-categories: One refers to the adjacent
words and phrases also called a nominal phrase. The other
refers to remote words and phrases within the same sentence.

S

VP

NP

PP

NP
NNS headphones

DT the

IN of

NP

NN selection

NN channel

DT the

VBZ changes

NP
NN user

DT the

Fig. 2. Syntax tree for “[. . . ] the user changes the channel selection [. . . ]”.

Nominal phrases can be a combination of nouns forming
a compound noun. Compound nouns not only specify a
nominalization in more detail, they often make them disappear
since the nominalization now serves as descriptive attribute
of another noun. An example is the sentence “[. . . ] the user
changes the channel selection of the headphones [. . . ]” where
the nominal phrase “channel selection (of the headphones)”
specifies the nominalization “selection”. “Selection” as a noun
is an unspecified nominalization, but as compound noun
“channel selection”, “selection” is explained. Additionally, the
prepositional phrase beginning with “of” further serves as a
description by pointing the channel selection process to the
headphones, thereby rendering it into a clear statement.

Figure 2 shows the syntax tree of the example sentence. A
syntax tree shows the structure of the sentence; the leafs of the
tree are the words of the sentence, the inner nodes express the
composition of the sentence. In Figure 2 you can see that “the
channel selection” forms a nominal phrase (NP), as indicated
by their common parent node NP. The additional information
“of the headphones” is added as prepositional phrase (PP). The
noun phrase and the prepositional phrase form a new nominal
phrase, which is the object of the verb “changes”.

In many cases however, the reference of the nominalization
is neither adjacent nor part of a nominal phrase. Yet these
referenced words can also specify nominalizations further. An
example would be: “For a given model series, the implemen-
tation of this function shall be discussed during development.”
The nominalization “development” could (depending on con-
text) refer to the “model series” which would then specify the
nominalization sufficiently.

C. Category 3 Nominalizations: Acceptable

Category 3 nominalizations are specified through domain
or document context. This distinguishes them from possibly
problematic statements. Occasionally, the context or the ref-
erences of the nominalization are ambiguous. In the latter
case, the respective nominalizations are problematic and are
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Warning
(Category 3 or Category 4)

Warning
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Parser Test
(Nominal Phrase)

Context
(Complete Process Words)

No Context
(Underspecified Nomin.)

Fig. 3. A decision tree detailing the choices of DeNom.

in category 4. This is why category 3 nominalizations border
on being problematic. How problematic they really are can
only be determined on a case by case basis. An example is
“The exact design will be determined during development”. If
“development” refers to the product to be built, this might be
clear for the human reader knowing the context. For a machine
or a reader unfamiliar with the project, this is yet undefined. If
uncertain, we treat category 3 nominalizations as problematic
to stay on the safe side. With this, we expect a higher number
of false positives. We show in the evaluation that the number
of false positives appears reasonable.

D. Category 4 Nominalizations: Problematic

Category 4 nominalizations are problematic. They have to
be changed in the specification. Their context (which shall
describe them sufficiently) is ambiguous or non-existent. The
missing information can lead to misinterpretations without the
reader even noticing the mistake. The only solution: These
nominalizations need additional information, or they need to
be rephrased or removed.

An example is “For fine optimizations and verification
an additional cycle in the B-phase car will be permitted.”
The context of the two nominalizations “optimization” and
“verification” is not clear. It is unclear to which optimizations
and verifications they refer to, even with the context. Since
automatic software-based detection could never reach as far
as a reader’s knowledge about the process, DeNom tags these
nominalizations as problematic.

IV. BUILDING DENOM: EXTENDING RESI TO
CATEGORIZE NOMINALIZATIONS

Previous work showed that RESI reliably detects nomi-
nalizations (see Section II-C). The achieved recall is 100%
in all published case studies, but RESI does not distinguish
between acceptable and problematic nominalizations. DeNom
uses RESI to detect nominalizations but further classifies them.
To increase user efficiency and usability, DeNom processes
RESI’s results, but skips user interaction for categories 1 and 2,
asks the user to specify category 3 nominalizations, and reports

Format
(Text to EMF Model)

Initialize Logger Initialize RESI
(SpecificationImprover)

Run RESI 2
(POS Tagging w/ Stanford)

Run RESI 3
(Check for Nominalization)

DeNom
(Collect Results List)

DeNom
(Present resulting Cat 3/4)

DeNom
(Check Cat 1/2a)

RESI DeNom
(Check Cat 2b)(Complete Process Words)

Load EMF
(Read Spec Model)

Load Ontology
(Part-of-Speech-Tagger)

Run RESI 1
Tag Base Forms w/ WordNet

Fig. 4. Overview of DeNom’s processing steps.

category 4 nominalizations as being problematic. Figure 3
depicts the work flow DeNom uses.

RESI works with specifications in a special format 1 that
can hold text and additional information such as POS tags,
links to ontologies, and markers for flaws. Figure 4 shows
an overview of the processing steps. First, we export the
specifications from IBM DOORS into text files. Exporting
the specifications adds some extra textual information, which
has to be formatted, arranged, or deleted. Therefore we push
the extracted specifications through the DeNom formatter. It
removes unnecessary characters and symbols, normalizes the
use of apostrophes and other punctuation marks and makes
the input stream digestible for RESI’s text to EMF converter.
Rather than using RESI’s interactive user interface, DeNom
configures and starts RESI in the background and does all the
setup automatically. DeNom connects to the Cyc ontology,
preprocesses the document with POS and base form taggers
and then starts the inspection process (for details cf. [2]).

A. Category 1

Category 1 nominalizations can be detected easily by refer-
encing the found nominalizations with a glossary. If DeNom
does not detect category 1, it checks for category 2.

B. Category 2

Category 2 nominalizations are detected by examining if the
nominalization is part of a nominal phrase. For implementation
purposes, we do not use the syntax tree described in the
concept, but the dependency graph of the corresponding sen-
tence. According to Stanford’s NLP group, dependency graphs
are the preferable vehicle when processing word connections
in a sentence, i.e. dependencies between these words. A
dependency graph contains the words of a sentence as nodes
and typed dependencies as edges. A typed dependency is a
predicate reln(gov, dep) where reln is the relation (i.e.
the type of the dependency), gov the governor of the rela-
tion, and dep the dependent: For example, dobj(return,
pallet) means that “pallet” is the direct object of “return”.

1It uses the Eclipse Modeling Framework (EMF) file format.
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The contractor shall coordinate with the client ’s development manager.
DT NN MD VB IN DT NN POS NN NN

nsubj

auxdet

prep with

nn

poss

det

Fig. 5. The dependency graph for the first example (category two): The nominalization “development” forms a compound noun with “manager”. The POS
tags are given below the words.

Audio inputs shall provide supporting transmission line test for diagnosis.
JJ NNS MD VB VBG NN NN NN IN NN

nsubj

auxamod xcomp

dobj

nn

nn

prep for

Fig. 6. The dependency graph for the second example (category two): There is a prep for relation between the parent node and the nominalization. The POS
tags are given below the words.

The directed edges span from the governor to the dependent,
e.g. from “return” to “pallet”. Dependency graphs provide a
more direct access to the information in a sentence, whereas
syntax trees provide access to the structure and the constituents
of a sentence. There are 56 different typed dependencies and
the graphs can be built with the Stanford parser [27].

Our first test checks if the parent node of the nominalization
has been marked as noun (NN), which means it builds a
nominal phrase with the nominalization. Also, the parent test
needs to confirm that the grammatical relationship between
the nominalization and its parents node are not of the type
prep_for or prep_of since this entails that the nominal
phrase is not sufficiently specifying the nominalization. E.g.,
in Figure 5 the nominalization is “development” but it forms
a compound noun with “manager”. If we detect a compound
noun in the dependency graph, the nominalization is qualified
to be in category 2.

A different case is the example in Figure 6: The graph
for “Audio inputs shall provide supporting transmission line
test for diagnosis” shows that the nominalization “diagnosis”
is connected to “test” with the preposition “for”. The word
“test” itself does not specify the nominalization, rather does
the nominalization specify the test further. The prepositions
“for” and “of” are evidence that this is the case.

The existence of prepositions checking the child node
relationship is similar. DeNom checks if at least one child
node of the nominalization carries a noun identifier (NN). Fig-
ure 7(a) shows and example where the child nodes “channel”
and the and “headphones” form a nominal phrase with the
nominalization “selection”. This specifies the nominalization
sufficiently.

But nominalizations are not only specified through the noun
to which they refer to. Therefore DeNom also checks if the
grammatical relation prep_by exists. Figure 7(b) shows an
example. The nominalization “transport” lacks the object, i.e.
the information what exactly needs to be transported.

C. Category 3

Category 3 nominalizations are more complicated as we
have to identify the needed information in the sentence.
RESI can check whether process words (i.e. verbs) are fully
specified, i.e. if all the arguments that the verb needs are given
in the sentence. For instance, if the sentence states that “she
returns the pallets”, RESI asks “to whom?”. The information
about which verb arguments are necessary is found in the
Cyc ontology. DeNom uses the same analysis to identify
whether all needed information is given to sufficiently specify
a nominalization. In order to do so, DeNom transforms the
nominalization into the corresponding verb and then runs the
analysis. In short this means: if we can find all necessary
arguments for the respective process word, we can assume that
the nominalization is fully specified and therefore acceptable.

We repeat an example from reference [2] to give a precise
idea of how DeNom and RESI work. We slightly adapted the
following example for this paper; a detailed description of
RESI’s other rules can be found in reference [2]. The example
sentence is:� �
Every pallet is returned after transport.� �

In the current setting, DeNom queries ResearchCyc using
Cycs very own query language called CycL. Predicates and
fixed terms are prefixed with #$ and variables (which contain
the response to the query) are denoted using a ?. Research-
Cyc is structured into so called Microtheories, which help
to distinguish and to represent contradictory knowledge of
common world objects as we encounter on a daily basis. An
example would be the word “bank” in the context of a building
for money business or a wooden structure to sit on. Also, it
could just refer to the river bank. Each of these microtheories
is tailored to encapsulate certain knowledge to allow for
consistent reasoning and deduction within this Microtheory.
DeNom queries the microtheory GeneralEnglishMt, which
contains knowledge about the English language.
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If the user changes the channel selection of the headphones , ...
IN DT NN VBZ DT NN NN IN DT NNS

mark

det nsubj

dobj

det

nn

prep of

det

(a) Example category two nominalization (selection), which builds a nominal phrase with
channel and headphones.

The transport by the contractor shall ...
DT NN IN DT NN MD

det

prep by

nsubj

det

(b) A nominal phrase with a prep by-relation between
the nominalization and the child node does not qualify for
category two. DeNom proceeds with the category three
checks.

Fig. 7. Dependency graph examples.

We identify the argument lists for the nominalization
(through its deducted verb) with a single query. But first, the
process word (in this case return) has to be transformed into
a word constant. This is done by capitalizing the first letter of
the word and appending -TheWord to the corresponding word
string. Then we ask ResearchCyc about the argument list:� �
(#$verbSemTrans #$Return-TheWord ?SENSECOUNTER

?FRAMETYPE ?FRAME)� �
The variable ?FRAME then holds the argument list in the

following format:� �
(#$and

(#$objectGiven :ACTION :OBJECT)
(#$isa :ACTION #$ReturningSomething)
(#$giver :ACTION :SUBJECT)
(#$givee :ACTION :OBLIQUE-OBJECT))� �

The line with the predicate #$isa denotes the meaning of
the word in its context. The other lines show the arguments
in their semantic and their syntactic (e.g. #$objectGiven and
:OBJECT respectively) roles. Because users without specific
linguistic backgrounds seldom understand semantic roles (as
introduced by Fillmore), we determine the descriptions of them
as well; ResearchCyc delivers the description in response to
the following query:� �
(#$comment #$objectGiven ?COMMENT)� �

Now we fill the argument list with words from the corre-
sponding sentence; DeNom checks every argument with which
value/word it could be filled:� �
(#$arg2Isa #$objectGiven ?WHATFITS)� �

This leads to the result that an #$objectGiven can be every
#$SomethingExisting. Finally, every word of the sentence is
checked whether it can be used as one of the verb’s arguments:
DeNom checks if the word that is supposed to be used as ar-
gument (in our example #$Pallet-TransportationConstruct

for pallet) is a generalization of #$SomethingExisting:� �
(#$genls #$Pallet-TransportationConstruct

#$SomethingExisting)� �
If this is true, then the according word is inserted into the

argument list. After checking all arguments and all words,

DeNom asks the user to verify it. If the user confirms the
argument list being correct, the nominalization is sufficiently
specified. If one or more arguments are missing, the nominal-
ization can be securely categorized as category 3 or 4.

Since category 3 nominalizations cannot be deemed accept-
able without user interaction, we abort the classification here
and present all nominalizations of category 3 and 4 to the user.

Our plan to automatically process all category 3 nominaliza-
tions is to check the broader context of the nominalization (i.e.
adjacent sentences instead of adjacent phrases); also Lami’s V-
dictionaries could help [28], but both approaches are out of
the scope of this paper. As our evaluation in the following
section shows, it might not be necessary to distinguish here.

The concept presented here does not rely on domain spe-
cific ontologies. Domain specific ontologies will most likely
improve the detection of acceptable nominalizations. But our
current experience shows that the full specification of nomi-
nalizations heavily relies on their context within the sentence
rather than on an agreed meaning given in a domain specific
ontology (cf. Category 1).

Also, DeNom trusts the parser’s results and we did not
train the parser on requirements documents. If the parser
produces faulty dependency graphs, DeNom could produce
false negatives (if the parser erroneously produces a compound
noun) and false positives (if the parser misses a compound
noun). The evaluation shows that such errors occur but that
the overall performance of DeNom is acceptable.

V. EVALUATION

We evaluated DeNom with a corpus of ten specifications
from Daimler AG comprising 60,000 words. The requirements
specifications used in the evaluation overlap with the ones
from the preparatory study but we used only SRS 4 to SRS 8
in both studies.

We compare the results from RESI using the original nom-
inalization rule with DeNom’s new nominalization checker.
Therefore we inspected the specifications with RESI and
DeNom in parallel, so that both tools were fed with the same
documents and the same user inputs. The results of both tools
were automatically logged. Then we compared the log files
and manually verified DeNom’s classifications. Whenever we
were unsure whether a nominalization is sufficiently defined

14



TABLE III
RESULTS OF THE EVALUATION FOR DENOM (D) AND RESI (R). WE

CALCULATED DENOM’S RECALL WITH RESPECT TO RESI’S RESULTS.

Doc. # Words Nom. probl. Precision Recall
R D Nom. R D D

SRS 4 3,687 81 5 2 2% 40% 100%
SRS 5 1,598 15 2 1 7% 50% 100%
SRS 6 6,069 108 6 4 4% 67% 100%
SRS 7 12,580 246 12 3 2% 25% 60%
SRS 8 7,403 167 34 20 14% 59% 87%
SRS 9 2,923 28 4 4 14% 100% 100%
SRS 10 8,098 130 17 13 13% 76% 76%
SRS 11 2,590 57 10 7 12% 70% 100%
SRS 12 10,444 243 26 21 9% 81% 91%
SRS 13 4,094 61 13 9 15% 69% 100%
Sum 59,486 1,136 129 84 8% 65% 88%

in the sentence-wide context, we discussed our findings with
experts from Daimler.

Table III details the results. The first two columns give the
identifier and length of the requirements specification; columns
three and four give the number of nominalizations reported by
RESI (R) and DeNom (D) respectively. The fifth column gives
the number of problematic nominalizations in the documents.
The following two columns give the precision of both tools.
The last column gives the recall of DeNom; we determined
DeNom’s recall with respect to RESI’s results as DeNom
does not identify nominalizations by itself but refines RESI’s
results.

In total RESI identifies 1,136 nominalizations in the cor-
pus, 129 of which DeNom classifies as problematic. We
manually inspected DeNom’s results and confirmed that 84
of the 129 nominalizations are indeed problematic. DeNom
increases RESI’s precision from 8% to 65% on average.
Unfortunately DeNom suppresses eleven nominalizations from
being reported even though they are problematic.

We manually confirmed the categories of problematic nom-
inalizations delivered by DeNom: 26 of the problematic nomi-
nalizations where category 2. DeNom does not categorize them
properly due to bad English and typos.

There were also mishaps with the parser and the POS
tagger that lead to errors in the processing chain. For instance,
the word current in the phrase “After the highest current
selection the selection should go to the lowest level” was
processed in the meaning of present/contemporary and not in
the context-correct meaning of electrical current. DeNom then
wrongly decides that the nominalization “selection” is not fully
specified.

Another example is the use of American and British English
vocabulary: The sentence reads “The design of the wheel
sensor must ensure that a tyre can be easily mounted and
removed during a tyre change without damage to the wheel
sensor.” There, the parser does not recognize the British
English spelling of “tyre” and therefore cannot produce the
proper noun relationships within the sentence to ensure nomi-
nalization specification. In this case, the cross-check fails and
DeNom marks the nominalization as problematic even though
it is not.

There are also issues because the used ontologies are not
complete. For instance, the word “implementation” is never
recognized as nominalization since the ontology does not
provide enough information in this specific case. We used an
unmodified version of ResearchCyc. If we used DeNom in a
real setting, we would simply add the missing information to
avoid future mistakes. This can be done in a matter of minutes
using ontology specific syntax, such as OWL (Web Ontology
Language) or in this specific case CycL, ResearchCyc’s inter-
nal syntax.

We also encountered some issues with the formatter and
the pre-processing of exported DOORS specifications where
special characters and parentheses were removed which gave
problems to the parser. Most of these errors lead to the wrong-
ful (but less problematic) detection of a problematic nominal-
ization. This leads to false positives (worsens precision), which
we consider less risky than missing an actual problematic
nominalization (worse recall). Confirmed by feedback from
Daimler’s experts, DeNom should rather err on the safe side.

In a few cases, DeNom omitted some nominalizations that
belonged to category 3 or 4. A detailed analysis of all detected
and all missed nominalizations shows that eleven nominal-
izations have been omitted though they should have been
counted as problematic. This error can be blamed on human
failure: The users made mistakes during user interaction in the
CompleteProcessWords stage.

DeNom presents 129 of the 1136 nominalizations as prob-
lematic nominalizations, nine of which are no nominalizations
at all, but had been wrongly detected by RESI. The additional
tests run by DeNom did not remedy this error and left the
false nominalizations in the set of problematic ones.

VI. CONCLUSION

In this paper we showed that the automatic classification of
potential specification flaws is possible and yields good results.
The main idea was to make an academic way of automatic
specification processing real-world capable by down-scaling
the efforts a user has to take. We use existing technology from
our tool RESI to discover the nominalizations, but extended it
with our new tool DeNom to decrease the amount of user
interaction and to minimize the number of false positives.
Checking with real world requirements at Daimler showed
that the implementation works reliably when the quality of
the specification language is adequate.

A next step in refining the results is to implement the
remaining check for category 3 nominalizations. For instance,
a possible way to check the context could be to employ V-
dictionaries. A further extension would be to not only check
the glossary and adjacent words for further specifications of
the nominalization, but to also include adjacent phrases and
paragraphs into the context. This will blow up the search space
and could increase the required user feedback again.

Concrete next steps are to assess which of the other features
of RESI can be used to help the RE process and which
refinements need to be made to make these features work-
able for users. Examples would be checking for ambiguities,
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incomplete process words, etc. Another important step would
be to implement DeNom in Daimler processes to gain further
insight of usage and if requirements engineers (users) find
the tool helpful. As of now, we do not now how a solution
like RESI is perceived by industry outside of an academic
context, i.e. does it really help the requirements engineers
at the corresponding industry partners? Automating parts of
requirements engineering might bring additional risks, which
lie beyond our current horizon of expectations. For instance,
users could rely too heavily on the supporting software rather
than their instincts. Or maybe users feel patronized by the
tools rather than accepting them as helping hands. We expect
to also learn some of these psychological aspects during real
world implementations of our tool.

A further step in improving DeNom beyond its current
capabilities is to record and store domain specific information
gathered during the process in a domain ontology or word
list to further reduce user interaction. The idea is to have the
program learn in its domain from the users. Then again, having
a decentralized knowledge base “maintenance” could lead to
wrong interpretations if the users do not use a consistent
vocabulary across all projects.

A radically different approach worth investigating is using
statistical methods similar to the one detailed in reference [20].
Now that we have 1,100 nominalizations categorized, we
can use machine learning techniques to train a classifier.
This classifier would be automatically constructed (in contrast
to DeNom’s hand-crafted categorization rules) and could be
tuned with user feedback, e.g. when a user decides that
a reported nominalization is acceptable. Such an approach
would make DeNom even more self-adaptive but the version
described in this paper would still be helpful for generating
initial training data.
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