
Automatic Parallelization
using AutoFutures

Korbinian Molitorisz, Jochen Schimmel, Frank Otto

Karlsruhe Institute of Technology
76128 Karlsruhe, Germany

{molitorisz|schimmel|frank.otto}@kit.edu

Abstract. Practically all new computer systems are parallel. The minds
of the majority of software engineers are not, and most of existing source
code is still sequential. Within only a few years, multicore processors
changed the system landscape, but the competence to reengineer for
computer systems of today is shared among a small community of soft-
ware engineers.
In this paper we present AutoFuture, an approach that automatically
identifies parallelizable locations in sequential source code and reengi-
neers them for multicore. This approach demands minimal change to
sequential source code. AutoFutures make parallel code easy to under-
stand and increase the acceptance of parallel software.

1 Introduction

Parallelization is hard. After 10 years of multicore commodity systems, the vast
majority of source code still is sequential. The knowledge about multicore soft-
ware engineering is still shared among a small circle of software engineers. We
see the necessity to address software engineers that do not have this knowledge.

[1] and [2] show that most of the time-consuming work is encapsulated in
functions or methods. Critical path analysis methods also operate on statement
blocks, so any automatic parallelization concept has to consider that the highest
parallelization potential lies in statement blocks.

Automatic parallelization has the potential to make multicore systems avail-
able to software engineers of all competence levels. However, the parallelization
process is still very time-consuming and skill-intensive. The most promising re-
gions have to be located, the appropriate parallelization has to be identified and
the parallel code has to be checked [3, 4]. AutoFutures simplify and automate
the manual parallelization process.

2 Scenario for asynchronous parallelization

To emphasize the necessity of our research we introduce a real-world scenario.
Many real-world projects do not offer time for parallelization, so even semi-
automatic approaches are too expensive. One way to gain performance boosts

on multicore systems are fast and fully automatic parallelization approaches.
This defines the first mission of AutoFutures. At the same time, code correctness
must be preserved. Because of these two constraints we can only use a small set
of automatic parallelization techniques. Hence, evidently less performance gains
can be achieved compared to dedicated parallelization.

AutoFutures’ second mission is to achieve a broad acceptance of multicore
programming in the target group. We see three flavors to accomplish this mission:
Recognition, recurrence and correctness.

Recognition: As we face inexperienced engineers, we have to manage the
parallelization process without their involvement. The software engineer must be
able to directly recognize the parallelized code. Hence, our parallel code needs
to be as similar to the original version as possible. The precondition for our
parallelization concept is to be as unobtrusive as possible which naturally comes
at the cost of lower speedup expectations. But to us any speedup is worthwhile
when achieved without user interaction.

Recurrence: Another aspect to fulfill our mission to raise the acceptance is
to use a well-defined set of recurring patterns. All parallel regions should follow a
very small set of parallelization patterns. With this we lower the entry threshold
among incompetent programmers. As we attain a higher recognition value we
expect a rising acceptance rate.

Correctness: Parallel code that is faster but incorrect is preposterous. As
this would lead to even lower acceptance rates concerning multicore program-
ming, it is crucial to only parallelize where code correctness can be guaranteed.
As a proof of concept, we implemented the pattern shown in figure 1.

3 AutoFutures: Automatic asynchronous method calls

The first goal in our concept is to have an automatic parallelization technique
that is very fast in execution. We use a static analysis to identify code that can
be executed asynchronously. This precondition constraints the search space for
parallelization potential down to code that can verifiably be executed in parallel
without any data dependencies. This could be part of a compiler.

After code hotspots have been identified, we have to address synchroniza-
tion. We make use of the widely known concept Future. A Future serves as a
placeholder for the result of an asynchronous computation. Futures offer an easy
way to specify asynchronicity and hide synchronization code.

Without a Future synchronization code has to be added at the end of con-
current activities. This breaks code readability and violates to be as unobtrusive
as possible. Furthermore, Futures hide whether the result of a computation is
already available or not. Figure 1 shows a simple example: Two consecutive
methods solve() and statements() operate on different objects and do not have
data dependencies. We suggest to transform the invocation of solve() using a
Future. statements() is then executed in parallel to solve(). The variable x in
the call to print() is an automatically added synchronization point, as the result
of solve() has to be available here.

Fig. 1. Asynchronous method invocation

4 First results

As a first experimental approach we implemented AutoFutures in Java. We
base on the object-oriented paradigm so AutoFutures automatically convert syn-
chronous method invocations to asynchronous Futures and insert synchroniza-
tion points. Our implementation currently searches for the consecutive method
invocation pattern shown in figure 1. We used the Soot framework [5] for the
static analysis and developed two heuristics to detect the synchronization point.

Our key finding is that with AutoFutures we can detect parallel potential in
sequential code and re-engineer it to parallel code with only little code changes.
We evaluated our concept in 5 real-world applications and could achieve an
average speedup of 1.81 (min: 0.76, max: 3.34) on an Intel Core2-Quad machine.
In table 1 we present our results. In order for the parallel version of ImageJ to
function properly, the store procedure had to be altered manually. PMD and
ANTLR already run in parallel. We used the DaCapo-benchmark suite [6] and
with AutoFutures we could almost reach the manual parallelization performance.

MergeSort Matrix PMD ANTLR ImageJ
Source lines 34 81 44782 36733 93899
Methods 3 5 3508 1998 4505
Input data array matrix rules files images
Speedup min 2.16 2.61 — — 1.74
Input size 1.600.000 400x400 — — 512x512
Speedup max 2.70 3.34 0.91 0.76 2.04
Input size 8.000.000 600x600 13 18 1448x1448

Table 1. Evaluation results for AutoFutures

5 Perspectives

We feel confirmed to investigate further patterns for the application of AutoFu-
tures. Currently we conduct an empirical study to manually detect additional
patterns in sequential source code by selecting programs from different appli-
cation domains to explore applicability in different scenarios. This leads to an
additional aspect: Efficiency. Not every parallelizable construct should effectively
be parallelized. With the pattern approach we try to distinguish parallelization
potential.

Our results so far reveal three additional patterns: Loop parallelization with
and without in-order-execution, method extraction from blocks of statements
and speculative value calculation as used in instruction-level parallelism. We
consider extending our analysis method to include runtime information, as our
static analysis leads to a very small search space. With the extension to include
runtime information in our analysis the identification of design patterns comes
into reach: We see the chance to extend the AutoFuture concept for the auto-
matic detection of Master/Worker from sequential source code. The potential,
limitations and tradeoffs for this approach need further research.

6 Conclusion

Although multicore systems are omnipresent software engineers are still afraid
of parallelism. With systems becoming more and more complex we must address
software engineers that don’t have any knowledge about parallelization and don’t
have the time to learn.

In this paper we introduced the concept AutoFuture that enables a fully au-
tomatic code refactoring to help software engineers to familiarize with multicore
software engineering. We argue that with AutoFutures the acceptance rate for
multicore software engineering can be raised. Additionally, we see the potential
to establish a parallelization process with variable granularity levels. For this
reason it is possible to also address competent software engineers, provide them
with more information and offer them higher speedup potentials. The free lunch
might be over, but free snacks are still available.

References

1. S. Garcia, D. Jeon, C. M. Louie, and M. B. Taylor, “Kremlin: rethinking and re-
booting gprof for the multicore age,” in Proceedings of the 32nd PLDI, 2011.

2. W. C. Benton, “Fast, effective program analysis for object-level parallelism,” Ph.D.
dissertation, University of Wisconsin at Madison, 2008.

3. G. Tournavitis and B. Franke, “Semi-automatic extraction and exploitation of hier-
archical pipeline parallelism using profiling information,” in Proceedings of the 19th
PACT, 2010.

4. C. Hammacher, K. Streit, S. Hack, and A. Zeller, “Profiling java programs for
parallelism,” in Proceedings of the 2nd IWMSE, 2009.

5. [Online]. Available: http://www.sable.mcgill.ca/soot/
6. [Online]. Available: http://dacapobench.org/

