
ZHI# � PROGRAMMING LANGUAGE INHERENT

SUPPORT FOR ONTOLOGIES

zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

der Fakultät für Informatik

der Universität Fridericiana zu Karlsruhe (TH)

genehmigte

Dissertation

von

Alexander Paar

aus Bad Wildungen

Tag der mündlichen Prüfung: 21.07.2009

Erster Gutachter: Prof. Dr. Walter F. Tichy

Zweiter Gutachter: Prof. Dr. Peter H. Schmitt

ii

iii

Table of Contents

1 Introduction . 1

1.1 Theses . 9

1.2 Position on the Market . 10

1.3 Conceptual Modeling with the Web Ontology Language 11

1.3.1 From networks to Description Logics 11

1.3.2 The SHOIN (D) Description Logic 18

1.3.3 XSD � XML Schema De�nition . 25

1.3.4 RDF � The Resource Description Framework 28

1.3.5 RDFS � The Resource Description Framework Schema 32

1.3.6 OWL � The Web Ontology Language 34

1.3.7 The CHIL OWL DL Ontology . 37

1.4 Interpretation of Object-Oriented Programming Languages 41

1.4.1 The untyped lambda-calculus . 42

1.4.2 The simply typed lambda-calculus 46

1.4.3 The simply typed lambda-calculus with subtyping 48

1.4.4 Properties of typing and subtyping 50

2 The Zhi# Compiler Framework . 53

2.1 The Zhi# Programming Language . 54

2.2 Architecture and Implementation . 56

2.3 Framework Extension Points . 63

2.3.1 Typing extension point . 64

iv

2.3.2 Program transformation extension point 65

2.4 Type System Cooperation . 73

2.5 Related Work . 76

2.6 Summary . 78

3 The λC-Calculus . 81

3.1 Facets . 82

3.1.1 Fundamental Facets . 82

3.1.2 Constraining Facets . 83

3.2 Type Derivation . 87

3.3 Subtyping . 89

3.4 Properties of the λC-Type System . 91

3.5 Type Inference . 92

3.6 Implementation . 94

3.7 Constraint Arithmetic . 97

3.8 Related Work . 101

3.9 Summary . 102

4 The CHIL OWL API . 105

4.1 The CHIL Knowledge Base Server . 107

4.1.1 Architectural model . 108

4.1.2 The CHIL OWL API . 113

4.2 A Formally Speci�ed OWL API . 120

4.2.1 Notational framework . 122

4.2.2 Examples . 126

v

4.2.3 The CHIL OWL API testing framework 128

4.3 Example Scenario Implementation . 133

4.4 Related Work . 134

4.4.1 O�-the-shelf ontology management systems 135

4.4.2 Knowledge base interface speci�cations 137

4.5 Summary . 138

5 XSD Aware Compilation � Types and. . . Constraints 141

5.1 Integrating XSD with the C# Programming Language 142

5.1.1 Referencing XML Schema De�nitions 143

5.1.2 Static typing . 145

5.1.3 Type inference . 156

5.1.4 Compilation to C# . 165

5.1.5 Dynamic checking . 168

5.2 Related Work . 170

5.3 Summary . 172

6 OWL Aware Compilation � Complex Data, Simple Code 175

6.1 Integrating OWL DL with the C# Programming Language 178

6.1.1 Referencing OWL DL Ontologies 178

6.1.2 Static typing . 181

6.1.3 Auxiliary properties and methods 195

6.1.4 Compilation to C# . 197

6.1.5 Dynamic checking . 200

6.2 Example Scenario Implementation . 207

vi

6.3 OWL and XSD . 209

6.4 Integration of the CHIL OWL API . 209

6.5 Related Work . 211

6.6 Summary . 215

7 Validation and Evaluation . 217

7.1 Technical Validation . 218

7.2 Microscopic Evaluation . 222

7.2.1 XML data types . 223

7.2.2 XML APIs vs. XML data types . 228

7.2.3 OWL concept constructors . 231

7.2.4 OWL role constructors and restrictions 251

7.2.5 OWL APIs vs. OWL types . 264

7.3 Macroscopic Evaluation . 280

7.3.1 OCL invariants in Zhi# . 282

8 Conclusion and Outlook . 291

8.1 Conclusion . 291

8.2 Outlook . 299

A The Zhi# Compiler Application . 303

B Zhi# External Program Transformation Functions 306

B.1 XSD Program Transformation Functions 307

B.2 OWL Program Transformation Functions 312

C The λC-Calculus . 321

vii

D XSD Type Inference Rules . 327

E XSD Compile-Time Arithmetic . 329

E.1 XSD Type Arithmetic . 329

E.2 XSD Constraint Arithmetic . 332

F CHIL OWL API Preconditions . 335

G The CHIL OWL API . 342

G.1 The ITellingABox Interface . 342

G.2 The IAskingABox Interface . 350

G.3 The ITellingTBox Interface . 354

G.4 The IAskingTBox Interface . 368

H Mapping of the CHIL OWL API . 377

H.1 The ITellingABox Interface . 378

H.2 The IAskingABox Interface . 382

H.3 The IAskingTBox Interface . 384

I Zhi# Syntax and Semantics . 387

I.1 Syntax . 388

I.2 Semantics . 390

I.2.1 XML Schema De�nition . 391

I.2.2 Web Ontology Language . 401

References . 407

viii

List of Figures

1.1 Two intersecting class hierarchies in a software system 2

1.2 Position on the market . 10

1.3 An example network . 13

1.4 The RDF triple . 28

1.5 A graph of two RDF statements . 28

1.6 An example UML diagram . 33

1.7 The Semantic Web stack . 37

2.1 Zhi# compiler framework . 57

2.2 Zhi# compiler plug-in . 58

2.3 Compilation of Zhi# programs . 59

2.4 Execution of Zhi# programs . 60

2.5 Zhi# compiler framework (class level) . 61

3.1 Architecture of the λC-type system implementation 95

3.2 λC-type pool . 97

3.3 λC-constraint arithmetic algorithm . 100

4.1 CHIL Knowledge Base Server components 108

4.2 CHIL Knowledge Base Server stand-alone application 111

4.3 CHIL Knowledge Base Server Eclipse plug-in 111

4.4 CHIL Knowledge Base Server architectural model 112

4.5 CHIL OWL API meta-level schema . 114

4.6 CHIL OWL API object-level schema . 120

ix

4.7 CHIL OWL API Hoare triple schema . 123

4.8 Basic precondition Pc-OwlApi-Declared-Concept 125

4.9 Formally speci�ed CHIL OWL API methods 126

4.10 Application of the Floyd-Hoare pre-strengthening rule 127

4.11 Application of the Floyd-Hoare sequencing rule 128

4.12 CHIL OWL API test case generation . 129

4.13 CHIL OWL API testing framework . 132

5.1 XSD aware compilation . 143

5.2 Autocompletion of XSD types . 145

5.3 Implicit subtype relationship between XSD types 147

5.4 XML data types in Zhi#programs . 148

5.5 XSD validation . 169

6.1 OWL aware compilation . 179

6.2 Protégé individual editor . 193

7.1 Code base size . 218

7.2 Zhi# compiler code base size . 218

7.3 Code base complexity . 219

7.4 Compilation time . 221

7.5 Context class for attribute invariants . 284

A.1 Zhi# server application . 304

A.2 Zhi# Eclipse-based frontend . 305

x

List of Tables

1.1 The basic Description Logic AL . 20

1.2 The Description Logic ALCR+ , extends AL (Table 1.1) 21

1.3 The Description Logic SHIF , extends ALCR+ (Table 1.2) 22

1.4 The Description Logic SHOIN (D) . 23

1.4 The Description Logic SHOIN (D) . 24

1.5 XSD constraining facets . 26

1.6 Untyped lambda-calculus (λ) . 42

1.7 Simply typed lambda-calculus (λ→) . 47

1.8 Simply typed lambda-calculus with subtyping (λ<:) 49

2.1 Zhi# comparison operators . 55

2.2 The IExternalTypeSystem extension point 64

2.3 The IExternalCompiler extension point . 66

3.1 Terminology of the λC-calculus . 82

3.2 Comparison operators for XSD . 84

3.3 S-CstrVSpace . 85

3.4 S-CstrWidth . 85

3.5 S-CstrDepth . 86

3.6 Td-CstrApp . 87

3.7 Td-Subs . 87

3.8 S-VSpace . 90

3.9 S-Width . 90

xi

3.10 S-Depth . 90

3.11 S-App . 91

3.12 Ti-IfAdd . 93

3.13 Ti-AssignRem . 93

4.1 CHIL OWL API element interpretations 115

4.2 CHIL OWL API exceptions . 117

4.3 Hoare logic axioms and rules . 122

4.3 Hoare logic axioms and rules . 123

4.4 SHOIN (D) metavariables . 124

4.5 O�-the-shelf ontology management systems 135

5.1 Isomorphic mappings between .NET and XSD types 147

5.2 Ti-IfAdd . 156

5.3 Ti-AssignRem . 156

5.4 Ti-ForAdd . 158

5.5 Ti-WhileAdd . 158

5.6 XSD built-in primitive types . 165

7.1 TBox used for comparison . 265

C.1 Constrained types calculus (λC) syntax . 321

C.1 Constrained types calculus (λC) syntax . 322

C.2 Constrained types calculus (λC) evaluation 323

C.3 Constrained types calculus (λC) typing . 324

C.4 Constrained types calculus (λC) subtyping 325

xii

C.4 Constrained types calculus (λC) subtyping 326

C.5 Constrained types calculus (λC) type derivation and substitution 326

D.1 Ti-IfAdd . 327

D.2 Ti-ForAdd . 327

D.3 Ti-WhileAdd . 327

D.4 Ti-AssignRem . 328

E.1 XSD type arithmetic . 329

E.1 XSD type arithmetic . 330

E.1 XSD type arithmetic . 331

E.2 XSD constraint materialization rules . 332

E.3 XSD constraint arithmetic rules . 333

E.3 XSD constraint arithmetic rules . 334

xiii

Danksagung

Diese Dissertation entstand während meiner Zeit als wissenschaftlicher Mitarbeiter und

Doktorand am Lehrstuhl Programmiersysteme am Institut für Programmstrukturen und

Datenorganisation (IPD) der Universität Karlsruhe (TH).

Ich bin meinem Doktorvater Professor Walter F. Tichy aufrichtig dankbar für sein

Vertrauen in meine Arbeit, für seine Geduld mit deren Fertigstellung und für lehrreiche

und vertrauensvolle Gespräche, die ich über den Nutzen für meine Arbeit hinaus als nicht

selbstverständlich sehr zu schätzen weiÿ.

Die endgültige Fertigstellung verdankt diese Arbeit der Bereitschaft von Professor

Peter H. Schmitt als Korreferent zur Verfügung zu stehen. Seine detailierten Anmerkun-

gen und wohlwollenden Worte waren mir eine groÿe Hilfe. Für die Begutachtung meiner

Arbeit durch Professor Peter H. Schmitt bin ich auÿerordentlich dankbar.

Eine erfolgreiche Disputation wurde mir ermöglicht durch Professor Rudi Studer und

Professor Ralf H. Reussner, die als Prüfer zur Verfügung standen, und Professor Frank

Bellosa als Mitglied des Promotionsausschusses der Fakultät für Informatik. Ich danke

Herrn Dekan Professor Heinz Wörn für die Leitung meiner Promotionsprüfung.

Auf aktuelle Semantic Web Technologien wurde ich erstmals aufmerksam gemacht

durch einen von Marc Schanne gehaltenen Vortrag im Rahmen einer Lehrstuhlklausurta-

gung auf Schloÿ Dagstuhl im Oktober 2002.

Für zuverlässige und gewissenhafte Beiträge zu meiner Arbeit und für das Erstellen

von Technologie-Demonstratoren danke ich sehr den hilfswissenschaftlichen Mitarbeitern

Tuan Kiet Bui, Stefan Mirevski, Ivan Popov und Jing Zhi Yue.

Meine Arbeit ist ein Beitrag zu dem integrierten europäischen Forschungsprojekt

�Computers in the Human Interaction Loop� (CHIL). Ich danke den Projekt-Kollegen

von allen 15 beteiligten Forschungseinrichtungen für hilfreiche Anmerkungen und die en-

gagierte und kollegiale Zusammenarbeit, die das CHIL-Konsortium zu allen Zeiten aus-

xiv

gezeichnet hat. Besonders danke ich Herrn Gerhard Sutschet und Dr. Kym Watson vom

Fraunhofer-Institut für Informations- und Datenverarbeitung (IITB) in Karlsruhe für ihre

Hilfestellungen bei der Durchführung des CHIL-Projekts. Besonderer Dank gebührt eben-

falls Dr. John Soldatos und Kostas Stamatis vom Athens Information Technology für eine

groÿartige Zusammenarbeit beim Einsatz meiner Arbeit im Rahmen des CHIL-Projekts

und der Durchführung von gemeinsamen Technologie-Demonstrationen im Rahmen der

CHIL Technology Days. Für seine Kommentare über die Programmierbarkeit von ontol-

ogischen Wissensbasen danke ich Dr. Jan Kleindienst, IBM Prag. Seine Anmerkungen

im Rahmen eines CHIL-Projekttre�ens waren letztlich der Auslöser für meine Arbeit.

Besonders dankbar bin ich den Veranstaltern des International Workshop on Software

Language Engineering 2007, Professor Dragan Ga²evi¢ von der Athabasca University in

Kanada und Professor Ralf Lämmel, damals Forscher bei Microsoft Research, für ihre

ermutigenden Kommentare und die Begleitung meiner Arbeit über den Workshop hinaus.

Meine Arbeit und meine Zeit als wissenschaftlicher Mitarbeiter wurden begleitet und

erleichtert von der groÿen Hilfsbereitschaft meines Kollegen Jürgen Reuter, die über eine

übliche kollegiale Zusammenarbeit immer weit hinausgereicht hat.

Mein Werdegang mit Studium der Informatik und schlieÿlich der Promotion wurde

mir ermöglicht von meinem Groÿvater und bestem Freund Karl Kirchner und meiner für-

sorglichen Groÿmutter Edith Kirchner. Ihnen habe ich alles zu verdanken. Ich bin meiner

Mutter Eva-Gabriele Lamsbach-Paar zutiefst dankbar für ihre selbstlose Unterstützung.

Ich bin schlieÿlich unendlich dankbar für die Unterstützung meiner lieben Frau Agnes.

Als Fachfrau im Bereich der angewandten Informatik und des wissenschaftlichen Arbeitens

verdanke ich ihr viele wertvolle Ratschläge. Ich danke ihr für ihr Verständnis für die vielen

Abende wo ich versprach, früher vom Institut nach Hause zu kommen und es dann doch

nicht tat. Ich danke ihr für ihren Zuspruch für meine Arbeit und ihre lieben Worte, die

mir stets Ermutigung und Ansporn zugleich waren. Liebe Agnes, ohne Deine Hilfe hätte

ich das Erreichte niemals gescha�t.

xv

Vita

10/2002�12/2008 Wissenschaftlicher Mitarbeiter am Institut für Programmstruk-

turen und Datenorganisation an der Universität Fridericiana zu

Karlsruhe (TH).

10/1999�07/2002 Hauptstudium Informatik (Diplom) an der Universität Frideri-

ciana zu Karlsruhe (TH).

08/2001�04/2002 Gaststudent an der University of California, Irvine, USA.

10/1997�09/1999 Grundstudium Informatik (Vordiplom) an der Technischen Uni-

versität Clausthal-Zellerfeld.

07/1996�06/1997 Grundwehrdienst beim Fallschirmpanzerabwehrbataillon 262 in

Merzig/Saar und an der Luftlande- und Lufttransportschule Al-

tenstadt in Oberbayern.

1996 Abitur am Gustav Stresemann Gymnasium in Bad Wildungen.

1977 Geboren am 21. Mai 1977 in Bad Wildungen, Deutschland.

Awards

11/2008 Silber- und Bronzemedaille beim ACM ICPC South Western

Europe Regional Contest als Trainer der Teams KAmaeleon

und Keine Ahnung.

07/2001 Ernennung zum Microsoft Certi�ed Trainer.

06/2001 Zweiter Platz bei der IEEE Computer Society International De-

sign Competition.

07/2000�07/2002 Stipendium des Freundeskreises der Fakultät für Informatik an

der Universität Karlsruhe (TH).

xvi

xvii

Publications

Searching and Using External Types in an Extensible Software Development Environment

2nd International Workshop on Search-driven development: Users, Infrastructure, Tools,

and Evaluation (SUITE 2010), Cape Town, South Africa, 2010.

Ontological Modeling and Reasoning. Computers in the Human Interaction Loop, Human-

Computer Interaction Series, Springer Verlag London, 2009.

Zhi# � Programming Language Inherent Support for Ontologies. 4th International Work-

shop on Software Language Engineering (ateM 2007), Nashville, TN, USA, 2007.

A Formally Speci�ed Ontology Management API as a Registry for Ubiquitous Comput-

ing Systems. The International Journal of Arti�cial Intelligence, Neural Networks, and

Complex Problem-Solving Technologies (Applied Intelligence), Springer Verlag, 2007.

Programming Language Inherent Support for Constrained XML Schema De�nition Data

Types and OWL DL. 21st IEEE/ACM International Conference on Automated Software

Engineering (ASE 2006), Tokyo, Japan, 2006.

A Formally Speci�ed Ontology Management API as a Registry for Ubiquitous Computing

Systems. 3rd IFIP Conference on Arti�cial Intelligence Applications and Innovations

(AIAI 2006), Athens, Greece, 2006.

A Pluggable Architectural Model and a Formally Speci�ed Programming Language In-

dependent API for an Ontological Knowledge Base Server. 1st Australasian Ontology

Workshop (AOW 2005), Sydney, Australia, 2005.

An Ontology-based Framework for Dynamic Resource Management in Ubiquitous Com-

puting Environments. 2nd International Conference on Embedded Software and Systems

(ICESS 2005), Xi'an, P.R. China, 2005.

xviii

Zhi#: Programming Language Inherent Support for XML Schema De�nition. 9th IASTED

International Conference on Software Engineering and Applications (SEA 2005), Phoenix,

AZ, USA, 2005.

Semantic Software Engineering Tools. 18th Annual ACM SIGPLAN Conference on Ob-

ject Oriented Programming Systems, Languages, and Applications (OOPSLA 2003), Ana-

heim, CA, USA, 2003.

xix

Abstract

ZHI# � PROGRAMMING LANGUAGE INHERENT

SUPPORT FOR ONTOLOGIES

by

Alexander Paar

Universität Karlsruhe (TH), 2009

Widely used object-oriented programming languages such as Java or C# include a built-in

static type system. Programming language type systems provide a conceptual framework

that makes it particularly easy to design, understand, and maintain object-oriented sys-

tems. However, with the emergence of a variety of schema and ontology languages such

as XML Schema De�nition (XSD) or the Web Ontology Language (OWL) conventional

built-in programming language type systems have reached their limits. In XSD, atomic

types can be derived through the application of value space constraints. In OWL, types

are inferred based on ontological reasoning. OWL object properties can be used to declare

ad hoc relationships between ontological individuals.

In this work, an extensible compiler framework is presented that facilitates the coop-

erative usage of external type systems such as XSD and OWL, which depend on external

classi�cation and deduction engines, with C#. For the resulting programming language

Zhi#, XSD and OWL compiler plug-ins were implemented in order to provide static

typing and dynamic checking for constrained atomic data types and ontologies. XSD

constraining facets and ontological inference rules were integrated with host language fea-

tures such as method overriding. Zhi# programs are compiled into conventional C# and

are interoperable with .NET assemblies. The proposed solution eases the development

of Semantic Web applications and facilitates the use and reuse of knowledge in form of

ontologies. Further compiler plug-ins may be implemented to provide for additional type

systems such as of the Object Constraint Language (OCL).

xx

Zusammenfassung

ZHI# � PROGRAMMING LANGUAGE INHERENT

SUPPORT FOR ONTOLOGIES

von

Alexander Paar

Universität Karlsruhe (TH), 2009

In weit verbreiteten objekt-orientierten Programmiersprachen wie Java oder C# werden

Typprüfungen zur Übersetzungszeit vorgenommen. Statische Typsysteme bieten ein Rah-

menwerk, das den Entwurf, das Verständnis und die Wartung objekt-orientierter Systeme

vereinfacht. Ebenfalls können bestimmte Laufzeitfehler bereits zur Übersetzungszeit aus-

geschlossen werden. Mit dem Aufkommen von Schemasprachen wie XML Schema Def-

inition (XSD) oder Ontologie-Beschreibungssprachen wie der Web Ontology Language

(OWL) werden jedoch die Grenzen von konventionellen statischen Typsystemen sicht-

bar. Von atomaren XML-Datentypen kann mittels Einschränkung ihres Wertebereichs

abgeleitet werden. In OWL werden ontologische Schlussfolgerungen für die Typinferenz

verwendet. Mit OWL Objekt-Eigenschaften können ad hoc-Beziehungen zwischen onto-

logischen Individuen deklariert werden.

In dieser Arbeit wird ein erweiterbares Compiler-Framework vorgestellt, das die ko-

operative Nutzung von externen Typsystemen wie XSD und OWL, die auf externen

Klassi�kations- und Deduktionsmechanismen beruhen, in der Programmiersprache C#

vereinfacht. Für die in dieser Arbeit neu entwickelte Programmiersprache Zhi# wurden

XSD- und OWL-Plugins implementiert, die erstmalig statische Typprüfung für eingeschrän-

kte atomare XML-Datentypen und eine Kombination von statischer und dynamischer

Typprüfung für Ontologien bieten. In Zhi# sind Einschränkungsprimitive von XSD und

ontologische Schlussfolgerungsregeln mit Sprachkonstrukten und Techniken der Program-

miersprache C# wie z.B. dem Überschreiben von Methoden integriert. Zhi#-Programme

xxi

werden in C# übersetzt und sind interoperabel mit .NET-Assemblies. Die vorgeschlagene

Lösung vereinfacht die Entwicklung von Semantic Web-Anwendungen und erleichtert die

Nutzung und Wiederverwendung von Wissen in Form von Ontologien.

Das Zhi#-Compiler-Framework erweitert Sprachkonstrukte und Techniken der Pro-

grammiersprache C# um externe Typisierungsmechanismen wie z.B. Typinferenz, Sub-

sumption und Ableitung. Insbesondere werden eingeschränkte atomare Datentypen und

Typinferenz basierend auf Kontroll- und Daten�ussanalyse unterstützt. Unterstützung

für externe Typsysteme wird von Compiler-Plugins bereitgestellt. Kooperation zwischen

externen Typsystemen und zwischen externen Typsystemen und dem .NET-Typsystem

wird mittels Delegation erreicht; jeder Teilausdruck wird von dem jeweils zuständigen Plu-

gin überprüft und übersetzt. Die Architektur des Zhi#-Compiler-Frameworks mit zwei

wohlde�nierten Erweiterungspunkten für Typprüfung und Übersetzung ermöglicht die

Implementierung von Plugins ohne vollständige Kenntnis der Grammatik der Program-

miersprache C#. Ebenfalls ist innerhalb des Compiler-Frameworks kein a priori-Wissen

über externe Typsysteme notwendig. Im Gegensatz zu naiven Ansätzen, die auf der Ein-

führung von Wrapper-Klassen für externe Typde�nitionen basieren, ist der Mehraufwand

kompilierter Zhi#-Programme konstant und wächst nicht mit der Anzahl importierter

externer Typen.

XML-Datentypen können von eingebauten XSD-Typen durch die Anwendung von

lexikalischen und Wertebereichs-Einschränkungsprimitiven abgeleitet werden. In dieser

Arbeit wird eine Erweiterung des einfach typisierten Lambda-Kalküls mit Untertypen

(λ<:) für eingeschränkte atomare Datentypen vorgestellt. Die Typsicherheit des entwi-

ckelten λC-Typsystems wurde bewiesen auf Grundlage des Korrektheitsbeweises des λ<:-

Kalküls. Das λC-Typsystem wurde vollständig in Java und C# implementiert. Insbeson-

dere wurden diese Schnittstellen des λC-Typsystems für das XML Schema De�nition-

Typsystem implementiert sodass Typde�nitionen aus XSD-Dateien geladen und diese

Typen in einer Hierarchie klassi�ziert werden können.

xxii

Die Implementierung des λC-Typsystems bildet die Grundlage des Zhi#-Compiler-

Plugins für XML Schema De�nition. Das XSD-Compiler-Plugin bietet statische und dy-

namische Typprüfung für XML-Datentypen. Zur Übersetzungszeit werden die Typen von

atomaren XML-Objekten entsprechend den Regeln des λC-Typsystems überprüft. Ins-

besondere ist der Zhi#-Compiler in der Lage, Auskunft zu geben, welche Einschränkungs-

primitive genau von einer Zuweisung verletzt werden anstatt nur eine generelle Inkompa-

tibilität festzustellen. XML-Datentypen können mit Sprachkonstrukten und Techniken

der Programmiersprache C# wie z.B. dem Überschreiben von Methoden, benutzerde�nier-

ten Operatoren und dynamischen Typprüfungen verwendet werden. Das XSD-Compiler-

Plugin folgert die Typen von Variablen auf Grund von Kontroll- und Daten�ussanalyse.

Die Typinferenz-Regeln für if -Anweisungen im λC-Kalkül wurden ergänzt um Regeln

für for - und while-Anweisungen in Zhi#-Programmen. Die Typinformation von Lit-

eralen wird aus den Literal-Werten gefolgert. Die Typen von binären Ausdrücken werden

auf Grundlage einer Einschränkungs-Arithmetik für XML Schema De�nition berechnet.

Die erzeugten C#-Programme enthalten Anweisungen für dynamische Typprüfungen, um

Modi�kationen der XML-Schemata auch nach der Kompilierung und eine sichere Verwen-

dung von Zhi#-Assemblies mit konventionellen .NET-Programmen zu ermöglichen.

Ontologische Daten werden in Wissensbasen verwaltet, auf die ontologische Schlussfol-

gerungen angewandt werden. Dazu wird in dieser Arbeit eine erweiterbare Architektur

einer ontologischen Wissensbasis vorgestellt. Der CHIL Knowledge Base Server kann

verwendet werden, um existierende Wissensdatenbanken zu adaptieren. In der gegen-

wärtigen Implementierung wird das Jena Semantic Web Framework, kon�guriert mit

dem Pellet OWL DL-Schlussfolgerer und Speicher- und Datenbank-gestützten Ontologie-

Modellen, adaptiert. Der CHIL Knowledge Base Server implementiert die formal spezi-

�zierte CHIL OWL API, die auf Grundlage einer Kombination von Floyd-Hoare-Logik und

Beschreibungslogik-Terminologie de�niert wurde. Floyd-Hoare-Logik-Regeln können auf

die API-Spezi�kation angewandt werden, um auf der Metaebene E�ekte von Operationen

auf verwalteten Ontologien schlusszufolgern. Ergänzend zu der formalen Spezi�kation ist

xxiii

die De�nition der CHIL OWL API als XML-Instanzdokument gegeben. Diese Beschrei-

bung wurde verwendet, um automatisch Regressionstestcode für den CHIL Knowledge

Base Server, XML-über-TCP-Server-Komponenten und eine Reihe von Klienten-Kompo-

nenten für Programmiersprachen wie z.B. Java, C# und C++ zu erzeugen. Die CHIL

OWL API umfasst 91 formal spezi�zierte Methoden und 32 technische Hilfsfunktionen.

Das Zhi#-Compiler-Plugin für OWL DL implementiert eine Kombination von stati-

scher und dynamischer Typprüfung für ontologische Konzeptbeschreibungen. Die Exis-

tenz referenzierter ontologischer Konzepte und Rollen wird zur Übersetzungszeit über-

prüft. Teil der statischen Typprüfung ist auÿerdem die Überprüfung von disjunkten

Konzeptbeschreibungen und Kardinalitätseinschränkungen und disjunkten De�nitions-

und Zielbereichs-Einschränkungen ontologischer Rollen. In Zhi# werden De�nitions- und

Zielbereichs-Einschränkungen ontologischer Rollen für automatisches Schlussfolgern ver-

wendet und ermöglichen die Deklaration von ad hoc-Beziehungen. Mit dem checked -

Operator kann Verhalten wie in Frame-basierten Wissensrepräsentationen erzwungen wer-

den. Deklarierte RDF-Typen von ontologischen Individuen in Zhi#-Programmen werden

zur Programmlaufzeit überprüft. Formale Hilfseigenschaften ontologischer Individuen,

Rollen und statischer Konzeptreferenzen in Zhi#-Programmen erleichtern Aufgaben wie

z.B. die Abfrage aller Individuen in der Erweiterung einer gegebenen Konzeptbeschrei-

bung oder die Au�istung aller RDF-Typen eines gegebenen Individuums. Ontologische

Schlussfolgerungen wurden integriert mit C#-Sprachkonstrukten wie dem is-Operator,

der nun auch für dynamische Typprüfung von ontologischen Individuen verwendet werden

kann. Ontologische Konzeptbeschreibungen können für formale Parameter von Methoden,

benutzerde�nierten Operatoren und Indexern verwendet werden. Das OWL-Compiler-

Plugin kann kooperativ mit dem XSD-Compiler-Plugin genutzt werden, um OWL-Daten-

typ-Eigenschaften zu unterstützen.

Die Zhi#-Entwicklungshilfsmittel umfassen den Zhi#-Compiler (siehe Abb. A.1) und

ein Eclipse-basiertes Frontend mit u.a. einem Zhi#-Editor mit Syntaxhervorhebung und

Autovervollständigung (see Abb. A.2).

xxiv

xxv

CHAPTER 1

Introduction

In recent years, Semantic Web technologies such as RDF(S) [MM04, BG04b], DAML+OIL

[HHP01], and their common Description Logics [BCM03] based successor OWLDL [MH04a]

have paved the way for standardized formal conceptualizations of all kinds of knowledge.

Numerous ontologies have been developed to conceptualize a plethora of domains of dis-

course [DAM04, Pro08]. Corporations from all sectors have braced to de�ne company

speci�c knowledge using Semantic Web technologies. Ontology engineering has become a

business model for a number of companies. As the underlying standards have matured,

tools for ontology engineering have emerged both in commercial as well as in academic

�elds. Knowledge acquisition systems such as Protégé [Sta06] make it particularly easy

to construct domain ontologies and to enter data. Ontology management systems such as

HP Labs' Jena [HP 04] can be used for loading ontologies from �les and via the Internet

and for creating, modifying, querying, and storing ontologies. Inference engines such as

RACER [MH04b] and Pellet [Pel06] provide support for query answering. There is a

growing set of tools, projects, and applications for ontology languages such as OWL.

However, processing ontological information programmatically is still laborious and

error-prone. From the author's experience, this is mainly caused by the de�cient in-

tegration of XML Schema De�nition based type de�nitions, which may be the range

of OWL datatype properties, and terminological knowledge in form of ontologies with

widely used object-oriented programming languages. Neither compilers nor integrated

development environments for existing object-oriented programming languages are aware

of XML data type de�nitions and OWL concept descriptions. Up to now, ontologi-

1

cal concepts, roles, and individuals can only be used via ontology management systems

[HP 04, Pel06, MH04b, Mot06], which merely provide APIs that have to be used in an

explicit manner. Using generic APIs to address elements of an ontology prevents any of

the handy features that programmers are accustomed to for programming language class

de�nitions. In particular, there is no autocompletion and no type checking for XML data

types and ontological concept descriptions in programming languages such as Java or

C#. The burden to wisely manipulate ontological data is put on the programmer. This

problem is even more evident since software systems are usually composed of two distinct

class hierarchies as depicted in Fig. 1.1.

Figure 1.1: Two intersecting class hierarchies in a software system

One class hierarchy comprises knowledge about a problem domain in form of concepts

of an ontology (i.e. domain speci�c concepts such as, for example, Product, Price, and

Invoice in a business application) whereas the other one comprises classes that make up

the technical framework of a software application (e.g., classes such as System.IO.File

or System.Console). In order to handle both class hierarchies in one UML class model,

technologies such as OMG's Ontology De�nition Metamodel (ODM) [Obj05b] aim to

2

represent both models � the technical and the domain speci�c one � in the same MOF

[Obj05a] modeling space. Thus, on the meta-level, ontologies and UML class models may

be related to each other in one uni�ed model, which even includes a certain degree of

MOF-based static data type analysis.

Still, once the ontological and technical parts of the uni�ed model are transformed

into an ontology markup and a programming language, respectively, the uni�ed model

again falls apart into two distinct class hierarchies. Important parts of the conceptual-

ization (i.e. the ontology) may then be (re-)de�ned as an integral part of the otherwise

technical class hierarchy of the application with no respect to the actual ontology. For

example, an ontology may de�ne a concept Person whereas at the same time there may

be a programming language class Person with identical semantics de�ned in a program's

source code. This redundant class de�nition may arise from the need to have a proxy

class for the ontological concept or from the unawareness of the identical concept de�-

nition in the ontology. As a consequence, it is particularly di�cult to make sure that

the application adheres to the conceptualization as de�ned in the ontology and to tell

where in the program those ontological concepts are referenced. Rede�ning equivalent

concepts or disregarding conceptual type information makes it impossible to e�ciently

share data among di�erent components in a distributed software system and results in a

lack of available ABox reasoning.

Even if ontological and technical classes are declared in the same model, ontological

concepts and programming language classes reveal di�erent behavior in terms of type

inference, concept subsumption, and modeling features.

In statically typed object-oriented programming languages such as C#, properties are

declared as class members. The domain of a property corresponds to the type of the

containing host object. Only instances of the domain type can have the declared prop-

erty. The range of a property (i.e. class attribute) is given by an explicit type declaration.

This type declaration is authoritative, too. All objects that are declared to be values of a

3

property must be instances of the declared type. For ontological concepts and properties,

which are subject to automatic reasoning, domain and range restrictions are interpreted

di�erently. In contrast to C#, in OWL ontologies, property assignments do not fail im-

mediately. Instead, the reasoner considers the declared piece of knowledge for subsequent

deduction steps. If an ontological property relates an individual to another individual,

and the property has a class as its range, then the other individual is inferred to belong to

this range class. For example, the property hasChild may be stated to have the range of

Human. From this a reasoner can deduce that if Alice is related to Bob by the hasChild

property (i.e., Bob is the child of Alice), then Bob is a Human. In the same way, if

hasChild is stated to have the domain Parent, the reasoner can deduce that Alice is a

Parent. These di�erent property domain and range semantics alone make it particularly

di�cult � if not impossible � to simply substitute an OWL ontology by an isomorphic set

of C# wrapper classes.

Erik Meijer and Peter Drayton note that �at the moment that you de�ne a [program-

ming language] class Person you have to have the divine insight to de�ne all possible

relationships that a person can have with any other possible object or keep type open�

[MD04]. In contrast, OWL properties form a hierarchy of their own, which can be ex-

tended independently of the concept hierarchy. Thus, OWL properties facilitate ad hoc

relationships between objects that may not have been foreseen when a concept was de-

�ned. The Zhi# programming language provides the power of the �.� to access such

properties of ontological individuals using normal member access. Members can be added

on a per instance basis by declaring OWL property values for ontological individuals.

Processing OWL data implicitly requires the use of constrained1 atomic XML Schema

De�nition data types [BM04b], which may be the range of OWL datatype properties.

1In this work, the term �constrained types� refers to atomic data types that represent a value space,
which may be constrained by explicitly de�ned constraining facets (e.g., xsd:minExclusive). This is
di�erent to constraint-based type inference algorithms found in the literature where constraints are not
checked but rather recorded for later consideration.

4

For example, an ontological concept Person may have de�ned a property hasAge of type

xsd#unsignedInt2. This type could be mapped to the C# data type System.UInt32.

If, however, the XML schema de�ned a further constrained atomic data type such as

unsignedIntLessThan110 in order to constrain possible hasAge values of a Person to rea-

sonable values less than 110, there would be no appropriate C# data type with a value

space that comprises integer values between 0 and 110. Instead, assignments to objects

of type System.UInt32 would have to be explicitly checked to be schema valid. An XML

instance document � or in this case an instance of a constrained atomic data type � is said

to be a valid instance of a schema if there is an XML schema given, and the content of

the XML instance document � or of the data type value � conforms to the content model

as de�ned in the schema. Up to now, schema validation has been particularly error-prone

since there is no isomorphic mapping between XML data types and programmatic data

types.

In this work, the Zhi#3 programming language is presented that implements program-

ming language inherent support for atomic XML Schema De�nition data types and the

Web Ontology Language OWL DL. The objective of this work is to make constrained

XML data types and ontological concept and role de�nitions �rst class citizens of a con-

ventional object-oriented programming language and to automate tedious validation and

type checking tasks.

The Zhi# programming language is a pluggable extension of ECMA standard C# 1.0

[HWG02]. XML and OWL compiler components can be activated to operate separately

with standard C# code or to cooperate. External types can be included using the keyword

import, which permits the use of external types in a Zhi# namespace.

1 import XML xsd = http ://www.w3 . org /2001/XMLSchema ;

2 import OWL owl = http ://www.w3 . org /2002/07/ owl ;

2In this work, the XML pre�xes xs and xsd are bound to the XML Schema De�nition namespace
http://www.w3.org/2001/XMLSchema.

3Zhi (Chinese): Knowledge, information, wisdom.

5

The Zhi# compiler framework supports the usage of arithmetic (+, -, *, /, &, |, � , %),

relational (>=, >, ==, <, <=), and logical (&&, ||) operators with external types. The

dot operator '.' can be used to access members of external types. Types of di�erent

type systems may be used cooperatively in one single statement. For example, a .NET

System.Int32 variable can be assigned an XML data type value age, which may be de�ned

as a property value of an instance of the ontological concept Person.

1 #ont#Person Al i c e = [. . .] ;

2 i n t i = Al i c e .#ont#hasAge ;

In Zhi#, external type de�nitions can almost unrestrictedly be used with almost all

C# programming language features (since Zhi#'s support for external types is a language

feature and not (yet) a feature of the runtime, similar restrictions to the usage of external

types apply as for generic type de�nitions in the Java programming language). For ex-

ample, methods can be overridden using external types, user de�ned operators can have

external input and output parameters, and arithmetic and logical expressions can be built

up using external objects.

As detailed in Sections 2.5, 5.2, and 6.5 there have been a number of prior systems

to provide programming language inherent support for XML Schema De�nition and to

extend a host language with pluggable type systems. The Zhi# approach is distinguished

by a combination of features that is targeted to make external type systems available in

an object-oriented programming language using conventional object-oriented notation.

• The Zhi# compiler framework provides two extension points that can be used to

implement type checking and program transformation capabilities for external type

systems. The interfaces of both extension points are for the most part context free

with respect to the code structure of C# programs. A compiler plug-in for an

external type system can therefore be implemented without exhaustive knowledge

about the syntax of the C# programming language.

6

• Both XML Schema De�nition type de�nitions and Web Ontology Language con-

cept descriptions require type system speci�c classi�ers to compute the subsump-

tion hierarchies of data types and concepts. Additionally, ontology management

systems include a deduction component that can make implicit knowledge explicit

(i.e. automatic reasoning). The Zhi# compiler framework is tailored to facilitate

the integration of such external classi�er and reasoner components with the type

checking of Zhi# programs.

• Because XML data types are inductively de�ned through their value spaces (the

set of values for a given data type) it makes sense to infer the possible values that

an expression in a program can have at runtime. The Zhi# compiler framework

facilitates the implementation of type inference based on control and data �ow

analysis. The XSD compiler plug-in implements control and data �ow based type

inference plus a constraint arithmetic to infer the types of binary expressions that

relate constrained atomic data types.

• Zhi#'s OWL compiler plug-in makes the property centric modeling features of the

Web Ontology Language available via C#'s object-oriented notation (i.e. normal

member access). The power of the �.� can be used to declare ad hoc relationships

between ontological individuals and to declare members on a per instance basis.

• The number of the created proxy classes for XSD type de�nitions and OWL concept

descriptions is constant and does not depend on the number of imported XML data

types and OWL concept descriptions.

• The Zhi# compiler framework and its XSD and OWL compiler plug-ins were fully

implemented in C#. An Eclipse-based frontend was implemented including an

editor with syntax highlighting and autocompletion.

Existing approaches in the �eld of programming language support for external schema

languages such as XML Schema De�nition simply map XSD type de�nitions to plain

7

C# (or Java) types. Thereby, only generic incompatibilities between types based on

the generated wrapper classes can be reported at compile time. As a consequence, the

resulting compiler messages are very imprecise (e.g., in the case of constrained XML

data types). For ontology markup languages such as the Web Ontology Language, the

typing rules of object-oriented programming languages are completely inapt. In contrast,

the Zhi# compiler framework can be extended with relevant type checking and program

transformation capabilities in order to provide concise type system-speci�c compile-time

support for external schema and ontology languages. Depending on how external type

references in Zhi# programs are transformed into conventional C# code, it is also possible

for external compiler plug-ins to provide for dynamic type checking as well.

The outline of this work is as follows. The remaining sections of this introductory

chapter describe the developments that led from semantic networks to the Description

Logic SHOIN (D), from the early implementations of SGML to XML, and from the

combination of these technologies and the Resource Description Framework to the Web

Ontology Language (OWL DL). Also, fundamental type system properties are illustrated

by the simply typed lambda calculus with subtyping. Chapter 2 describes the techni-

cal aspects of the Zhi# compiler framework, which was extended with XML and OWL

compiler plug-ins. The XML and OWL plug-ins are based on the constrained types

calculus discussed in Chapter 3 and on the CHIL OWL API elucidated in Chapter 4,

respectively. Chapter 5 describes the integration of constrained types with conventional

C# programming language features such as method overloading and overriding. Chapter

6 discusses the di�erences between ontologies and statically typed object-oriented pro-

gramming languages. It will be shown how Zhi#'s static and dynamic checking of OWL

concept descriptions and ontological roles contributes to the terminological validity of

modi�cations of assertional ontological data. Chapter 7 indicates the applicability and

usefulness of the presented approach. Chapter 8 summarizes the accomplished results and

outlines future work on programming language inherent support for ontologies. Related

work is discussed at the end of each chapter.

8

1.1 Theses

Thesis 1 The compiler of a general purpose object-oriented programming language can

be made extensible to typing and subtyping mechanisms of a priori unknown external

domain-speci�c type systems.

(i) Constraint-based type derivation and value space-based subtyping of atomic data types as

in the XML Schema De�nition type system can be made �rst class citizens of a general

purpose object-oriented programming language.

(ii) Ontological concept descriptions, role de�nitions, and reasoning can be integrated with the

type checking of a general purpose object-oriented programming language.

(iii) Object-oriented notation is su�cient to manipulate the assertional knowledge of Descrip-

tion Logic knowledge bases.

(iv) No a priori knowledge about the external type systems is required in the compiler framework

and no exhaustive knowledge about the host language grammar is required to implement

compiler plug-ins for external type systems.

Thesis 1 will be validated by a working implementation of the extensible Zhi# compiler.

Two compiler plug-ins will augment the complete safe (i.e. managed) fragment of ECMA

334 standard C# version 1.0 with static typing and dynamic checking for XML data

types, OWL DL concept descriptions, and ontological roles.

Thesis 2 The Zhi# solution eases the development of Semantic Web applications and

promotes the use and reuse of knowledge in form of data type schemas and ontologies.

(i) The integration of constrained atomic data types with a general purpose object-oriented

programming language reduces the number of runtime validation errors for XML data types.

(ii) The integration of ontological reasoning with a general purpose object-oriented programming

language facilitates the use of OWL DL concept descriptions and ontological roles.

Thesis 2 will be microscopically and macroscopically validated in order to demonstrate

the ease of use and the practicability of the novel Zhi# programming language features.

9

1.2 Position on the Market

In 1959, Peter Drucker coined the term knowledge worker [Dru93]. A knowledge worker is

someone who works primarily with information or one who develops and uses knowledge

in the workplace. Nowadays the term particularly includes those in the information

technology �elds, such as computer programmers. It was Peter Drucker, too, who declared

business value as the proper goal of a �rm. Especially, a �rm should create business value

for customers, employees (especially knowledge workers), and distribution partners. In

this work, a solution is presented that provides business value to knowledge workers (i.e.

computer programmers) by facilitating the development of Semantic Web applications,

which generate and process ontological data.

Figure 1.2: Position on the market

The Zhi# solution improves the ease-of-use of existing ontology management systems

and should be of interest to anyone who develops Semantic Web applications. Every-

one who uses OWL APIs to programmatically modify and query ontological knowledge

bases will greatly bene�t from the convenient notation and the improved type checking

that Zhi# provides for XML data types and OWL concept descriptions. XML Schema

De�nition data types and ontological concept descriptions can be used natively in Zhi#

programs. Programmers do not need to use tedious and error-prone ontology management

APIs or generate a host of proxy classes anymore. Zhi# programs are interoperable with

conventional .NET assemblies and can be used concurrently with API-based knowledge

10

base clients, which allows for a smooth migration of an existing code-base. Eventually,

the Zhi# solution reduces the dependency on particular OWL APIs. Even for compiled

Zhi# programs the Zhi# runtime library can be substituted to utilize di�erent ontology

management systems.

1.3 Conceptual Modeling with the Web Ontology Language

The main purpose of the Zhi# programming language, which is described in this work,

is to make it particularly easy to process ontological knowledge in form of OWL DL

knowledge bases. This chapter addresses the theoretical work in Description Logics and

the foundations of XML Schema De�nition and of the Resource Description Framework

that have led to the development of the Web Ontology Language (OWL). In particular,

this chapter is to motivate the application of the Description Logics based Web Ontology

Language (OWL DL) as a formalism to express knowledge.

1.3.1 From networks to Description Logics

This subsection summarizes the emergence of Description Logics from earlier technologies

that had previously been used to model knowledge. Also, shortcomings of older e�orts

are described followed by a brief introduction to the syntax and the basic features of

the Description Logic SHOIN (D), which constitutes the formal foundation of the Web

Ontology Language (OWL DL).

As of today, Knowledge Representation (KR) as a �eld of Arti�cial Intelligence refers

to methods for providing formal high-level descriptions of a domain of discourse that

are epistemologically and computationally adequate to build intelligent applications. In

particular, a knowledge representation language must be expressive enough to model all

required arguments of the domain of discourse. While providing the necessary repre-

sentational adequacy, a knowledge representation system must also be computationally

11

e�ective [Sow91]. It should not only specify how single fragments of knowledge are to be

expressed but also how the complete knowledge base as a whole is to be structured to re-

trieve relevant information easily and to make it particularly e�cient to apply a reasoner

to automatically infer implicit consequences from explicitly represented knowledge.

In the 1960s, network based notations � often based on graphical interfaces � were

among the �rst knowledge representation schemes to be developed. In contrast to logic-

based knowledge representation formalisms, in non-logical approaches, knowledge used

to be represented by means of some ad hoc data structures where reasoning was accom-

plished by similarly application speci�c and informal procedures. Both semantic networks

[Qui67] and frames [Min81] are incarnations of such specialized notations in a sense that

sets of individuals and their relationships are represented by the structure of a network.

Network-based approaches boast intuitive cognitive notion and user-centric origin, which

derived from experiments on recall of human memory. In the �rst place, most networked-

based systems used to behave rather di�erently despite similar graphical and syntactical

components. A huge step towards providing sound semantics to graphical representation

structures was the identi�cation of hierarchical structures as in monotonic inheritance

networks [Bra77, Bra79]. A pictorial representation of a simple terminology is given in

Fig. 1.3. The link between Person and Age says that �A person has an age�. The �is-a�

relationship between Philosopher and Person says that �A philosopher is a person�. Con-

sequently, one can infer that a Philosopher has an Age since it inherits all properties of

the more general concept Person.

A further step to improve the ease of representation and the e�ciency of reasoning

was the recognition that it is possible to translate a semantic network into �rst-order

predicate calculus [Hay79, Cha81]. Nodes of a semantic network can be characterized

as unary predicates. Binary predicates can denote relations between classes or sets of

individuals. It even turned out that only fragments of �rst-order logic are required to

cover both frames and semantic networks [BL85].

12

Figure 1.3: An example network

The �rst approaches to logic-based knowledge representation developed in the 1970s.

Logic-based formalisms mostly employed variants of �rst-order predicate calculus where

reasoning amounts to verifying logical consequence. First-order logic is an extension of

propositional logic, which formulates the logic of mathematical objects called propositions.

In propositional logic, these objects are represented in formal deduction systems called

propositional calculi whose atomic formulas are propositional variables. A propositional

calculus is a formal system L = (A,Ω, Z, I). The alpha set A is a �nite set of the

most basic elements of the formal language L called proposition symbols or propositional

variables. The omega set Ω is a �nite set of elements called operator symbols, which is

typically partitioned into two disjoint subsets Ω1 = {¬} and Ω2 = {∧,∨,→,↔}. The

zeta set Z is a �nite set of inference rules that can be used to derive logically equivalent

expressions from a given expression. The iota set I is a �nite set of initial points that are

called axioms. The set of well-formed formulas L is recursively de�ned as follows.

1. Any element of the alpha set A is a formula of L.

2. If p is a formula, then ¬p is a formula.

3. If p and q are formulas, then (p ∧ q), (p ∨ q), (p→ q), and (p↔ q) are formulas.

4. Nothing else is a formula of L.

13

Complex formulas can be constructed by repeated application of these four rules. For

example, by rule 1 p is a formula, by rule 2 ¬p is a formula, by rule 1 q is a formula, and

by rule 3 (¬p→ q) is a formula.

Given a set of formulas that are assumed to be true other true formulas can be derived

using the inference rules shown below. With the �rst eight non-hypothetical rules certain

well-formed formulas can simply be produced from other well-formed formulas. The last

two rules use hypothetical reasoning, which temporarily assumes a possibly unproven

hypothesis to be part of the set of inferred formulas to see if certain other formulas can

be inferred.

1. Double negative elimination: From ¬¬p, infer p.

2. Conjunction introduction: From p and q, infer (p ∧ q).

3. Conjunction elimination: From (p ∧ q), infer p; from (p ∧ q), infer q.

4. Disjunction introduction: From p, infer (p ∨ q); from q, infer (q ∨ p).

5. Disjunction elimination: From (p ∨ q), (p→ r), (q → r), infer r.

6. Bi-conditional introduction: From (p→ q), (q → p), infer (p↔ q).

7. Bi-conditional elimination: From (p ↔ q), infer (p → q); from (p ↔ q), infer

(q → p).

8. Modus ponens: From p, (p→ q), infer q.

9. Conditional proof: If accepting p allows a proof of q, infer (p→ q).

10. Reductio ad absurdum: If accepting p allows a proof of q and a proof of ¬q, infer

¬p.

Propositional logic is decidable. A sentence can be shown to be a tautology by devising

a truth table; the formula is a tautology if every assignment of truth values makes it true.

14

It is, though, not known whether this method is e�cient. The equivalent problem to show

that a formula is satis�able is a canonical example of an NP-complete problem. In any

case, propositional logic only sets out the features of very elementary kinds of propositional

reasoning. For example, it cannot be used to work out the logical connections of the

following argument.

Some men are philosophers. All philosophers seek wisdom.
Some men seek wisdom.

In propositional logic, this argument would be a sequence of three distinct simple

sentences, which would not be related to each other. The reason for this is that the con-

nections between the simple statements are due to the fact that the predicate philosopher

of the �rst premise �Some men are philosophers� occurs as a subject in the second premise

�All philosophers seek wisdom�. Propositional logic lacks features to express such kinds

of connections.

In �rst-order predicate calculus, atomic formulas are predicates with one or more

subjects such as P (s1, . . . , sn), which, in contrast to propositional calculi, can be related

to each other via quanti�cation. Where φ is any sentence, the new constructions ∀x � φ

and ∃x � φ, read �for all x, φ� and �for some x, φ�, are introduced. Quanti�ers make it

possible to say for how many individuals a particular statement is true. The universal

quanti�er `∀' formalizes the notion that something (i.e. a logical predicate) is true for

everything (i.e. every relevant thing). The existential quanti�er `∃' predicates a property

or relation to at least one member of the domain.

While monadic predicate logic (i.e. predicate logic with only predicates with arity =

1) is decidable, it may be insu�cient to model even simple arguments as follows.

Philosophers are men.
Therefore philosophers' thoughts are thoughts of men.

The conclusion cannot be written in monadic predicate logic without hiding the con-

nection between the premise �Philosophers are men� and the conclusion �Philosophers'

15

thoughts are thoughts of men�. In particular, a 2-place predicate is required to write

Thought(x, y) for �x is the thought of y�. For general predicate logic with arbitrary num-

bers of predicate places, there is no mechanical decision procedure for determining deriv-

ability or validity in a �nite number of steps (i.e. general predicate logic is undecidable

[Chu36]).

In contrast, Description Logics (DL) are intended to be Knowledge Representation

(KR) systems that should answer the queries of a user within a reasonable amount of

time. Unlike �rst-order theorem provers, the decision procedures of a DL system should

always terminate, for both positive and negative answers.

Description Logics (DL) are a family of knowledge representation languages that can

be used to represent the knowledge of an application domain in a structured and formally

well-understood way by �rst de�ning the relevant concepts of the domain (its termi-

nology), and then using these concepts to specify properties of objects and individuals

occurring in the domain (the world description). Within a knowledge base one can distin-

guish between general knowledge about a domain of discourse (the intensional knowledge)

and assertions that pertain to particular incarnations (the extensional knowledge). Ac-

cordingly, a DL knowledge base comprises two components. The general terminology is

contained in the TBox. The contingent knowledge about particular individuals is con-

tained in the ABox. Chapter 4 will present an API to tell (i.e. modify) and ask (i.e.

query) both the TBox and ABox of a DL knowledge base.

The fundamental inference on concept expressions is subsumption, typically written

C v D. Subsumption is the problem of checking whether a concept description denoted

by D (the subsumer) is more general than the one denoted by C (the subsumee). Also,

individuals can automatically be classi�ed to be instances of particular concept descrip-

tions. The inference of subsumption and instance relationships from the de�nition of the

concepts and the properties of the individuals is a remarkable di�erence to explicitly given

�is-a� relationships in semantic networks. A special case of subsumption with the sub-

16

sumer being the empty concept is satis�ability, which is the problem of checking whether

a concept description does not necessarily denote the empty concept. For empty concepts

the set of individuals of this concept is always empty.

Investigating the e�ect of the expressiveness of a Description Logic on the compu-

tational complexity of its reasoning algorithms has been the main area of research on

Description Logics since the beginning of the 1980s.

Early implementations of DL systems such as KL-ONE, K-REP, BACK, and LOOM

[BS89, MDW91, Pel91, Gre91] implemented structural comparison algorithms [Lip82]

where concept descriptions are normalized and transformed into labeled graphs. Rea-

soning amounts to recursively comparing the syntactic structure of the normalized de-

scriptions [Neb90]. While algorithms for structural subsumption are sound and boast

polynomial complexity they are complete only for rather inexpressive Description Logics,

i.e. for more expressive DLs, they cannot detect all existing subsumption relationships.

The observation that structural subsumption may be too weak concluded the era of net-

work based subsumption algorithms and triggered the development of tableaux calculi.

This new algorithmic paradigm was in�uenced by Brachman and Levesque's seminal

paper �The tractability of subsumption in frame-based description languages� [BL84].

Brachman and Levesque elucidated the tradeo� between the expressiveness of a knowledge

representation language and the computational complexity to reason over instantiations

of such representations.

The �rst tableau-based subsumption algorithm was proposed by Schmidt-Schauÿ and

Smolka [SS91] for a language ALC (Attributive Concept Descriptions with Complements)

at the beginning of the 1990s. This approach and its extensions to decide subsumption for

a number of other DLs [Hol90, Baa90, BH91, HB91, Han92, DLN95, Hor98] were found

out to be terminating specializations of the tableau calculus for �rst-order predicate logic.

A tableau-based algorithm breaks down the concepts in the knowledge base and tries to

build a model with inferred constraints on its elements. The decision procedure either

17

stops when obvious contradictions occur while building the model or it terminates and

yields a �canonical� model of the knowledge base. In 1991 it also became clear that DLs

are closely related to modal logics [Sch91].

Following thorough analysis of the complexity of reasoning was the development of

highly optimized systems such as FaCT [Hor98], RACER [HM01], and DLP [Pat98] in the

mid 1990s, which showed that tableau-based algorithms lead to good practical behavior

even for expressive DLs. Based on tableau-based algorithms the open-source reasoner

Pellet [Pel06, SPG07] supports the full expressivity of the SHOIN (D) Description Logic

(i.e. the Web Ontology Language OWL DL).

With the advent of the Semantic Web at the beginning of the 21st century, more

industrial strength DL systems are being developed that will prospectively be capable of

processing even large scale knowledge bases and expressive representation languages such

as the SHOIN (D) Description Logic, which is described in the following subsection.

1.3.2 The SHOIN (D) Description Logic

Description Logics evolved from the need to give formally rigid semantics to the elements

and structures of semantic networks. DL languages comprise two disjoint alphabets of

symbols to denote atomic concepts and roles, which can be seen as unary and binary

predicate symbols, respectively. Accordingly, the variable free DL concept expression C is

given a set theoretic interpretation; it denotes the set of all individuals of an interpretation

domain for which C(x) is true. More complex terms can be build from the basic symbols

using constructors such as the intersection of concepts. The DL concept description CuD

can be regarded as the �rst-order logic sentence C(x)∧D(x), which includes all individuals

under consideration for which both C(x) and D(x) is true. Roles are interpreted as pairs

of individuals that are related to each other in a subject-property-object form.

Di�erent DLs provide di�erent sets of concept constructors. A key feature and common

to all DLs are value restrictions that limit the values of ontological roles to the set of

18

individuals for which certain properties can be asserted. For example, the value restriction

∀R.C requires that all individuals that are in the relationship R with the concept being

described are elements of the interpretation of concept C. Thus, if an individual of the

concept description ∀R.C is related by the property R to a second individual, then the

second individual can be inferred to be an instance of concept C.

Knowledge Representation systems based on Description Logics boast inference ca-

pabilities that make it possible to infer implicit knowledge from explicitly represented

knowledge. The instance algorithm determines whether an individual is an instance of a

concept description, i.e. the individual is always interpreted as an element of the given

concept. The subsumption algorithm allows one to determine subconcept-superconcept

relationships. A concept C is subsumed by D if the set of instances denoted by C is a

subset of the set of instances denoted by D (i.e. the �rst description is always interpreted

as a subset of the second one). The consistency algorithm checks that the assertions and

terminological axioms in a knowledge base are non-contradictory.

Description Logic languages are distinguished by the constructors they provide. The

basic Description Logic AL (Attributive Language) shown in Table 1.1 was introduced in

1991 by Schmidt-Schauÿ and Smolka [SS91]. In the remainder of this chapter, the letters

A and B will be used for atomic concepts, the letters R and U for abstract roles and

datatype roles, respectively, and the (possibly subscripted) letter C for complex concept

descriptions.

The semantics are given by means of an interpretation I = (4I , ·I) consisting of a

non-empty domain 4Iand a mapping ·I , which interprets atomic and complex concepts,

and roles as shown in Table 1.1.

In the Description Logic AL, concept descriptions are formed using the constructors

conjunction, value restriction, and existential restriction. Negation can only be applied

to atomic concepts and only the universal concept > can be used with the existential

restriction over a role.

19

Table 1.1: The basic Description Logic AL
Constructor Name Syntax Semantics

atomic concept A AI ⊆ 4I

top level concept > >I = 4I

bottom concept ⊥ ⊥ I = {}

atomic negation ¬A (¬A)I = 4I\AI

intersection C1 u C2 (C1 u C2)I = C1
I ∩ C2

I

value restriction ∀R.C (∀R.C)I = {x|∀y.〈x, y〉 ∈ RI → y ∈ CI}

limited existential quanti�cation ∃R.> (∃R.>)I = {x|∃y.〈x, y〉 ∈ RI}

Using the constructors of theAL language one could model a business meeting scenario

as it is considered in the domain of the CHIL research project [Inf04]. First, atomic

concepts for persons and meetings are introduced.

Person Meeting

Using a general concept inclusion employees are de�ned as a subset of all persons

under consideration.

Employee v Person

A general concept inclusion (GCI) is of the form C1 v C2, where C1, C2 are concepts.

A �nite set of GCIs is called a TBox. An interpretation I is a model of a TBox T i� it

satis�es all GCIs in T , i.e. C1
I ⊆ C2

I holds for each C1 v C2 ∈ T . Concept de�nitions

of the form C1 ≡ C2 stand for the two GCIs C1 v C2 and C2 v C1. A concept name is

called de�ned if it occurs on the left-hand side of a de�nition; primitive otherwise.

The concept description for meeting participants, i.e. persons who attend a meeting,

can be constructed by using the intersection of all persons with a limited existential

quanti�cation over the attendsMeeting role.

20

MeetingParticipant ≡ Person u ∃attendsMeeting .>

A special marketing meeting can be de�ned using a value restriction for its topics.

MarketingMeeting ≡ Meeting u ∀hasTopic.MarketingTopic

In addition, external guests are those persons who are not employees.

Guest ≡ Person u ¬Employee

The given terminology already exploits the language features of AL. The more expres-

sive language ALCR+ is obtained by adding the negation of arbitrary concepts (indicated

by the letter C, for �complement�) and transitive roles (R+) as shown in Table 1.2.

Table 1.2: The Description Logic ALCR+ , extends AL (Table 1.1)

Constructor Name Syntax Semantics

negation ¬C (¬C)I = 4I\CI

Axiom Name Syntax Semantics

object role transitivity Trans(R) RI = (RI)+

With the additional constructor the concept of a meeting that is attended by external

guests can be de�ned as follows.

OpenMeeting ≡ Meeting u ¬∀hasParticipant .Employee

The transitivity of a role can be used by a reasoner to infer entailments (e.g., a person

who is located in a meeting room, which is located in a building, is located in that building

as well).

In order to avoid very long names for Description Logics, the abbreviation S has been

introduced for the ALCR+ language. Prominent members of the S-family are SHIF ,

21

which which lays out the formal basis for the Web Ontology Language OWL Lite (in OWL

Lite only the values 0 and 1 are allowed for cardinality restrictions), and SHOIN (D),

which corresponds to the Web Ontology Language OWL DL. The SHIF Description

Logic extends ALCR+ with role hierarchies (H), inverse roles (I), and number restrictions

(F) as shown in Table 1.3.

In order to avoid role expressions such as R−−, a function Inv is de�ned, which

returns the inverse of a role. Let R be a set of role names. The set of SHIF -roles is then

R ∪ {R−|R ∈ R}.

Inv(r) :=

 r− if r is a role name,

s if r = s− for a role name s.



Table 1.3: The Description Logic SHIF , extends ALCR+ (Table 1.2)

Constructor Name Syntax Semantics

at least restriction ≥nR (≥ nR)I = {x | |{y.〈x, y〉 ∈ RI}| ≥ n}

at most restriction ≤nR (≥ nR)I = {x | |{y.〈x, y〉 ∈ RI}| ≤ n}

inverse role R− (R−)I = (RI)−

Axiom Name Syntax Semantics

object role inclusion R1 v R2 R1
I ⊆ R2

I

Using a number restriction a small meeting can be de�ned as a meeting that has at

most �ve participants.

SmallMeeting ≡ Meeting u ≤5hasParticipant

The fact that a meeting is attended by all people who are present in the meeting is

expressed by an inverse role as follows.

attendedBy ≡ attendsMeeting−

22

Attending a meeting shall be considered a special case of attending an event.

attendsMeeting v attendsEvent

The constructors and axioms of the SHIF language already provide for extensive

domain models. Still, in order to cover the expressiveness of OWL DL requires two

more fundamental features resulting in the Description Logic SHOIN (D), which extends

ALCR+ with role hierarchies (H), nominals (i.e. �one of�-constructors) (O), inverse roles

(I), number restrictions (N), and a data type theory D as shown in Table 1.4. According

to OWL DL semantics, the semantic domain comprises two disjoint parts. The abstract

domain4I comprises abstract objects (i.e. individuals); the concrete domain4I
D
contains

concrete objects (i.e., data type values). The data type theory D is a mapping from

a set of data types (e.g., XML Schema De�nition types) to sets of values (e.g., from

xsd#integer to the integers) plus a mapping from data values to their denotations (e.g.,

from "1"��xsd#integer to the integer 1).

Let A, D, RA, RD, and I be pairwise disjoint sets of concept names, data type names,

abstract role names, data type (or concrete) role names, and individual names. The set

of SHOIN (D)-roles is then RA ∪ {R−|R ∈ RA} ∪RD.

Table 1.4: The Description Logic SHOIN (D)

Constructor Name Syntax Semantics

atomic concepts A A AI ⊆ 4I

data types D D DD ⊆ 4I
D

abstract roles RA R RI ⊆ 4I ×4I

data type roles RD U UI ⊆ 4I ×4I
D

individuals I o oI ∈ 4I

data values v vI = vD

23

Table 1.4: The Description Logic SHOIN (D)

inverse role R− (R−)I = (RI)−

top level concept > >I = 4I

bottom concept ⊥ ⊥ I = {}

negation ¬C (¬C)I = 4I\CI

conjunction C1 u C2 (C1 u C2)I = C1
I ∩ C2

I

disjunction C1 t C2 (C1 t C2)I = C1
I ∪ C2

I

one of {o1, ..., on} {o1, ..., on}I = {o1
I , ..., on

I}

exists restriction ∃R.C (∃R.C)I = {x|∃y.〈x, y〉 ∈ RI and y ∈ CI}

value restriction ∀R.C (∀R.C)I = {x|∀y.〈x, y〉 ∈ RI → y ∈ CI}

at least restriction ≥ nR (≥ nR)I = {x | |{y.〈x, y〉 ∈ RI}| ≥ n}

at most restriction ≤ nR (≥ nR)I = {x | |{y.〈x, y〉 ∈ RI}| ≤ n}

datatype exists ∃U.D (∃U.D)I = {x|∃y.〈x, y〉 ∈ UI and y ∈ DD}

datatype value ∀U.D (∀U.D)I = {x|∀y.〈x, y〉 ∈ UI → y ∈ DD}

datatype at least ≥nU (≥ nU)I = {x | |{y.〈x, y〉 ∈ UI}| ≥ n}

datatype at most ≤nU (≥ nU)I = {x | |{y.〈x, y〉 ∈ UI}| ≤ n}

datatype one of {v1, ..., vn} {v1, ..., vn}I = {v1
I , ..., vn

I}

Axiom Name Syntax Semantics

concept inclusion C1 v C2 C1
I ⊆ C2

I

object role inclusion R1 v R2 R1
I ⊆ R2

I

object role transitivity Trans(R) RI = (RI)+

datatype role inclusion U1 v U2 U1
I ⊆ U2

I

individual inclusion o : C oI ∈ CI

individual equality o1 = o2 o1
I = o2

I

individual inequality o1 6= o2 o1
I 6= o2

I

24

In 2003, Horrocks and Patel-Schneider [HP04] showed that computing ontology en-

tailment in the Web Ontology Language OWL DL has the same complexity as computing

knowledge base satis�ability in SHOIN (D). While procedures for deciding subsump-

tion in SHOIN (D) have exponential worst-case complexity, the design of �practical�

algorithms, which cope well with problems that occur in realistic applications, has been

the subject of active investigation [BCM03].

1.3.3 XSD � XML Schema De�nition

In 1967, William W. Tunnicli�e articulated the idea of separating the formatting of a

document from its content. Based on this generic coding Charles Goldfarb, Edward

Mosher and Raymond Lorie developed the Generalized Markup Language GML4. GML

markups (tags) can be used to de�ne the structure of documents (e.g., headers, chapters)

without further specifying how particular elements of this structure are to be presented.

In 1986, the Standard Generalized Markup Language [Woo95] became an ISO standard

[Int86]. However, its complexity has prevented its widespread application.

In the late 1990s an SGML subset referred to as the Extensible Markup Language

(XML) [BPS06] appeared and soon became a W3C standard in 1999. XML is simpler to

parse and process than full SGML and has been widely adopted since then as a format

to exchange data. Despite its name XML is not a language with a given vocabulary but

rather a set of syntax rules that can be applied to create languages. Such languages are

called applications of XML. XML documents can be any kind of well-formed (syntactically

correct) Unicode character strings (e.g., �les, data streams). The relevant information of

an XML document is represented by its Information Set [CT04] whose integral parts are

elements and attributes. The content of an element can be text or other elements. In

addition, elements can be attributed with name/value pairs. Both elements and attributes

may occur in namespaces, which are a mechanism to create globally unique names based

on the URI naming scheme [BFM98].

4Goldfarb used their surnames to make up the term GML.

25

XML Schema De�nition (XSD) [FW04] is a schema de�nition language to constrain the

content model of an XML instance document to a speci�c hierarchical element structure

and particular element data types. The XSD speci�cation comprises two parts. �XML

Schema Part 1: Structures� [TBM04] sets out the structural part of the XML Schema

De�nition language, which can be used to de�ne content models of complex (aggregated)

data types. �XML Schema Part 2: Datatypes� [BM04b] de�nes the type system for atomic

types. It has been in�uenced by the ISO 11404 [Int96] standard on language-independent

data types as well as the type system of SQL [Int99] or programming languages such as

Java [GJS05]. In XSD, an atomic data type is a three-tuple consisting of a set of distinct

values, called its value space, a set of lexical representations called its lexical space, and a

set of fundamental facets that characterize properties of the value space such as the notion

of equality or an order relation. There are 19 primitive built-in atomic data types (e.g.,

xsd#string, xsd#decimal, xsd#dateTime) from which user-de�ned types can be derived

through the application of constraints. XSD de�nes 12 di�erent constraining facets as

shown in Table 1.5.

Table 1.5: XSD constraining facets

length de�nes the number of units of length

minLength de�nes the minimum number of units of length

maxLength de�nes the maximum number of units of length

pattern constrains the lexical space to literals that match a speci�c pattern

enumeration constrains the value space to a speci�ed set of values

minInclusive de�nes the inclusive lower bound of the value space

minExclusive de�nes the exclusive lower bound of the value space

maxExclusive de�nes the exclusive upper bound of the value space

maxInclusive de�nes the inclusive upper bound of the value space

totalDigits de�nes the maximum number of values in the value space

fractionDigits de�nes the minimum di�erence between values in the value space

whiteSpace controls the normalization of string data types (modifying)

26

Constraining facets can be modifying (i.e. string literals that are assigned to instances

of constrained types are implicitly modi�ed upon assignment) or enforcing (i.e. certain

value space constraints must hold for the interpretations of string literals that are assigned

to instances of constrained types). Using constraint based type derivation, a data type

age can be derived from the built-in XML data type xsd#integer through the application

of the constraints xsd:minInclusive and xsd:maxExclusive as follows.

1 <xsd : schema xmlns : xsd="..." >

2 <xsd : simpleType name="age">

3 <xsd : r e s t r i c t i o n base="xsd : i n t e g e r">

4 <xsd : min Inc lu s ive va lue="0"/>

5 <xsd : maxExclusive va lue="110"/>

6 </xsd : r e s t r i c t i o n >

7 </xsd : simpleType>

8 </xsd : schema>

Recent general purpose programming languages such as C# [HWG02] include a num-

ber of system types for which an isomorphic mapping exists to built-in atomic XSD types

(e.g., System.Int32 7→ xsd#int). Still, the notion of constraining facets and value space

based subtyping has not been embedded yet with nominal type systems of object-oriented

programming languages.

Besides XML Schema De�nition there are a number of other schema languages. Docu-

ment Type De�nition DTD [BPS06] was the original schema de�nition language inherited

from SGML. While some markup languages are still de�ned with DTD today the non-

XML syntax, the lack of data types, and the lack of support for namespaces have made

many users switched to XSD. Relax NG [Int03] is the top competitor to W3C's XSD and

is considered superior by many people in the XML community. On the other hand, major

software companies have come out strongly in favor of standardizing on XML Schema Def-

inition. From today's perspective XSD is widely accepted and is referenced by a number

of other W3C technologies such as the Web Ontology Language.

27

1.3.4 RDF � The Resource Description Framework

In 1999, slightly more than one year after the standardization of XML 1.0, the Resource

Description Framework (RDF) [MM04] became a W3C Recommendation. RDF is a

Semantic Web technology to describe resources on the Web and to capture semantic

relationships between them. An RDF document contains one or more �descriptions� of

resources. A description is a set of statements. In the RDF model such statements are

also called �triples� as they comprise the resource (subject), its properties (predicate), and

the property values (object) as shown in Fig. 1.4.

Figure 1.4: The RDF triple

Figure 1.5: A graph of two RDF statements

The subject is the resource that is being described by the ensuing predicate and object

(in logic, the subject is the term about which something is asserted). The predicate is

the relation between the subject and the object, which is either a resource referred to

by the predicate or a literal value such as a string or integer. The combination of the

three elements subject, predicate, and object is called a statement. A simple RDF graph

28

comprising two statements about the venue of a review meeting and the capacity of a

room is shown in Fig. 1.5.

In RDF, everything can be considered a resource as long as it can be unambigu-

ously identi�ed by a resource ID, i.e. it has an identity. It is therefore good practice

to use URIs that comprise a namespace part and a local name. For example, the URI

�http://www.chokycola.com#company� may be used denote a form of business ownership

instead of friends coming for a visit. In this work, for the sake of brevity, the fragment

identi�er �#� may be used as a shortcut; it would be more accurate to use the absolute

URI instead.

RDF features the concept of non-contextual modeling. Unlike XML, the context of

an RDF statement cannot be determined beforehand. In XML documents, the semantics

of elements depend on their position in the hierarchy. Their relationship and those of

elements' names and their values are given implicitly. In contrast, RDF explicitly states

the relationships between resources. Thus, it is possible to dynamically add to lists of RDF

statements. XML's contextual modeling may be more appropriate for high-bandwidth

transactions with �xed contexts of documents and messages. Non-contextual modeling

should be considered in changing environments were �exibility is an issue.

Beyond the representation as a graph there are a number of other ways to capture

knowledge expressed as a list of triples. Following the linguistic model of subject, predi-

cate, and object the following two English statements express the relevant information of

the RDF graph shown in Fig. 1.5.

The review meeting takes place in room no. 23.

Room no. 23 has a capacity of 25.

It is conceivable to (automatically) extract sentences like these from daily routines and

business processes. As a result of such a bottom-up approach corporate knowledge may

accrue into a common knowledge base. In the N3 notation [Ber05], which was designed

29

by Tim Berners-Lee as a compact and human-readable format for RDF data, the two

preceding sentences may then be written as follows.

1 @pref ix c h i l : <http :// c h i l . s e r v e r . de#>.

2 @pref ix id : <#>.

3 <c h i l :ReviewMeeting> <id : takesP laces In> <ch i l :Room23>.

4 <c h i l :Room23> <id : hasCapacity> 25 .

Finally, there is a standardized XML syntax for RDF called RDF/XML [BM04a] as

shown in the following listing.

1 <?xml ve r s i on="1.0"?>

2 <rd f :RDF

3 xmlns : rd f="http ://www.w3 . org /1999/02/22− rdf−syntax−ns#"

4 xmlns : id="#" xmlns : c h i l="http :// c h i l . s e r v e r . de#">

5 <rd f : De sc r ip t i on

6 rd f : about="http :// c h i l . s e r v e r . de#ReviewMeeting">

7 <id : takesPlaceIn>

8 <rd f : Desc r ip t i on

9 rd f : about="http :// c h i l . s e r v e r . de#Room23">

10 <id : hasCapacity>25</id : hasCapacity>

11 </rd f : Descr ipt ion>

12 </id : takesPlaceIn>

13 </rd f : Descr ipt ion>

14 </rd f :RDF>

RDF also derives bene�t from XML Schema De�nition by allowing explicit typing of

literal values. Values of typed literals comprise a string (the lexical form of the literal)

and a data type (identi�ed by a URI). Line 10 of the above listing can be replaced by

a predicate that refers to a typed literal as follows. Note that RDF literals are always

statically typed (i.e. there is no way to dynamically infer the data type of a literal from

some schema or ontology de�nition).

30

1 <id : hasCapacity

2 rd f : datatype="http ://www.w3 . org /2001/XMLSchema#po s i t i v e I n t e g e r ">

3 25

4 </id : hasCapacity>

Line 4 of the preceding N3 listing can accordingly be augmented to include the type

information as follows.

1 <c h i l :Room23>

2 <id : hasCapacity>

3 "25"^^http ://www.w3 . org /2001/XMLSchema#po s i t i v e I n t e g e r

The RDF/XML representation is commonly used as the �serialization format� because

of its syntactic compatibility with other XML-based technologies. However, RDF's open

grammar, which allows arbitrary namespace-quali�ed elements to occur at any place in

RDF documents, subtle di�erences in how XSD and RDF process namespaces, and ad-

vanced RDF features such as its container models and the possibility of �making state-

ments about statements� (rei�cation) are the reasons why RDF does not yet play well

with XML documents.

Whereas containers a�ect the modeling of a single statement (for example, an object

becoming a collection of values), rei�cation refers to treating a statement as the object of

another statement. Rei�cation is akin to statements as arguments instead of statements

as facts. A common application of rei�cation is, for example, to make assertions about

the trustworthiness of information.

Also, alternate representations of the same kind of information and the nesting of a

list of statements in a hierarchical XML syntax make it particularly di�cult for humans

to directly author RDF data in this format. The bene�ts of combining XML and RDF

became for the �rst time increasingly apparent with the formation of the W3C's Web

Ontology Working Group in November 2001 and their objective to develop a standard

ontology language for the Semantic Web during the time until May 2004.

31

1.3.5 RDFS � The Resource Description Framework Schema

RDF properties represent relationships between resources. As such, they correspond to

attribute/value pairs in object-oriented programming languages. There is, however, no

way to de�ne classes, i.e. templates for objects that are composed of properties (data

members). Also, RDF lacks mechanisms to describe the meanings of properties (e.g.,

there is no standardized property to de�ne �is-a�-relationships between resources) nor

relations between them.

The Resource Description Framework Schema (RDFS) [BG04b] is a semantic exten-

sion of RDF. Formal semantics [HM04] are needed for two reasons. First, a lack of formal

semantics would hamper the development of RDF(S) implementations. Secondly, tech-

nologies such as the Web Ontology Language, which are layered on top of RDFS, have

formal semantics. They require RDFS to have formal semantics that they can extend.

Otherwise every layer on top of RDF would have to de�ne its own RDF semantics.

RDFS de�nes a standardized set of resources and properties that can be used to de�ne

domain speci�c RDF vocabularies (i.e. ontologies) that comprise classes, properties, and

instances. The RDFS class and property system is similar to type systems of object-

oriented programming languages such as Java. The main di�erence is that a class is

not de�ned in terms of the properties its instances may have. Unlike the centralized

resource centric approach of object-oriented systems, property centric RDFS vocabularies

are developed in a decentralized fashion. RDFS properties are de�ned independently of a

class, i.e. anyone is able to de�ne new properties for a class. The relationship of a property

with instances of a class is given by its domain and range restrictions, which de�ne the

types of an instance to which a property applies.

Fig. 1.6 shows a simple UML diagram that comprises the de�nition of an �is-a�-

relationship between the two classes Meeting and Event, a class Room with a positive

integer valued data member called hasCapacity, and an instance of the Room class with

a given capacity.

32

Figure 1.6: An example UML diagram

The following listing is the RDF Schema for the class and instance model of Fig.

1.6. The RDFS element rdfs:Class denotes the group of resources that are RDF Schema

classes; rdfs:subClassOf states that one class is a subclass of another.

1 <?xml ve r s i on="1.0"?>

2 <rd f :RDF xmlns : rd f="http ://www.w3 . org /1999/02/22− rdf−syntax−ns#"

3 xmlns : r d f s="http ://www.w3 . org /2000/01/ rdf−schema#">

4 <rd f s : Class rd f : ID="Meeting">

5 <rd f s : subClassOf>

6 <rd f s : Class rd f : ID="Event"/>

7 </rd f s : subClassOf>

8 </rd f s : Class>

9 <rd f s : Class rd f : ID="Room"/>

10 <rd f : Property rd f : ID="hasCapacity">

11 <rd f s : domain

12 rd f : r e s ou r c e="#Room"/>

13 <rd f s : range

14 rd f : r e s ou r c e="http ://www.w3 . org /2001/XMLSchema#po s i t i v e I n t e g e r "/>

15 </rd f : Property>

16 <Room rd f : ID="Room23">

17 <hasCapacity

18 rd f : datatype="http ://www.w3 . org /2001/XMLSchema#in t ">25</hasCapacity>

19 </Room>

20 </rd f :RDF>

33

RDF distinguishes between a class and the set of its instances. Associated with each

class is a set, called the extension of the class, which is the set of the instances of the

class. This distinction is made in order to avoid con�icts with the axiom of foundation

of Zermelo-Fraenkel set theory. In RDF, two classes may have the same set of instances

but be di�erent classes.

The element rdf:Property, which is an instance of rdfs:Class, is the class of RDF

properties. The domain and range of a property is de�ned by the elements rdfs:domain

and rdfs:range, respectively. Note that in RDFS there is no direct way to indicate class

speci�c property restrictions. A typed node element is used to de�ne an instance of the

class Room with a hasCapacity value of 25.

The next subsection introduces the Web Ontology Language, which uses most of the

RDFS modeling primitives.

1.3.6 OWL � The Web Ontology Language

In the year 2000, the DARPA Agent Markup Language (DAML) program [The00] orig-

inated a more expressive schema language than RDFS. Around the same time the Eu-

ropean Union-based Ontology Inference Layer (OIL) research project [FHH01] aimed at

developing an ontology based infrastructure for the Semantic Web. Soon both groups be-

came aware of each other and joined their e�orts in the DAML+OIL approach [HHP01].

By March 2001, two versions of DAML+OIL had been produced, which in turn were

superseded by the Web Ontology Language (OWL5) [MH04a], which became a W3C

Recommendation in 2004 [DS04].

The need for a language layer on top of RDF(S) came from the fact that the expres-

siveness of both RDF and RDF Schema is deliberately limited. To put it in a nutshell,

5The natural acronym for Web Ontology Language would be WOL instead of OWL. Rumor has it
that the language was named OWL in allusion to an owl in A. A. Milne's Winnie-the-Pooh stories. Unlike
the other woodlanders the owl is the only character capable of writing its name; still, only with a typo.
Sometimes, the acronym OWL is also considered as a tribute to William A. Martin's One World Language
KR project from the 1970s.

34

RDF is (roughly) limited to binary predicates and RDF Schema is (roughly) limited to

a subclass and property hierarchy with domain and range de�nitions of these properties.

The following enumeration of missing features is taken from [AH03].

• Local scope of properties: In RDFS, one cannot declare range restrictions that are

local to some classes only. For example, one cannot say that a marketing meeting

has only marketing topics on its agenda and a technology meeting only technology

topics.

• Disjointness of classes: In RDFS, one can only declare subclass relations while it is

not possible to state that two classes such as Guest and Employee are disjoint.

• Boolean combination of classes: The constructors union, complement, and intersec-

tion are not supported by RDFS.

• Cardinality restrictions: In RDFS, there is no way to place restrictions on how many

distinct values a property may or must have (e.g., a small meeting must have at

most �ve participants).

• Special characteristics of properties: In RDFS, properties cannot be declared to be

transitive (e.g., locatedIn) or the inverse of other properties (e.g., attendsMeeting

and attendedBy).

W3C's Web Ontology Working Group thought out OWL to comply with the main

requirements on an ontology markup language. In addition to adding su�cient expressive

power to RDFS, the prospective Web Ontology Language was to have a well-de�ned

syntax and semantics. Also, it should provide for e�cient reasoning. Unfortunately, the

combination of the powerful RDFS modeling primitives such as rdfs:Class (the class of

all classes) with a full-�edged logic led to a computationally intractable language called

OWL Full. OWL Full is a straightforward extension of RDFS using the RDF meaning

of classes and properties. In this way, OWL Full is fully upward compatible with RDFS.

35

OWL Full has the same constructors as the Description Logic SHOIN (D) (see Table

1.4). Any OWL Full modeling primitive can be combined in arbitrary ways with RDF

and RDF Schema. This is why there are no decision procedures for OWL Full, which

limits its practical usability to scenarios that depend on RDF Schema's meta-modeling

features (e.g., de�ning classes of classes). As a consequence, two sublanguages of OWL

Full were de�ned to regain computational e�ciency.

OWL DL is the subset of OWL Full that restricts particular usages of SHOIN (D)

constructors. As a consequence, OWL DL is not fully upward compatible with RDF. Still,

every legal OWL DL document is still a legal RDF document. Full RDF compatibility was

traded o� for the possibility of e�cient reasoning. In 2003, Horrocks and Patel-Schneider

[HP04] showed that computing ontology entailment in OWL DL has the same complexity

as computing knowledge base satis�ability in SHOIN (D).

OWL Lite is an even further restricted �avor. It abides by the same semantic re-

strictions as OWL DL and is limited to constructors provided by the Description Logic

SHIF(D). Hence, highly optimized Description Logic systems such as FaCT [Hor98] and

RACER [HM01] can be used to provide reasoning services for OWL Lite. The di�erences

between OWL DL and OWL Lite can be found in [MH04a].

All OWL species use the RDF syntax. Ontological individuals are declared as in

RDF using RDF descriptions and typing information. Moreover, the OWL elements

owl:Class, owl:ObjectProperty, and owl:DatatypeProperty are derived from their RDF(S)

counterparts rdfs:Class and rdf:Property, respectively.

As for RDF, a number of syntactic forms for OWL have been de�ned. RDF/XML

[DS04] is the primary syntax for OWL though it is most di�cult for humans to read.

The OWL Abstract Syntax [PHH04] is used by the language speci�cation. A graphical

OWL syntax [Sch02] was based on the Universal Modeling Language UML [BRJ99]. The

XML presentation syntax for OWL [HEP03] was de�ned as a dialect similar to the OWL

Abstract Syntax with human readability in mind.

36

Figure 1.7: The Semantic Web stack

Ontologies and their accompanying inference rules are the topmost layer of the Se-

mantic Web stack depicted in Fig. 1.7 that is considered in this work. The Semantic Web

may possibly be complemented by a logic-framework that will allow the sharing of logic

proofs in order to establish a �Web of trust�, which is the �nal Web in Tim Berners-Lee's

three-part vision of a collaborative Web, a Semantic Web, and a Web of trust.

1.3.7 The CHIL OWL DL Ontology

In the CHIL research project [Inf04], the Web Ontology Language OWL DL was deployed

in order to implement programming language independent knowledge representation for

system, component, and domain modeling [PR09].

The heterogeneous CHIL software environment comprises a plethora of perceptual

components, which are based on image and speech recognition technologies. In order to

interoperate, all of these components are required to produce data that is also meaningful

to prospective consumers of this kind of information. These client components may be

written in a variety of di�erent programming languages. Moreover, CHIL services de�ne

a number of di�erent scenarios such as meetings or other human-to-human interactions.

37

The CHIL Ontology was developed to provide a formal high-level description of the

CHIL domain of discourse that can be e�ciently used to build intelligent applications.

The CHIL ontology introduces a common programming language agnostic domain model

that can be used to formally represent elements of the CHIL domain of discourse.

By using the Description Logics based Web Ontology Language OWL DL to model

concepts, properties, and individuals of the CHIL domain of discourse, it is possible to

use a reasoner in order to automatically make implicit knowledge explicit.

The CHIL Ontology was devised by �rst de�ning the relevant concepts of the CHIL

domain, and then using these concepts to specify properties of objects and individuals

occurring in the domain. As of today, �intelligent� refers to the ability to automatically

infer implicit consequences from explicitly represented knowledge. Leveraging the expres-

siveness of the Web Ontology Language, the CHIL Ontology provides a description of the

CHIL world that can be e�ciently used to build intelligent applications.

The following knowledge base contains information about an exemplary CHIL scenario,

which may illustrate applications of OWL modeling and reasoning features in the CHIL

domain of discourse. The TBox and ABox are given in Description Logics notation

(i.e. the symbol > denotes the top level concept, the relational operator v denotes a

subconcept/subrole relation, and ≡ denotes equivalence).

TBox Moderator v Participant v Person v >, Room v >, Meeting v Event v >,

ActivityLevel v >, ≥1hasActivityLevel v Meeting,> v ∀hasActivityLevel.ActivityLevel,

≥1takesPlaceIn v Event, > v ∀takesPlaceIn.Room, hosts ≡ takesPlaceIn−,

ActivityLevel(High), ActiveMeeting ≡ Meeting u ∃hasActivityLevel.High,

ActivityLevel(Low), ≥1scheduledAt v Event,> v ∀scheduledAt.xsd#dateTime,

≥1hasModerator v Meeting,> v ∀hasModerator.Moderator, moderates ≡ hasModerator−,

≥1hasParticipant v Event,> v ∀hasParticipant.Participant,

participatesIn ≡ hasParticipant−, hasModerator v hasParticipant, > v≤1hasModerator

38

ABox Person(Alice), Person(Bob), Person(Charlie), Room(Room248),

Event(ProjectMeeting), takesPlaceIn(ProjectMeeting, Room248),

scheduledAt(ProjectMeeting, 2008-06-27T13:00:00Z),

moderates(Alice, ProjectMeeting), participatesIn(Bob, ProjectMeeting),

participatesIn(Charlie, ProjectMeeting).

The given ABox declares three persons Alice, Bob, and Charlie. There is a project

meeting that takes place at a certain time (given as an XML Schema De�nition date-

Time value) in room number 248. The meeting is moderated by Alice. Bob and Charlie

participate, too.

The following list contains tell and ask operations on the given knowledge base. The

input (�A) and output knowledge (@�) is given in natural language (NL) and RDF triple-

syntax (RDF). Note how much the RDF triple notation resembles the natural language

sentences.

1. @�
NL: Room no. 248 hosts the project meeting.

RDF: Room248 hosts ProjectMeeting

2. @�
NL: The project meeting is scheduled at 27 June 2008, 1:00 PM.

RDF: ProjectMeeting scheduledAt 2008-06-27T13:00:00Z

3. @�
NL: The project meeting has the participants Alice, Bob, and Charlie.

RDF: ProjectMeeting hasParticipant {Alice, Bob, Charlie}

4. @�
NL: Alice is a moderator.

RDF: Alice rdf:Type Moderator

5. @�
NL: The project meeting event is a meeting.

RDF: ProjectMeeting rdf:Type Meeting

39

6. �A
NL: Elsie moderates the project meeting.

RDF: Elsie moderates ProjectMeeting

7. @�
NL: Alice and Elsie are the same persons.

RDF: Alice owl:sameAs Elsie

8. �A
NL: The project meeting has a high activity level.

RDF: ProjectMeeting hasActivityLevel High

9. @�
NL: The project meeting is an active meeting.

RDF: ProjectMeeting rdf:Type ActiveMeeting

The storyline develops as follows. A meeting summarization perceptual component

queries all events that are hosted in room number 248. Because the ontological role hosts

is de�ned as the inverse of takesPlaceIn the reasoner automatically derives the fact that

room number 248 hosts the project meeting (1: inverse roles). The meeting summarizer

queries the scheduled start time of the project meeting (2) and starts recording. It needs

to assemble a list of participants and queries the ontological knowledge base. Bob and

Charlie are participants of the project meeting since the ontological role hasParticipant

is declared to be the inverse of participatesIn. Alice is a meeting participant, too, because

the ontological role hasModerator is a subproperty of hasParticipant (3: inverse roles,

subroles).

In particular, the RDF type of individuals Bob and Charlie is inferred to be Participant

because of the domain restriction of the participatesIn role. Analogously, Alice is inferred

to be a Moderator because of the domain restriction of moderates (4: property domain

restrictions). Because of the range restriction of the moderates role, the project meeting

Event is classi�ed as aMeeting (5: property range restrictions). Note how the domain and

range restrictions of ontological roles are di�erent from authoritative class de�nitions in

object-oriented programming languages and how ontological roles can be used to declare

ad hoc relationships between individuals.

40

Another example for intuitive ontological reasoning are functional roles such as has-

Moderator along with several property values. Suppose the additional piece of information

that Elsie moderates the project meeting under consideration (6). Because there can only

be one value for the functional role hasModerator the reasoner concludes that the ontolog-

ical individuals Alice and Elsie must refer to the same entities in the described world

(7: inverse roles, functional roles, equivalent individuals). Note that because in OWL

there is no unique name assumption with no additional information a reasoner will not

deduce that two individuals are distinct.

In course of the project meeting, the activity level, which is detected by the smart

room technologies, changes from low to high (8). Because of the nominal de�nition in the

ontology, the project meeting is inferred to be an ActiveMeeting (9: nominals).

For a complete list of SHOIN (D) concept constructors see [HP04]. More examples

of ontological reasoning can be found in The Description Logic Handbook [BCM03].

1.4 Interpretation of Object-Oriented Programming Languages

This section provides an interpretation of the primary concepts of commonly used object-

oriented programming languages such as C# and Java. Based on the typing rules of

the simply typed lambda calculus familiar features such as subtyping and base types are

presented. These features constitute the formal foundation of the λC-calculus, which is

presented in Chapter 3. In the λC-calculus, structural subtyping schemes of the simply

typed lambda calculus with subtyping were used to devise constrained types.

The untyped lambda-calculus was developed by Alonzo Church and his co-workers

in the 1920s and 1930s [Chu41]. In the lambda-calculus, all computation is reduced to

the basic operations of function de�nition and application. The lambda-calculus can be

viewed simultaneously as a simple programming language in which computations can be

described and as a mathematical object about which statements can be proved. This

section owes much to [Pie02].

41

1.4.1 The untyped lambda-calculus

This subsection alludes to the syntax and the operational semantics of the untyped

lambda-calculus (λ). The abstract grammar shown in Table 1.6 should be read as short-

hand for an inductively de�ned set of abstract syntax trees.

Table 1.6: Untyped lambda-calculus (λ)

Syntax

t ::= terms:

x variable

λx.t abstraction

tt application

v ::= values:

λx.t abstraction value

Evaluation t→ t′

t1 → t′1
t1t2 → t′1t2

(E-App1)

t2 → t′2
v1t2 → v1t′2

(E-App2)

(λx.t12)v2 → [x 7→ v2]t12 (E-AppAbs)

The expression �λn. . . . � can be thought of as a shorthand for �the function that, for

n, yields . . . �. Also note that in the lambda-calculus, everything is a function, i.e. the

arguments accepted by functions are themselves functions, and the results returned by

functions are functions as well. According to the given grammar, one can give an inductive

de�nition of valid terms of λ as follows.

42

De�nition 1.1 (Terms) Let V be a countable set of variable names. The set of terms

is the smallest set T such that

1. x ∈ T for every x ∈ V;

2. if t1 ∈ T and x ∈ V then λx.t1 ∈ T ;

3. if t1 ∈ T and t2 ∈ T then t1t2 ∈ T .

Just like the given grammar, the inductive de�nition says nothing about the use of

parentheses to mark compound subterms. This is due to the fact that T is actually de�ned

as a set of trees, not as a set of strings. Parentheses can be used to assign an indented

underlying tree form to a linearized form of terms.

In this text, the metavariable t (as well as s and u) can range over arbitrary lambda-

terms. The metavariable x (as well as y and z) stands for arbitrary variables. In particular,

x, y, etc. may also be used as object-language variables. In such cases the context will

make clear which is which.

An occurrence of the variable x is said to be bound when it occurs in the body t of

an abstraction λx.t (i.e. λx is a binder whose scope is t). A term with no free variables

is said to be closed ; closed terms are also called combinators. The simplest combinator,

called the identity function λx.x does nothing but return its argument.

After the formulation of the syntax of the language one also needs to de�ne rules how

terms can be evaluated. There are three basic approaches to de�ne the semantics of a

language.

Denotational semantics take meanings of terms to be mathematical objects such as

numbers and functions. In order to give denotational semantics to a language one has to

�nd collections of semantic domains and interpretation functions, which map terms into

elements of the de�ned domains. Denotational semantics can be useful to abstract from

evaluation details and to highlight essential concepts of a language. Also, properties of

43

the chosen collection of semantic domains can be used to derive laws for reasoning about

program behavior.

Axiomatic semantics particularly focus attention on the process of reasoning about

programs. Instead of �rst de�ning program behaviors and then deriving laws from these

de�nitions, axiomatic methods take the laws themselves as the de�nition of a language.

Operational semantics specify program behaviors by de�ning abstract machines, which

use language terms as their machine code. A state of a machine is just a term; a machine's

behavior is de�ned by a transition function that, for each state of the machine, either gives

the next state by performing a step of simpli�cation on a term or declares that the machine

has halted. The �nal state that a machine reaches when started with term t as its initial

state is taken as the meaning of t.

Up to the 1980s, operational semantics were regarded as inferior to denotational and

axiomatic semantics until technical problems such as the treatment of nondeterminism,

concurrency, and procedures made operational semantics appear to be more attractive

� especially in the light of new developments such as Plotkin's Structural Operational

Semantics [Plo81], which is used in this work. In contrast to so-called big-step semantics,

which directly formulate the notion of �this term evaluates to that �nal value�, Plotkin's

small-step style of operational semantics de�nes evaluation relations by individual steps

of computation that are necessary to rewrite a term until it eventually becomes a value �

a term that has �nished computing and cannot be reduced any further.

Table 1.6 de�nes an evaluation relation t→ t′ on terms. If t is the state of the abstract

machine at a given moment, then the machine can make a step of computation and change

its state to t′. In its pure form, the lambda-calculus does not have numbers or built-in

arithmetic operations. The only way how terms compute is the application of functions

to arguments, which themselves are functions. Each step in the computation corresponds

to rewriting an application, whose left-hand component is an abstraction, by substituting

the right-hand component for any occurrence of the bound variable in the abstraction's

44

body. In this way, the application (λx.t12)t2 evaluates in one step to [x 7→ t2]t12, which

means �the term obtained by replacing all bound occurrences of x in t12 by t2�. Following

Church, a term of the form (λx.t12)t2 is called a redex (�reducible expression�). The

operation of rewriting a redex according to the above rule is called beta-reduction. Several

di�erent beta reduction strategies have been studied over the years. They di�er in the

order of the evaluation of redexes during an evaluation.

Under full beta reduction any redex may be reduced at any time while under the

normal order strategy, the leftmost, outermost redex is always reduced �rst. The call

by name strategy is even more restrictive, allowing no reductions inside abstractions.

Variants of this evaluation strategy are found in Algol 60 [BBG63] and Haskell [HJW92].

In the call by value strategy only outermost redexes are reduced and a redex is reduced

only when its right-hand side has already been reduced to a value. In this work, the call

by value strategy is used since this strategy is the easiest to be augmented with more

advanced programming language features such as exceptions.

The substitution function [x 7→ s]t is de�ned inductively over its argument t where

terms are worked with �up to Church's alpha-conversion�, which includes the renaming of

bound variables in order to avoid free variables becoming bound (variable capture). In

particular, terms that di�er only in the names of bound variables are interchangeable in

all contexts. This convention renders the following de�nition of the substitution function

�as good as total� because variables can be renamed whenever necessary.

De�nition 1.2 (Substitution) The substitution function [x 7→ s]t is de�ned as follows.

• [x 7→ s]x = s

• [x 7→ s]y = y if y 6= x

• [x 7→ s](λy.t1) = λy.[x 7→ s]t1 if y 6= x and y /∈ FV (s)

• [x 7→ s](t1t2) = [x 7→ s]t1[x 7→ s]t2

45

De�nition 1.3 (Free variables) The set of free variables of a term t, written FV (t),

is de�ned as follows.

• FV (x) = {x}

• FV (λx.t1) = FV (t1)\{x}

• FV (t1t2) = FV (t1) ∪ FV (t2)

The lambda-calculus does not provide inherent support for multi-argument functions.

Instead, higher-order functions can be used that return functions as results. In this way,

f = λ(x, y).s can be rewritten as f = λx.λy.s, which is a function that, given a value

v for x, yields a function that, given a value w for y, yields the desired result. The

transformation of multi-argument functions into higher-order functions is called currying

in honor of Haskell Curry, while this technique is commonly credited to Moses Isajewitsch

Schön�nkel [Sch24] and Haskell Curry actually denied inventing this idea.

1.4.2 The simply typed lambda-calculus

In this subsection, the untyped lambda-calculus is augmented with elementary type anal-

ysis features. Since the pure lambda-calculus is Turing complete, there is no way to

implement complete type inference for all programs that may evaluate correctly at run-

time (e.g., expressions may diverge, which would make the type checker diverge as well).

Rather, a conservative type analysis is presented that does only make use of static infor-

mation that is already available at compile time. Moreover, programs are explicitly typed.

This is in contrast to implicitly typed programming languages where a type checker has to

infer or reconstruct implicit type information. Instead, lambda-abstractions such as λx.t

are written as λx : T1.t2, where the annotation on the bound variable gives information

about of which type the argument will be. The syntax and evaluation rules of the pure

simply typed lambda-calculus are given in Table 1.7. Di�erences to the de�nitions of the

untyped lambda-calculus are highlighted in gray.

46

Table 1.7: Simply typed lambda-calculus (λ→)

Extends Table 1.6

Syntax

t ::= terms:

λx : T.t abstraction

v ::= values:

λx : T.t abstraction value

T ::= types:

T → T type of functions

A atomic type

Γ ::= contexts:

∅ empty context

Γ, x : T term variable binding

Evaluation t→ t′

(λx : T11.t12)v2 → [x 7→ v2]t12 (E-AppAbs)

Typing Γ ` t : T

x : T ∈ Γ

Γ ` x : T
(T-Var)

Γ, x : T1 ` t2 : T2

Γ ` λx : T1.t2 : T1 → T2

(T-Abs)

Γ ` t1 : T11 → T12 Γ ` t2 : T11

Γ ` t1t2 : T12

(T-App)

47

A typing context Γ is a sequence of variables and their types. The �comma� operator

extends Γ by adding a new binding on the right. The empty context is either written as

∅ or it is just omitted. The typing rule for abstractions is given by (T-Abs). Variables

have whatever type one is currently assuming them to have in a context Γ.

Programming and data type languages often contain de�nitions of base types � sets

of simple, unstructured values which are regarded as being indivisible. For example,

the XML Schema De�nition data type language uses 19 built-in atomic data types to

represent, for instance, real numbers, strings, and Gregorian calendar dates. Table 1.7

already contains the syntactic form of uninterpreted base types where the letter A stands

for atomic types. In Chapter 3, this de�nition will be extended with interpretations that

cover constrained atomic data types.

1.4.3 The simply typed lambda-calculus with subtyping

A main characteristic of object-oriented languages is that an object can emulate another

object that has fewer methods or �elds, since the former supports the entire protocol

(i.e. the interface) of the latter. Without subtyping, the well-behaved term (λr : {x :

Nat}.r) {x = 0, y = 1}, where Nat represents the type of natural numbers, would not be

typeable since the given function de�nes a formal parameter of type {x : Nat} while the

actual type of the argument is {x : Nat, y : Nat}. However, it is intuitively safe to pass

arguments of type {x : Nat, y : Nat} because the function just expects a �eld {x : Nat}

and does not make any assumptions what other �elds the argument may or may not have.

The basic stipulations that de�ne S as a subtype of T , written S <: T , whenever

�every value described by S is also described by T �, that is, �the elements of S are a

subset of the elements of T �, are given in Table 1.8. In particular, the subtype relation

is re�exive and transitive. A maximum type Top is introduced to cover the type Object,

which is found in most object-oriented programming languages.

48

Table 1.8: Simply typed lambda-calculus with subtyping

(λ<:)

Extends Table 1.7

Syntax

T ::= types:

Top maximum type

Typing Γ ` t : T

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

Subtyping S <: T

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

S <: Top (S-Top)

T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

(S-Arrow)

{li : Ti
i∈1..n+k} <: {li : Ti

i∈1..n} (S-RcdWidth)

for each i Si <: Ti
{li : Si i∈1..n} <: {li : Ti i∈1..n}

(S-RcdDepth)

{kj : Sj
j∈1..n} is a permutation of {li : Ti

i∈1..n}
{kj : Sj j∈1..n} <: {li : Ti i∈1..n}

(S-RcdPerm)

49

Also, Table 1.8 adds the subtyping rules that pertain to record data types. The so-

called width subtyping rule (S-RcdWidth) for record data types captures the intuition

that subtypes of record types have more �elds while it is safe for supertypes to �omit�

�elds at the end of a record type. A longer record data type with more �elds describes

a more speci�c and thus smaller set of values. According to the depth subtyping rule

(S-RcdDepth), �elds of record data types may also vary as long as for each �eld of a

supertype there is a more speci�c �eld de�ned for the subtype. The record permutation

rule (S-RcdPerm), which says that �eld projection is insensitive to the order of the

�elds, makes the subtype relation a preorder (instead of a partial order) because there

are many pairs of distinct (record-) types where each is a subtype of the other. Similar

stipulations as for the subtype relation of record data types are formulated in Chapter 3

for constrained atomic data types.

1.4.4 Properties of typing and subtyping

Commonly, type safety is referred to as the fact that well typed terms in a programming

language can always be evaluated up to their �nal values without reaching a �stuck� state,

which is not designated a �nal value and where no further evaluation rules can be applied.

The safety (also called soundness) of the λ→ and λ<:-calculus are shown in [Pie02] based

on the progress and preservation theorems6.

Theorem 1.1 (Progress) A well-typed term is not stuck (either it is a value or it can

take a step according to the evaluation rules): If t : T then either t is a value or else there

is some t′ with t→ t′.

Theorem 1.2 (Preservation) If a well-typed term takes a step of evaluation, then the

resulting term is also well-typed: If t : T and t→ t′, then t′ : T .

6The slogan �safety is progress plus preservation� was articulated by Robert Harper; a variant was
proposed in 1994 by Andrew K. Wright and Matthias Felleisen. Don Roberts noted that �static types
give me the same feeling of safety as the announcement that my seat cushion can be used as a �oatation
device�.

50

These two properties guarantee that a well-typed term can never reach a stuck state

during evaluation, where a closed term is stuck when it is in normal form but not a value.

In practice, stuck states correspond to runtime errors such as exceptions or segmentation

faults. For the λC-calculus introduced in Chapter 3 it will as well be shown that the

progress and preservation theorems continue to hold in the presence of value space-based

subtyping.

51

52

CHAPTER 2

The Zhi# Compiler Framework

The Zhi# compiler framework makes the C# programming language extensible with

external type systems that can use a number of di�erent subtyping mechanisms. The type

system of the C# programming language implements nominal subtyping. In nominative

type systems type compatibility is determined by explicit declarations. A type is a subtype

of another if and only if it is explicitly declared to be so in its de�nition.

The XML Schema De�nition type system extends nominal subtyping with value space-

based subtyping. An atomic data type is a subtype of another if it is explicitly declared

to be so in its de�nition or if its value space (i.e. the set of values for a given data type)

is a subset of the value space of the other type. The subset relation of the types' value

spaces is su�cient. The two types do not need to be in an explicitly declared derivation

path.

In the Web Ontology Language, nominal subtyping is augmented by ontological rea-

soning. An inferred class hierarchy can include additional subsumption relations between

ontological concept descriptions. Ontological individuals can be explicitly declared to

be of a given type and they can be inferred to be in the extension of further concept

descriptions based on, for example, particular property values or cardinalities.

Some object-oriented programming languages provide a limited set of isomorphic map-

pings from XSD data types to programmatic types. In general, however, compilers for

programming languages such as Java or C# are unaware of the subtyping mechanisms

that are used for XSD and OWL � and the list of conceivable external type systems and

subtyping mechanisms can be arbitrarily extended.

53

The Zhi# compiler framework makes the C# programming language extensible in re-

spect of external type de�nitions and subtyping mechanisms. The resulting programming

language Zhi# adds a modicum of syntactical extensions to import and address external

types. The Zhi# compiler framework provides two extension points for type checking and

program transformation that can be implemented by compiler plug-ins for external type

systems.

2.1 The Zhi# Programming Language

The Zhi# programming language is a proper superset of ECMA 334 standard C# version

1.0 [HWG02]. The only syntactical extensions, which are entailed by Zhi#'s extensibility

with respect to external type systems, are the following.

External types, which may, for example, be declared in XSD �les or OWL ontologies,

can be included using the keyword import, which works analogously for external types

like the C# using keyword for .NET programming language type de�nitions. It permits

the use of external types in a Zhi# namespace such that, one does not have to qualify the

use of a type in that namespace. An import directive can be used in all places where a

using directive is permissible. As shown below, the import keyword is followed by a type

system evidence, which speci�es the external type system (i.e. compiler plug-in) that is

responsible for the import of the type de�nitions in the given external namespace. Unlike

using directives, the alias, which can subsequently be used to represent the external

namespace name, is not optional but must be speci�ed. Like using directives, import

directives do not provide access to any namespaces that may be nested in the speci�ed

external namespace (based on the namespace scheme of the external type system).

import type_system_evidence alias = external_namespace;

In Zhi# program text that follows an arbitrary number of import directives, external

type and property references must be fully quali�ed using an alias that is bound to the

54

namespace in which the external type is de�ned. Type and property references have the

syntactic form #alias#local_name (both the namespace alias and the local name must

be preceded by a '#'-symbol). It is not possible to 1) use external namespace references

at arbitrary positions in Zhi# programs and 2) use unquali�ed external type references.

External namespace references at arbitrary positions are not supported because external

type systems may use arbitrary schemes to denote a namespace. However, without syn-

tactical restrictions that are known beforehand it is not feasible to allow for such arbitrary

naming schemes in the Zhi# language grammar. Even for XSD and OWL namespaces,

which follow the generic syntax rules for URIs [BFM98], it may not be desirable to re-

peatedly use lengthy namespaces instead of handy aliases.

Finally, the C# language grammar was extended with binary comparison operators to

facilitate the inference of constrained atomic XML data types (see Chapter 5). The fol-

lowing table lists Zhi# comparison operators with their corresponding XSD constraining

facets. Constraining facets marked with an asterisk required additional operators.

Table 2.1: Zhi# comparison operators

Constraining facet Zhi# operator Constraining facet Zhi# operator

xsd:length* ?= xsd:minLength* ?>

xsd:maxLength* ?< xsd:pattern* ??

xsd:enumeration* $= xsd:maxInclusive <=

xsd:maxExclusive < xsd:minExclusive >

xsd:minInclusive >= xsd:totalDigits* %%

xsd:fractionDigits* %.

External types can be used in Zhi# programs in all places where .NET types are

admissible except for type declarations (i.e. external types can only be imported but not

declared in Zhi# programs). For example, methods can be overridden using external

types, user de�ned operators can have external input and output parameters, and arith-

metic and logical expressions can be built up using external objects. Because Zhi#'s

55

support for external types is a language feature and not (yet) a feature of the runtime,

similar restrictions to the usage of external types apply as for generic type de�nitions in

the Java programming language (e.g., methods cannot be overloaded based on external

types from the same type system at the same position in the method signature).

In Zhi# programs, types of di�erent type systems can cooperatively be used in one

single statement. As shown in line 5 in the following code snippet, the .NET System.Int32

variable age can be assigned the XML data type value of the OWL datatype property

hasAge that is declared for the ontological individual Alice.

1 import OWL ch i l = http :// c h i l . s e r v e r . de ;

2 c l a s s C {

3 pub l i c s t a t i c void Main () {

4 #c h i l#Person a l i c e = new #ch i l#Person("# c h i l#Alice ") ;

5 i n t age = a l i c e .# c h i l#hasAge ;

6 }

7 }

2.2 Architecture and Implementation

The Zhi# compiler framework incorporates a full-�edged source-to-source compiler for

C# version 1.0 [HWG02] plus the syntactical Zhi# language extensions. The language

syntax was speci�ed with an ANTLR [Par05] grammar from which the lexer and parser

were generated automatically. The ANTLR AST is transformed into a Zhi# Code DOM

representation. The developed Zhi# Code DOM comprises 74 classes to represent ele-

ments of a Zhi# program. A .NET TreeView component was implemented to visualize

the code structure of Zhi# programs on the screen and in form of printouts.

In the Zhi# programming language, it is possible to natively reference external type

de�nitions and cooperatively use these external types along with conventional C# lan-

guage features such as method overriding. As a consequence, the Zhi# compiler must be

56

Figure 2.1: Zhi# compiler framework

extensible with respect to external typing mechanisms (e.g., subsumption, type derivation,

type inference). The architecture of the Zhi# compiler on a component level is depicted

in Fig. 2.1. The Zhi# compiler framework provides the core functionality to type check

conventional C# programs and to transform program text into a pretty printed form. In

particular, compiler components such as the type table, the symbol table, and visitors to

create, traverse, analyze and modify the Code DOM representations of Zhi# programs are

included in the compiler framework. These core components are implemented such that,

they can be extended with support for external type systems such as XSD and OWL via

two extension points in the framework for typing and subtyping (interface IExternalType-

System) and program transformation (interface IExternalCompiler). For example, the

type table of the Zhi# compiler framework can handle method signatures that comprise

external type de�nitions without a priori knowledge about the particular external type

systems (e.g., XSD, OWL) that will eventually be used. On the other hand, compiler

plug-ins for external type systems can be developed without exhaustive knowledge about

the code structure of Zhi# programs.

57

Compiler plug-ins provide type checking and program transformation functionality

in order to use C# programming language features with type de�nitions and subtyping

mechanisms of external type systems. Up to now, two compiler plug-ins were implemented

to support the value space based subtyping of the XML Schema De�nition type system

[BM04b] and subtyping based on ontological reasoning as de�ned by the Web Ontology

Language [PHH04] in addition to the nominal subtyping of C#.

Figure 2.2: Zhi# compiler plug-in

As shown in Fig. 2.2 a Zhi# compiler plug-in comprises an implementation of the

corresponding external type system. This implementation is e�ectively a classi�er, which

computes the subsumption hierarchy of the external types. The subsumption hierarchy

is used by the external type checker, which computes the types of Zhi# expressions that

reference external types (e.g., member access expressions, binary expressions) and reports

ill-typed terms. Well-typed Zhi# expressions that involve external types are transformed

into conventional C# code that references the associated runtime plug-in for the exter-

nal type system. Section 2.3 elucidates the type checking and program transformation

58

extension points of the Zhi# compiler framework. The type derivation and type check-

ing features of XML Schema De�nition were implemented based on the λC-calculus (see

Chapter 3). Ontologies are processed using an implementation of the CHIL OWL API

(see Chapter 4). These libraries are required both at compile time as well as at run-

time. At compile time, the Zhi# compiler plug-ins utilize these libraries to provide type

inference and type checking for XSD and OWL type de�nitions as shown in Fig. 2.3.

Figure 2.3: Compilation of Zhi# programs

At runtime, compiled Zhi# code (i.e. plain .NET IL bytecode) uses the Zhi# runtime

library as shown in Fig. 2.4. The Zhi# runtime library comprises a core library that pro-

vides general functionality such as for the parsing of type names. The core library, which

is implemented as a partial static class, can be supplemented by type system speci�c

runtime libraries. The runtime library for XML Schema De�nition uses the implementa-

tion the λC-calculus to mimic the behavior of constrained XSD data types. The runtime

library for the Web Ontology Language uses the CHIL OWL API to process OWL DL

knowledge bases. In contrast to approaches that are based on wrapper classes or addi-

tional code generation, the program overhead of compiled Zhi# programs is constant and

does not grow with, for example, the number of referenced XSD or OWL types.

59

Figure 2.4: Execution of Zhi# programs

Fig. 2.5 depicts the architectural model of the Zhi# compiler framework on a class

level. The ZhiSharpCompiler class aggregates all components of the framework. Zhi#

source code and references to included .NET assemblies are passed into the ZhiSharp-

Compiler as ZhiSharpSourceObject and LibraryFile objects. Zhi# source code is tok-

enized and transformed into an AST by the ZhiSharpLexer and ZhiSharpParser, which

were automatically generated based on an ANTLR [Par05] grammar of the Zhi# lan-

guage speci�cation. A Zhi# Code DOM representation is built from the ANTLR AST.

The semantic analysis of input compilation units is performed on these Code DOM rep-

resentations. Program transformation is implemented as a Code DOM transformation

with subsequent transformation independent pretty printing (i.e. serialization of a Code

DOM to program text). A TypeTable, which comprises type de�nitions of input Zhi#

source code and referenced .NET assemblies, is built by the TCVisitorPass0Types and

TCVisitorPass0Members visitors. Type names in method and property bodies are re-

solved by the TCVisitorPass0Bodies visitor. The TCVisitorPass1 visitor performs the

actual type checking of the Zhi# code, which includes the application of type inference

mechanisms of activated IExternalTypeSystems. Note that the presence of implementa-

tions of such external type systems (e.g., ExternalTypeSystemXSD) is transparent to the

60

Figure 2.5: Zhi# compiler framework (class level)

61

TCVisitorPass1 visitor since only the type system independent interfaces of the TypeSys-

tem and TypeTable classes are used. Also, external type systems may cooperate in order

to resolve, for example, member access expressions where the member of an external type

is de�ned in another external type system (e.g., OWL datatype properties). Successfully

type checked Zhi# code is transformed into conventional C# code by the CompilerVisitor.

Again, a type system independent Compiler is used to make activated implementations of

the IExternalCompiler interface such as ExternalCompilerXSD transparent to the Zhi#

compiler framework.

The compilation of a Zhi# program into conventional C# is a six phase algorithm.

Firstly, in-memory representations of external type de�nitions are created by the activated

compiler plug-ins. The Zhi# compiler takes as input not only program source code and

referenced .NET assemblies but also �les with arbitrary content. These �les are passed

to the compiler plug-ins, which can opt to interpret the �le content as type de�nitions.

In practice, the �le name extensions are used by the compiler plug-ins to identify rele-

vant �les. Secondly, a type table is built that contains all type and member declarations

of input Zhi# compilation units and referenced .NET libraries. At this point, member

declarations may already be based on external type de�nitions (e.g., a method can be de-

clared that takes an XML data type value and returns an ontological individual). Thirdly,

input compilation units are semantically analyzed. This includes type inference and type

checking. Type inference is contributed by the compiler plug-ins. Thus, type system

speci�c constraints can be added to the genuine type representations that are managed

by the core compiler components. For example, for a string literal "hello" in a Zhi#

program the XSD compiler plug-in infers the value space constraints xsd:minLength = 5,

xsd:length = 5, and xsd:maxLength = 5, which are added to the type information of the

string literal that is managed by the compiler framework. Type checking is augmented by

the compiler plug-ins where needed for external types. Fourthly, Zhi# expressions that

contain external type references are transformed into conventional C# by the respective

compiler plug-ins for the external type de�nitions. These compiler plug-ins do not require

62

knowledge about the complete Zhi# language grammar. For the most part, only the

syntax of object creation (i.e. keyword new), member access (i.e. the �.� operator), and

binary expressions (e.g., assignments) will be necessary. Fifthly, the transformed Code

DOM, which at this point does no longer contain external type references or Zhi# spe-

ci�c notations, is serialized to C#. Finally, the generated C# code, which is correct by

generation, is compiled into a .NET assembly and linked with the Zhi# runtime library

using Microsoft's csc C# compiler. A Microsoft msbuild task was implemented to make

the compilation of Zhi# programs into .NET assemblies actually a one-step process for

developers. The build process is made even more transparent by the Eclipse-based Zhi#

frontend (see Appendix A.2).

The Eclipse-based frontend boasts an Eclipse project type that includes a Zhi# editor

with syntax highlighting and autocompletion for XSD and OWL type de�nitions and

pretty printing of Zhi# source code. XML schemas (i.e. .xsd-�les) and OWL ontologies

(i.e. .rdf/.owl-�les) that are comprised by a Zhi# project are automatically passed into

the Zhi# compiler along with the actual Zhi# source �les.

2.3 Framework Extension Points

The architectural model of the Zhi# compiler framework was designed for easy exten-

sibility. Most of the program analysis tasks that require knowledge about the possibly

complex code structure of C# programs were factored out of the framework extension

points for typing and program transformation. Plug-ins for the Zhi# compiler framework

can be developed without exhaustive knowledge about the Zhi# language grammar. The

other way around, no a priori knowledge about external type systems is required by the

compiler framework.

As a matter of course, the separation of the plug-ins from each other and from the

compiler framework is also likely to facilitate maintainability and con�gurability since

di�erent features can be developed further and used independently.

63

2.3.1 Typing extension point

Table 2.2 lists the methods of the IExternalTypeSystem extension point (formal parame-

ters and return types are omitted for brevity). There are three categories of methods.

Table 2.2: The IExternalTypeSystem extension point
Property/Method name Description

a) Evidence Gets the type system evidence
of the current type system.

a) Name Gets the name of the current type system.
a) SetTypeSystem() Sets the associated type system

of the current external type system.
a) AddExternalTypeSystem() Adds an associated external type system

of the current type system.
a) LoadLibraryFiles() Loads library �les (.dll, .xml, .owl-�les).
a) ImportedNamespaces Gets the imported external namespaces.
a) AddImportedNamespace() Adds an imported external namespace.
a) ClearImportedNamespaces() Clears the list/dictionary

of the imported external namespaces.
a) ResolveType() Resolves a speci�ed type.
a) TypeNames Gets the external type names.
a) Properties Gets the external property names.
b) IsNonArrayNumericType() Determines whether an external type

is a non-array numeric type.
b) IsNonArrayIntegerType() Determines whether an external type

is a non-array integer type.
b) IsNonArrayStringType() Determines whether an external type

is a non-array string type.
b) GetDirectBaseTypes() Gets the direct base types of an external type.
b) GetPrimitiveBaseTypes() Gets the primitive base types of an external type.
b) GetSupertypes() Gets the supertypes of an external type.
b) GetEquivalentTypes() Gets the equivalent types of an external type.
b) GetDisjointTypes() Gets the disjoint types of an external type.
b) GetSubtypes() Gets the subtypes of an external type.
b) IsSubtypeOf() Determines whether a type

is a subtype of another type.
b) IsSupertypeOf() Determines whether a type

is a supertype of another type.
c) GetLiteralConstraints() Gets the constraints for a literal node.
c) GetTypeOfPropertyAccess() Gets the type of an external property access.
c) GetTypeOfMethodInvocation() Gets the type of an external method invocation.
c) GetTypeOfIndexerAccess() Gets the type of an external indexer access.
c) CheckAssignment() Checks an assignment.
c) CheckISCompatibility() Checks the is compatibility.
c) CheckObjectCreationExpression() Checks an external object creation expression.
c) CheckBinaryExpression() Checks a binary expression (includes type inference).

There are technical methods, marked with an a) in the above list, for initializing the

type system component of a compiler plug-in (e.g., loading type de�nitions from �les) and

yielding information about the managed type information. Methods marked with a b) in

64

the list provide the actual (sub-)typing functionality of an external type system. These

methods likely require additional libraries that implement possibly complex classi�ers

and deduction engines (e.g., Description Logic reasoners). Note that there are not only

methods that return the subtypes and supertypes of a given type but also equivalent and

disjoint types. The third category of methods, marked with a c), is based on category

b) methods and infers and checks the types of basic Zhi# terms such as assignments or

member access expressions.

2.3.2 Program transformation extension point

Zhi# expressions that refer to external objects (e.g., ontological individuals) must be

transformed into conventional C# where external type and object references are replaced

by program code that utilizes runtime libraries, which manage the external data (e.g.,

ontological knowledge bases). In addition, as is the case for the XSD and OWL compiler

plug-ins, dynamic type checks can be performed by the generated code and the runtime

libraries.

Just like native .NET types, external type references can only occur in particular con-

texts in Zhi# programs. Also, given two cooperating Zhi# compiler plug-ins, only one

plug-in may be responsible for handling expressions in which types from both type sys-

tems occur. As a consequence, it would be impractical if a compiler plug-in would have to

implement a program transformation interface that covers the entire speci�cation of the

Zhi# programming language. Instead, the Zhi# compiler analyzes and pre-processes ex-

pressions that contain external types such that, external compiler plug-ins do only have to

implement 14 program transformation functions. These functions transform Zhi# source

code that contains external type references into conventional C# code. Table 2.3 lists

the methods that must be implemented by compiler plug-ins for the IExternalCompiler

extension point. Technical methods, marked with an a), are to initialize the program

transformation component of a compiler plug-in and to yield information about the used

65

type system. Methods marked with a b) generate the C# expressions (i.e. Code DOM

nodes) that are substituted for Zhi# terms that comprise external type and object refer-

ences.

Table 2.3: The IExternalCompiler extension point
Property/Method name Description

a) Evidence Gets the type system evidence of the current compiler.
a) Name Gets the name of the type system of the current compiler.
a) SetTypeSystem() Sets the host language type system.
a) SetExternalTypeSystem() Sets the external type system of the current compiler.
b) UseNamespace() Returns an expression that imports the required namespace

for an external namespace.
b) GetProxyType() Gets a host language proxy type for an external type.
b) Cast() Returns an expression that casts an expression

to the proxy type of its type.
b) CreateObject() Returns an expression that creates an object

from speci�ed expressions.
b) GetObject() Returns an expression that gets an object

from speci�ed expressions.
b) CreateArray() Returns an expression that creates an array

from speci�ed expressions.
b) Assign() Returns an expression that assigns a source expression

to a target expression.
b) Compute() Returns an expression that computes a binary expression.
b) PropertyAccess() Returns an expression that accesses a property

of an external host object.
b) PropertyUpdate() Returns an expression that updates a property

of an external host object.
b) IndexerAccess() Returns an expression that accesses an indexer

of an external host object.
b) IndexerUpdate() Returns an expression that updates an indexer

of an external host object.
b) MethodInvocation() Returns an expression that invokes a method

on an external host object.
b) ForEach() Returns an expression that iterates over an iterator expression.

The IExternalCompiler interface is for the most part context-free. Only 14 methods

that perform code transformations on the Zhi# Code DOM were necessary in order to

cope well with constrained XML data types and complex OWL concept descriptions

alike. The UseNamespace method returns a Code DOM node that imports the required

.NET namespace (e.g., the namespace of the CHIL OWL API) for a speci�ed external

namespace (e.g., a namespace of an OWL ontology). The GetProxyType method gets

the host language proxy type for a speci�ed external type. An expression that casts a

speci�ed expression to the proxy type of a speci�ed target type is returned by the Cast

66

method. Expressions that create and get an object and create an array from a speci�ed

list of expressions are returned by the CreateObject, GetObject, and CreateArray methods,

respectively. The Compute method returns an expression that computes the speci�ed

external binary expression. The special case of an assignment expression is handled by the

Assign method, which returns an expression that assigns a source expression to a target

expression. Methods for property access and property updates, for C#-like indexer access

and indexer updates, and for invoking methods on external host objects are provided in

order to allow for full-�edged external objects. The ForEach method returns an expression

that iterates over a given iterator expression.

The program transformation functions of the IExternalCompiler interface were speci-

�ed in the following premise-conclusion form.

Γ, xi : Tj
i∈1..l, j∈1..m ` Tj ∈ 4k

j∈1..m, k∈1..n

f4(x1, . . . , xl) =


case 1

...

case u

A particular implementation of a program transformation function is applicable only in

a context that is given by its premise. The premise of a program transformation function

comprises a typing context Γ and a number of type system evidences.

The typing context Γ is a sequence of variables and their types. The �comma� operator

extends Γ by adding a new binding on the right. The empty typing context ∅ denotes

that there are no assumptions about type bindings.

In addition to the typing context, the second relevant context part are the type system

evidences of the types used in the current type environment. Type system evidences

identify types as being de�ned in a certain (external) type system. Type system evidences

are used internally by the Zhi# compiler framework to select the appropriate type system

and compiler plug-in for an expression of a certain type.

67

The notion that a type T is de�ned in the type system TS is written as T ∈ 4TS.

Accordingly, type T 's type system evidence is 'TS '. Analogously, the fact that a names-

pace N is de�ned in the type system TS is written as N ∈ NTS. The implementation

of a program transformation function f that is provided by the compiler plug-in for type

system TS is denoted fTS. The indices ·NET and ·ETS denote the .NET type system and a

generic external type system, respectively. The domains of non-array and array types of

a type system TS are written as 4⊥TS and 4[]
TS, respectively, where 4TS = 4⊥TS ∪4

[]
TS.

Note that the schemata of the function premises only contain generic external types.

The decision which program transformation function is to be applied is taken without

dependence on one particular external type system whereas the selection of the particu-

lar function implementation is based on concrete external types. The external compiler

plug-in that provides the actual implementation of the function is selected based on the

particular type system evidences of the types of the term under consideration.

The implementations of program transformation functions are given as case-statements

where the associated value of the function is given for a number of cases. The case-

statements are considered in order (i.e. for the sake of brevity case speci�cations may be

complete only for their particular positions in the lists of cases).

The program transformation functions operate on the source code of Zhi# programs.

The output is either type information or conventional C# source code. External program

transformation functions may generate C# code that calls functions of the Zhi# runtime

library. The Zhi# runtime library is extended with a library component for each external

type system being used. Runtime library functions are given in the form fTS(...) where TS

denotes an (external) type system whose associated runtime library provides the function

f. A compiler plug-in for an external type system may refer to functions that are provided

by the runtime library of a di�erent type system. In particular, compiled Zhi# code can

make use of the .NET Base Class Library. In the following paragraphs the applicability

rules of the 14 category b) program transformation methods of Table 2.3 are given.

68

UseNamespace The UseNamespace function returns an expression that imports the

required .NET namespace for the speci�ed external namespace. Typically, the import

of an external namespace in a Zhi# program results in the import of the namespace of

the associated runtime library for this external type system 'ETS'. For example, OWL

namespace imports are substituted by an import of the .NET namespace of the Zhi#

runtime library for the Web Ontology Language.

∅ ` namespace ∈ NETS

UseNamespaceETS(namespace) =

{
...

GetProxyType The GetProxyType function yields the runtime proxy type for the spec-

i�ed external type T . The proxy type must be de�ned in the runtime library for the

external type system 'ETS'.

∅ ` T ∈ 4ETS

GetProxyTypeETS(T) =

{
...

Cast The Cast function returns an expression that implements a cast of the speci�ed

expression v to the proxy type of the speci�ed target type T . The proxy type of a .NET

type is the type itself.

Γ, v : V ` (V ∈ 4ETS ∨ T ∈ 4ETS)

CastETS(T, v) =

{
...

CreateObject The CreateObject function returns an expression that creates an object

from the speci�ed expressions {vi i∈1..n}. This object is an instance of the proxy type of

the speci�ed type T . Note that n here is allowed to be 0. In this case, the range 1..n is

empty and vi i∈1..n is {}, which stands for an empty argument list (i.e. a parameterless

constructor call).

Γ, vi : Vi
i∈1..n ` (T ∈ 4⊥ETS ∨

∨
Vi ∈ 4ETS)

CreateObjectETS(T, {vi i∈1..n}) =

{
...

69

GetObject The GetObject function returns an expression that gets an object from

the speci�ed expressions {vi i∈1..n}. This object is an instance of the proxy type of the

speci�ed external type T . Note that n here is allowed to be 0. In this case, the range 1..n

is empty and vi i∈1..n is {}, which stands for an empty argument list (i.e. a parameterless

constructor call).

Γ, vi : Vi
i∈1..n ` (T ∈ 4⊥ETS ∨

∨
Vi ∈ 4ETS)

GetObjectETS(T, {vi i∈1..n}) =

{
...

CreateArray The CreateArray function returns an expression that creates an array

from the speci�ed expressions {{vi i∈1..n}j j∈1..m}. This array is an instance of the proxy

type of the speci�ed external type T .

Γ, vij : Vij
i∈1..n, j∈1..m ` T ∈ 4[]

ETS

CreateArrayETS(T, {{vi i∈1..n}j j∈1..m}) =

{
...

Assign The Assign function is applied on terms of the form lvalue = rvalue. It yields

an expression that executes the assignment at runtime. The lvalue is an expression that

can appear as the destination of an assignment operator indicating where an rvalue should

be stored. In .NET, an lvalue may be a variable or a �eld or an (indexed) property of a

.NET host object. The Zhi# compiler �rst tries to select the external compiler plug-in

that provides the applicable implementation of the Assign function based on the type

system evidence of type T . If T is a .NET type, the external compiler plug-in is selected

based on the type system evidence of type V .

Γ, lvalue : T, rvalue : V ` (T ∈ 4ETS ∨ V ∈ 4ETS)

AssignETS(T, lvalue, rvalue) =

{
...

Compute The Compute function returns an expression that computes the binary ex-

pression x τ y. The returned expression is an instance of the (proxy type of the) speci�ed

70

(external) type T . If no applicable user de�ned operator exists in the common type ta-

ble, the Zhi# compiler �rst tries to select the external compiler plug-in that provides the

applicable implementation of the Compute function based on the type system evidence of

type X. If X is a native .NET type, the external compiler plug-in is selected based on the

type system evidence of type Y . Expressions of the form x τ= y, where τ= shall be an

arbitrary assignment operator (e.g., +=), are converted into the explicit form x = x τ y

and transformed using the Compute and Assign transformation functions.

Γ, x : X, y : Y ` (X ∈ 4ETS ∨ Y ∈ 4ETS)

ComputeETS(T, x, τ, y) =

{
...

PropertyAccess The PropertyAccess function returns an expression that accesses the

property p (the meta-property q) of the external host object o (of the external property

p). The property access is cast to the proxy type of the speci�ed external type T (external

host objects cannot contain .NET objects).

Γ, o : O ` O ∈ 4⊥ETS

PropertyAccessETS(T, o, p, q) =

{
...

PropertyUpdate The PropertyUpdate function returns an expression that updates the

property p of the external host object o with value v. The property access is cast to the

proxy type of the speci�ed external type T (external host objects cannot contain .NET

objects) in order to allow for cascaded assignments. Note that the semantics of a property

update depends on type O and property p of the used type system. For example, in Zhi#

programs, an assignment to a functional OWL datatype property updates the property

value of the speci�ed individual while an assignment to a non-functional OWL datatype

property adds the speci�ed value.

Γ, o : O, v : V ` O ∈ 4⊥ETS

PropertyUpdateETS(T, o, p, v) =

{
...

71

IndexerAccess The IndexerAccess function returns an expression that accesses the

indexer with arguments {{vi i∈1..n}j j∈1..m} of the external host object o. The indexer

access is cast to the proxy type of the speci�ed external type T (external host objects

cannot contain .NET objects).

Γ, o : O ` O ∈ 4⊥ETS

IndexerAccessETS(T, o, {{vi i∈1..n}j j∈1..m}) =

{
...

IndexerUpdate The IndexerUpdate function returns an expression that updates the

indexer with arguments {{vi i∈1..n}j j∈1..m} of the external host object o with value v. The

indexer access is cast to the proxy type of the speci�ed external type T (external host

objects cannot contain .NET objects) in order to allow for cascaded assignments.

Γ, o : O ` O ∈ 4⊥ETS

IndexerUpdateETS(T, o, {{vi i∈1..n}j j∈1..m}, v) =

{
...

MethodInvocation The MethodInvocation function returns an expression that invokes

the method m with arguments {vi i∈1..n} on the external host object o (on the external

property p). The return value is cast to the (proxy type of the) speci�ed (external) type

T .

Γ, o : O ` O ∈ 4⊥ETS

MethodInvocationETS(T, o, p, m, {vi i∈1..n}) =

{
...

ForEach The ForEach function returns an expression that iterates over the object v.

The yielded elements are cast to the proxy type of the speci�ed external type T .

Γ, v : V ` (V ∈ 4⊥NET ∧ T ∈ 4ETS)

ForEachETS(T, v) =

{
...

See Appendix B.1 and B.2 for XML Schema De�nition and Web Ontology Language

speci�c implementations of the program transformation functions, respectively.

72

2.4 Type System Cooperation

The Zhi# compiler framework facilitates the cooperative usage of type de�nitions from

di�erent type systems (e.g., OWL datatype properties can be assigned XML data type

values). Type checking and program transformation tasks are delegated to those compiler

plug-ins that are responsible for the particular external parts of an expression. The selec-

tion of these compiler plug-ins is controlled by the classi�cation of types into particular

type systems. Internally, type names are classi�ed into type systems based on their type

system evidences. These evidences are initially assigned to type names by the import

statement (see Section 2.1).

For member access expressions the type checking and program transformation order

is top-down (i.e. from left to right within the expression). For compound terms the type

checking and program transformation order is bottom-up (i.e. from inner expressions to

outer expressions). For binary expressions that contain external objects, �rst the compiler

plug-in for the type of the left operand is consulted. If the left operand is a .NET object

or if the consulted external type system fails to type check the binary expression, the

compiler plug-in for the type of the right operand is used. If this fails again the binary

expression is rejected by the Zhi# type checker.

Zhi# programs with no external type references (i.e. conventional C# code) are ex-

haustively checked by the Zhi# compiler, too. An input Zhi# program is either rejected

by the Zhi# type checker or the generated C# code is well-typed. Zhi# expressions that

do not contain external objects are not subject to program transformations except for

pretty-printing to the output C# code of the Zhi# compiler.

In the Zhi# code snippet below, a .NET and an XSD byte1 variable are de�ned in line

1 and 2, respectively. The Zhi# type checker validates that the internal .NET type byte

(i.e. System.Byte) exists in the imported .NET namespaces. Based on the type system

evidence of the external type xsd#byte the XSD compiler plug-in is consulted to check

1In .NET a byte is an unsigned 8-bit integer, in XSD a byte ranges from -128 to +127.

73

the availability of this type de�nition in one of the imported XSD namespaces. For line

3, the XSD compiler plug-in is utilized to check that the type name xsd#short, which

is used for the declaration of variable c, exists in one of the imported XSD namespaces.

Next, the XSD compiler plug-in is used to compute the type of the binary expression

a+b to be xsd#decimal{%. 0}{>= -128}{<= 382}2 (a number with no fraction digits

that is greater than or equal to -128 and less than or equal to 382, see Section 3.7 for

a description of the XSD constraint arithmetic). Finally, the assignment of the binary

expression a+b to c is validated based on the subsumption relation between the two types

xsd#short (i.e. a 16-bit signed integer) and xsd#decimal{%. 0}{>= -128}{<= 382}.

1 byte a = 0 ;

2 #xsd#byte b = 0 ;

3 #xsd#shor t c = a + b ;

For plain external variables and external members of .NET host objects, the type of the

variable itself and of the complete compound expression, respectively, determines which

external compiler plug-in is to be used for type checking and program transformation.

For property access expressions of external host objects, the context of the member access

has to be taken into account. If an expression of the form externalHostObject.external-

Property is used as an lvalue, the compiler plug-in for the type of the external host object

is responsible for handling access to the speci�ed property. This is the case in line 3 in

the following code snippet. Variable r is declared to refer to an instance of the OWL

class Room. Although the type (i.e. the range) of its functional property hasCapacity �

and therefore the type of the whole member access expression � shall be xsd#short, only

the OWL compiler plug-in can generate code that sets the value of property hasCapacity

of individual Room248 accordingly. In line 4, the external member access expression is

used as an rvalue. In this case, type checking and transformation of the binary expression

r.#ont#hasCapacity - 2 is delegated to the XSD compiler plug-in based on the XSD type

of the compound left operand. The XSD compiler plug-in uses a reference to the compiled

2In Zhi#, type names can be followed by constraint notations of the form {facet literal}.

74

OWL member access expression in order to apply its program transformations to the

complete binary expression. In order to keep the compilation of external member access

expressions context-free with respect to their use as source values or target locations,

both the lvalue and rvalue forms are created and stored as attributes of the member

access expression node in the Zhi# Code DOM.

1 #xsd#shor t c = 8 ;

2 #ont#Room r = new #ont#Room("#ont#Room248 ") ;

3 r .#ont#hasCapacity = c ;

4 i n t i = r .#ont#hasCapacity − 2 ;

Each binary expression in the above code snippet is compiled by the Zhi# compiler

component that is responsible for the respective type system. The preceding listing would

be compiled into the following C# code (for the sake of brevity, only the aliases �ont�

and �xsd� are used instead of the fully qualifying OWL and XSD namespaces; .NET

namespaces are omitted for types and static methods of the Zhi# runtime library).

1 RTSimpleType c = NewXSD(" xsd#short " , 8) ;

2 OWLIndividual r = AssertKindOf (CreateOWLIndividualByName (" ont#Room248" , "ont#Room") , "ont#Room") ;

3 SetOWLDatatypePropertyValue (AssertKindOf (r , "ont#Room") , "ont#hasCapacity " , c) ;

4 System . Int32 i = ↪→

5 Convert . ToInt32 ((Subtract ion (" xsd#decimal {\%. \"0\"}{> \"−32771\"} ↪→

6 {>= \"−32770\"}{<= \"32765\"}{< \"32766\"}" , ↪→

7 GetFunctionalOWLDatatypePropertyValue (AssertKindOf (r , "ont#Room") , ↪→

8 "ont#hasCapacity " , ↪→

9 "xsd#short ") , ↪→

10 NewXSD(" System . Int32{> \"1\"}{>= \"2\"}{<= \"2\"}{< \"3\"}" , 2)) ↪→

11) . ToString ()) ;

The code above uses static functions de�ned in the partial static class ZhiSharp-

Runtime of the Zhi# runtime library and its XSD and OWL speci�c extensions. The

de�nition of the partial ZhiSharpRuntime class can be split over two or more source �les

(cf. C# keyword partial). Thus, its members could be declared private and still be visible

to compiler plug-in implementors. Note that all external type system functionality that

is provided by compiler plug-ins and extensions of the Zhi# runtime library is used in

a �pay as you go� manner. In Zhi#, there is no performance or code size overhead for

conventional C# code and Zhi# programs that do not use external type de�nitions.

75

2.5 Related Work

The Zhi# compiler framework makes external type systems pluggable. In [Bra04], Gilad

Bracca argues in favor of Curry-style language de�nitions where a type system is neither

syntactically nor semantically required. In fact, the evaluation rules of most common

theoretical models of programming languages such as the λ-calculus do not depend on

type rules. Still, Zhi# � as is conventional C# � is given in the Church-style where typing

is prior to semantics (i.e. the behavior of ill-typed terms is unde�ned). In particular, the

.NET type systems remains mandatory for .NET objects in Zhi# programs. External

objects such as XML data type values or ontological individuals can only be used in

the presence of the respective external type system (i.e. compiler plug-in). Also, XML

data type inference is not optional with the type checker. The Church-style language

speci�cation of Zhi#, which is based on mandatory type systems, allows for usual pro-

gramming techniques such as class-based encapsulation and static type-based overloading.

Class-based encapsulation would be prohibitively expensive with optional type systems,

where object-based encapsulation such as in Self or Smalltalk would be used instead. An-

dreae et al. developed a framework for implementing pluggable type systems for the Java

programming language [ANM06]. Their JavaCOP system enforces user-de�ned typing

constraints of Java types (e.g., nonnull, con�ned) written in a declarative rule language.

In contrast, the Zhi# framework does not facilitate the implementation of external type

systems but their incorporation with the type checker of the Zhi# programming language.

It is hard to imagine to model the XSD and OWL classi�er and deduction algorithms and

their interplay with the Zhi# type checking in the JavaCOP rule language. Also, the

JavaCOP framework does not support type inference and requires basic knowledge of

the code structure of Java programs.

The described compiler framework facilitates the incorporation of schema and ontology

languages � in form of type de�nitions � with the C# programming language. An inverse

technique is, for example, the integration of Turing-complete JavaScript with XHTML

76

documents. Both approaches are asymmetric in a sense that a full-�edged programming

language is augmented with external type de�nitions or vice versa. One can also �nd in

a number of application domains examples of slightly more symmetric approaches such

as, for example, the integration of SQL queries with C code. In practice the degree of

integration is inversely related to the symmetry of the integration problem.

The Zhi# compiler framework is complementary to a long line of (partly symmetric)

approaches to add syntactic extensibility to programming languages [BV04, Lea66, WC93,

CMA94, BLS98, BG04a]. Most of these approaches support syntactic safety. Embedded

code is checked at compile time to be syntactically correct. In [BV04], embedded code

is used to compose XML documents. Proper program transformations and a properly

de�ned underlying XML API guarantee that compositions (i.e. generated XML instance

documents) are syntactically correct as well. However, nothing can be said about the

validity of generated XML documents with respect to a given schema. This lack of type

safety is inherent to most of the referenced approaches. In [BLS98], argument and result

types of embedded code are checked but there is no error trailing (i.e. type checking errors

in the expanded code are not traced back to the unexpanded syntax).

In contrast to syntactic language extensions, the Zhi# approach makes external type

de�nitions amenable to full-�edged type checking in the context of their use within the

host language. External types can be addressed following an object-oriented notation.

In particular, external types are assumed to be organizable into taxonomies. Such a

hierarchical organization provides for the reuse of methods and data that are located

higher in the hierarchy. Objects are either atomic value types, whose value spaces may

be constrained by means of constraining facets, or complex types, which can be seen as

collections of named attributes. The author trusts that these two notations plus operator

overloading plus some minor syntactical extensions for importing external namespaces and

referencing external types are su�cient for a variety of applications. In fact, Bravenboer

and Visser state that in object-oriented languages �language constructs are often su�cient

for domain abstractions at the semantic level� [BV04].

77

2.6 Summary

The author devised a compiler framework that makes the C# programming language

extensible with respect to external typing and subtyping mechanisms (e.g., type inference,

subsumption, type derivation). External type de�nitions can be used in Zhi# programs

in all places where .NET types are admissible except for type declarations. The resulting

Zhi# programming language is a proper superset of ECMA 334 standard C# version

1.0. Three minor syntactical extensions are entailed by Zhi#'s support for external type

systems. Firstly, external types can be included using the keyword import, which works

analogously for external types like the C# using directive for .NET types. Secondly, in

Zhi# program code external type references must be fully quali�ed using an alias that

is bound (via an import directive) to the containing external namespace. Thirdly, the

Zhi# language grammar includes additional binary comparison operators to facilitate the

inference of constrained XML data types.

Zhi# programs are compiled into conventional C# code, which is correct by gen-

eration. The Zhi# compiler framework incorporates a complete source-to-source C#

compiler including a Code DOM, which comprises 74 node types to represent elements of

a Zhi# program. The compiler framework provides the core functionality to type check

and transform conventional C# programs. The architectural model of the Zhi# compiler

framework was designed for easy extensibility. Most of the program analysis tasks that

require knowledge about the possibly complex code structure of C# programs were fac-

tored out of the framework extension points. Compiler plug-ins must implement extension

points for (sub-)typing and program transformation. Both extension points are for the

most part context free (i.e. the analysis and transformation of external expressions does

not depend on the position of the expressions in the program text). Plug-ins for the Zhi#

compiler framework can be developed without exhaustive knowledge about the Zhi# lan-

guage grammar. In particular, only 14 methods that perform code transformations on

the Zhi# Code DOM are necessary in order to cope well with external type systems as

78

di�erent as constrained XML data types (see Appendix B.1) and complex OWL concept

descriptions (see Appendix B.2). At the same time, no a priori knowledge about the sup-

ported external type systems of prospective compiler plug-ins is required in the compiler

framework. In contrast to naïve approaches that introduce a proxy class for every external

type de�nition or that are based on additional code generation, the program overhead of

compiled Zhi# programs is constant and does not grow with, for example, the number of

referenced XML data types or OWL concept descriptions.

The Zhi# compiler facilitates the cooperative usage of type de�nitions from di�erent

type systems. For example, XML data types can be used along with OWL datatype prop-

erties. Type checking and program transformation are accomplished by those compiler

plug-ins that are responsible for the particular external expression parts. The compiler

framework selects the compiler plug-ins based on the classi�cation of types into type

systems. Internally, types are classi�ed into type systems based on their type system

evidences that are initially assigned to type names by import directives. All external type

system functionality is used in a �pay as you go manner�. There is no performance or

code size overhead for Zhi#programs that do not use external type de�nitions.

The presented approach is not limited to the C# programming language but can

equally be applied to any statically typed object-oriented programming language (e.g.,

Java). Also, external type systems are not limited to XML Schema De�nition's value

space-based subtyping or ontological reasoning with the Web Ontology Language.

The current implementation of the Zhi# compiler is hosted by a .NETWindows Forms

application (see Fig. A.1). This host application provides an XML-over-TCP interface,

which is used by the Zhi# Eclipse frontend (see Fig. A.2). The Eclipse-based frontend

boasts a Zhi# editor with syntax highlighting and autocompletion of XML data types,

OWL concept descriptions, and ontological roles. An MSBuild task component was im-

plemented that makes the Zhi# compiler available for the build system of Microsoft's

msbuild.exe tool and Visual Studio.

79

80

CHAPTER 3

The λC-Calculus

This chapter elucidates an extension of the simply typed lambda calculus with subtyping

(λ<:) for constrained atomic (i.e. simple) data types. In this work, the term �constrained

types� refers to atomic data types that represent a value space, which may be constrained

by explicitly de�ned constraining facets (e.g., xsd:minExclusive, xsd:maxExclusive). This

is di�erent to constraint-based type inference algorithms found in the literature where

constraints are not checked but rather recorded for later consideration.

Atomic data types can only have atomic values, which are not allowed to be further

fractionalized even though this may be technically possible (e.g., the XML data type

xsd#string is considered an atomic data type despite the fact that it comprises several

distinguishable characters). The subtyping and type derivation features of the λC-calculus

were developed in order to cover constraint-based type derivations as they are allowed for

atomic XML Schema De�nition data types. The notations that are used in this chapter

are listed in Table 3.1. See Appendix C for a complete de�nition of the λC-calculus.

Analogously to the W3C Recommendation for XML data types [BM04b] we begin

with the introduction of a number of unconstrained primitive data types P1, . . . , Pn ∈

P . In particular, built-in XML Schema De�nition data types such as xsd#duration,

xsd#dateTime, and xsd#decimal are valid elements of P and will be denoted Pxsd#duration,

Pxsd#dateTime, and Pxsd#decimal, respectively.

A primitive data type P is a three-tuple consisting of a set of distinct values denoted

υ(P), called its value space (e.g., the value space υ(Pxsd#boolean) is the set {true, false} to

denote a logical true and a logical false), a set of lexical representations called its lexical

81

Table 3.1: Terminology of the λC-calculus
P1, . . . , Pn ∈ P primitive base types (e.g., Pxsd#boolean, Pxsd#string)

υ(T) value space of type T

c = φ(TV)b constraint c with base type parameter TV and body b

b = {x|x ∈ υ(TV)}
⋂

k∈1..m

{x|x ≺ literalk} constraint body b with base type parameter TV

T.c constraint application
T⋂

i∈1..n

ci ≡ T.c1.cn multiple constraint application

c{{TV ← T}} type variable binding in constraint c

υ(c{{TV ← T}}) value space of bound constraint c

<: subtype of

<:: subconstraint of

space, and a set of fundamental facets that characterize properties of the value space (e.g.,

cardinalities, order relations). Each value in the value space υ(P) of a data type P may

be denoted by more than one literal of its lexical space (e.g., �1� and �1.0� are both valid

lexical representations of the same Pxsd#float value 1).

3.1 Facets

3.1.1 Fundamental Facets

A fundamental facet is an abstract property that semantically characterizes the values in a

value space. TheλC-calculus includes the fundamental facets equality, order, boundedness,

cardinality, and numeric as provided by the W3C Recommendation for XML data types

[BM04b]. The fundamental facet date-time was added to indicate dates and times.

Every value space supports the notion of equality, with the following rules. For any a

and b in the value space, either a is equal to b, denoted a = b, or a is not equal to b, denoted

a 6= b. There is no pair a and b from the value space such that both a = b and a 6= b. For

all a in the value space, a = a. For any a and b in the value space, a = b if and only if b = a.

82

For any a, b, and c in the value space, if a = b and b = c, then a = c. For any a and b in

the value space, if a = b, then a and b cannot be distinguished (i.e. equality is identity).

In spite of the fact that some value spaces of built-in XML Schema De�nition data types

such as Pxsd#float and Pxsd#double may intuitively appear to be compatible, they will be

treated as pairwise disjoint for primitive data types Pi, Pj ∈ P where i 6= j and i, j ∈ 1..n

(i.e. Pi and Pj do not share any values).

Value spaces may either be ordered or partially ordered. A value space, and hence a

data type, is said to be ordered if there exists an order-relation de�ned for that value

space. Data types where the order relation is irre�exive, asymmetric, and transitive are

said to be partially ordered. Data types whose value spaces have upper and lower bounds

de�ned are said to be bounded ; unbounded if no such bounds exists. Value spaces may

be �nite or countably in�nite. A data type is said to have the cardinality of its value

space. A data type is said to be numeric if its values are conceptually quantities in some

mathematical number system. A data type is said to be a date-time data type if its values

denote dates and times as described in ISO 8601 [Int04].

3.1.2 Constraining Facets

A constraining facet is an optional property that can be applied to a data type to constrain

its value space. In the λC-calculus, constrained atomic types are computational structures.

The only operations on atomic types are constraint applications. Table 3.1 summarizes

the notations that are used for atomic types and constraints.

In more detail, a value space υ(T) is the set of values for a given data type T . The

value spaces of primitive XML Schema De�nition data types Pxsd such as Pxsd#duration,

Pxsd#dateTime, and Pxsd#decimal are given by the respective type de�nitions of XML Schema

De�nition built-in data types [BM04b].

The value space of a base type T can be restricted by the application of one or more

constraints ci = φ(TV)bi
i∈1..n. Each constraint ci has a type variable TV , which is to be

83

bound to a base type T , and a body b that possibly constrains the value space υ(T). The

letter φ is used as a binder for the base type parameter TV . A constraint c = φ(TV)b

where the type variable TV is bound to a base type T (denoted by c{{TV ← T}}) has a

value space υ(c{{TV ← T}}) comprising all elements of the value space of the base type

T that satisfy the comparison operations de�ned in the constraint body b. A constraint

body b = {x|x ∈ υ(TV)}
⋂

k∈1..m

{x|x ≺ literalk} de�nes the intersection of the value space

of TV and those values that satisfy the properties x ≺ literalk
k∈1..m. Depending on

the constraining facet '≺', literalk is interpreted as a lexical representation of an element

of υ(TV) or of another value space that is implicitly e�ective for the constraining facet

according to, for example, the W3C Recommendation for XML Schema De�nition (e.g.,

if TV is bound to the XML data type Pxsd#gYear, literalk is interpreted as a lexical

representation of a Gregorian calendar year while it is taken as an integer number for the

constraining facets cxsd:length and cxsd:totalDigits, which de�ne the length of string data types

and the maximum number of digits of integer data types, respectively).

Table 3.2: Comparison operators for XSD

Zhi# comparison operator XSD constraining facet

?= cxsd:length (c?=)

?> cxsd:minLength (c?>)

?< cxsd:maxLength (c?<)

?? cxsd:pattern (c??)

$= cxsd:enumeration (c$=)

<= cxsd:maxInclusive (c≤)

< cxsd:maxExclusive (c<)

> cxsd:minExclusive (c>)

>= cxsd:minInclusive (c≥)

%% cxsd:totalDigits (c%%)

%. cxsd:fractionDigits (c%.)

84

In order to capture the constraining facets as de�ned in the W3C Recommendation

for XML Schema De�nition [BM04b] the comparison operators given in Table 3.2 can be

substituted for the operator placeholder '≺' in constraint bodies. The given operators

were also included in the Zhi# language speci�cation in order to cope particularly well

with constrained XML data types (see Chapter 5). Particular constraints where both the

comparison operator and the (single) literal of the constraint body are given are denoted

by a c subscripted with the operator symbol or the name of the constraining facet followed

by the literal (e.g., c[< 5] and c[xsd:maxExclusive 5] denote the exclusive upper bound `�ve').

A constraint c1 = φ(TV 1)b1 is a sub-constraint of a constraint c2 = φ(TV 2)b2 if the

base type parameters TV 1 and TV 2 are bound to the same base type T and the value

space υ(c1{{TV 1 ← T}}) is subsumed by υ(c2{{TV 2 ← T}}) as shown in Table 3.3.

Table 3.3: S-CstrVSpace

υ(c1{{TV ← T}}) ⊆ υ(c2{{TV ← T}})
c1 <:: c2

Rule S-CstrVSpace subsumes the width and depth subconstraint rules S-Cstr-

Width and S-CstrDepth. The width subconstraint rule S-CstrWidth as shown in Ta-

ble 3.4 captures the intuition that one wants to consider the constraint c1 = φ(TV){x|x ∈

υ(TV)}
⋂

i∈1..n+k

{x|x ≺ literali} to be a subconstraint of the less restrictive rule c2 =

φ(TV){x|x ∈ υ(TV)}
⋂

i∈1..n

{x|x ≺ literali}.

Table 3.4: S-CstrWidth

φ(TV){x|x ∈ υ(TV)}
⋂

i∈1..n+k

{x|x ≺ yi} <:: φ(TV){x|x ∈ υ(TV)}
⋂

i∈1..n

{x|x ≺ yi}

Rule S-CstrWidth applies only to constraints where the common properties x ≺

literali
i∈1..n are identical and fewer properties are de�ned in the body of constraint c2

than in the body of c1. It is also safe to allow the comparison operands literali i∈1..n

to vary as long as the value spaces of each corresponding comparison operation are in

85

the subset relation. The depth subconstraint rule S-CstrDepth as shown in Table 3.5

captures this notion.

Table 3.5: S-CstrDepth

for each i {x|x ≺ yi} ⊆ {x|x ≺ zi}
φ(TV){x|x ∈ υ(TV)}

⋂
i∈1..n

{x|x ≺ yi} <:: φ(TV){x|x ∈ υ(TV)}
⋂

i∈1..n

{x|x ≺ zi}

As shown below, a more restrictive constraint succ(c) can be computed by replacing

the literal y in the body of constraint c by its successor succ(y) or predecessor pred(y)

depending on the used comparison operator and bound base type such that, the resulting

value space of the constrained type becomes more speci�c. Note that here the variable

y stands for literal values while the variable c denotes a constraint (i.e. the de�nition of

succ(c) is not circular).

c = φ(TV){x|x ∈ υ(TV)} ∩ {x|x ≺ y}

cpred ≡ φ(TV){x|x ∈ υ(TV)} ∩ {x|x ≺ pred(y)}

csucc ≡ φ(TV){x|x ∈ υ(TV)} ∩ {x|x ≺ succ(y)}

succ(c) =


cpred i� υ(cpred{{TV ← T}}) ⊂ υ(c{{TV ← T}})

csucc i� υ(csucc{{TV ← T}}) ⊂ υ(c{{TV ← T}})

The successor succ(c) of a constraint c is unde�ned if there are no constraints cpred and

csucc whose values spaces � when applied on a base type T � are subsumed by υ(c{{TV ←

T}}). In this case, it is not possible to derive further subtypes using constraint c. As a

result, the constraint's host type to which the base type parameter TV is bound is �nal

over constraint c (e.g., a constraint that de�nes the length of a string data type cannot

be used to derive subtypes since strings must be of exactly the given length).

86

3.2 Type Derivation

In the λC-calculus, atomic types are inductively de�ned by their value spaces. Atomic

types are derived through the application of value space constraints according to rule

Td-CstrApp.

Table 3.6: Td-CstrApp

T ′ = T.c

υ(T ′) = υ(c{{TV ← T}})

Constraint applications on atomic types can be reduced to set operations on their value

spaces. Let Tn ≡
T0⋂

i∈1..n

ci be an atomic type, which shall be derived from a given base

type T0 based on a number of constraints c1, .., cn. Using rule Td-CstrApp the e�ective

value space υ(Tn) of the derived type Tn can be computed by reducing the sequence of

constraint applications T0.c1....cn to the successive application of constraints ck on type

Tk−1 for k = 1, .., n such that, Tk = Tk−1.ck. Accordingly, υ(Tk) = υ(ck{{TV ← Tk−1}}).

A value space expression υ(ck{{TV ← Tk−2.ck−1}}) may be rewritten as υ(ck{{TV ←

Tk−2}}) ∩ υ(ck−1{{TV ← Tk−2}}) as long as type de�nitions within a derivation chain

are not subject to change. If in a derivation tree a type de�nition T is substituted by

a more speci�c type de�nition T ′ (denoted by T → T ′), all dependent type de�nitions

change accordingly as de�ned by rule Td-Subs (note that T and T ′ must be derived from

the same primitive base type). For example, if in a derivation tree T3 <: T2 <: T1, where

T2 ≡ T1.c11 and T3 ≡ T2.c2, T2 → T2.c12, then T3 → T3.c12.

Table 3.7: Td-Subs

T → T ′

T.c→ T ′.c

Using constraint-based type derivation, an atomic data type age as de�ned in the

XSD listing shown below can be derived from the XML data type Axsd#int through the

87

application of the two constraints c[≥ 0] = φ(TV){x|x ∈ υ(TV)}∩{x|x ≥ 0} and c[< 110] =

φ(TV){x|x ∈ υ(TV)} ∩ {x|x < 110} as follows: age = Axsd#int.c[≥ 0].c[< 110].

1 <xsd : schema xmlns : xsd="..." >

2 <xsd : simpleType name="age">

3 <xsd : r e s t r i c t i o n base="xsd : i n t">

4 <xsd : min Inc lu s ive va lue="0"/>

5 <xsd : maxExclusive va lue="110"/>

6 </xsd : r e s t r i c t i o n >

7 </xsd : simpleType>

8 </xsd : schema>

The value space of the derived data type age comprises all elements of υ(Axsd#int),

which are greater than or equal to zero and less than 110.

The e�ective value space of a derived data type can be resolved by expanding all

constraints that were applied to the primitive base type. The constrained type age is

e�ectively derived from the XSD built-in primitive type Pxsd#decimal, whose axiomatically

de�ned value space is the subset of the real numbers that can be represented by decimal

numerals, through the application of the following constraints: age = Pxsd#decimal.c[%. 0].

c[≥ −9223372036854775808].c[≤ 9223372036854775807].c[≥ −2147483648].c[≤ 2147483647].c[≥ 0].c[< 110]

The above type de�nition is given in normal form (i.e. all constraints that are used for

the type derivation are explicitly applied on a primitive base type with a prede�ned value

space). Using the rules S-CstrVSpace, S-CstrWidth, and S-CstrDepth a normal

form can be reduced to a minimal normal form where each constraining facet such as, for

example, c≤ occurs only once. The de�nition of the derived type age can be reduced to

the following minimal normal form: age = Pxsd#decimal.c[%. 0].c[≥ 0].c[≤ 2147483647].c[< 110]

Even though the constraint c[< 110] is intuitively more speci�c than c[≤ 2147483647] for

the domain of the primitive base type Pxsd#decimal there is no universally valid rule to

merge two di�erent constraining facets. Still, implementations of the λC-calculus as in

88

the XSD plug-in for the Zhi# compiler framework may treat constraining facets such as

xsd:maxInclusive and xsd:maxExclusive as being compatible (i.e. reducible) when applied

on the same primitive base type.

Also, for the sake of e�ciency, our implementation of the λC-calculus reduces all

type de�nitions to their minimal normal forms. Thus, for a given number of di�erent

constraining facets, the evaluation of the subtyping rules as described in the next section

takes the same number of steps independent of the type derivation depth.

3.3 Subtyping

A main characteristic of object-oriented languages is that an object can emulate another

object that has fewer methods, since the former supports the entire protocol of the latter.

Analogously, for constrained data types as de�ned in this work, the basic rules of sub-

typing are e�ective: re�exivity, transitivity, and subsumption. Additionally, width and

depth subtyping rules apply to atomic data types that are constrained by one or more

constraining facets.

A type S is considered to be a subtype of T (denoted by S <: T) if the value space of

S is a subset of the value space of T as shown in Table 3.8. In particular, S and T must

be derived from the same primitive base type since otherwise their value spaces would be

disjoint. The rule S-VSpace subsumes the width and depth subtyping rules S-Width

and S-Depth.

A type S is considered to be a subtype of U if both types are derived from the same

base type T through the application of constraints and fewer constraints are de�ned for

type U than for S. The intuition that it is safe to add constraints to an atomic type is

captured by the width subtyping rule S-Width for constrained atomic types as shown

in Table 3.9 (the notation
T⋂

i∈1..n

ci is a shorthand form for T.c1.cn, i.e. the subsequent

application of constraints ci i∈1..n on base type T).

89

Constraints that are de�ned for atomic types may vary as long as the value spaces

of each corresponding constraint are in the subset relation (i.e. the constraints are in

the sub-constraint relation denoted by c <:: d). The depth subtyping rule S-Depth for

constrained atomic types as shown in Table 3.10 expresses this notion.

Finally, the subtyping rule S-App captures the notion that a constraint application

always makes a type more speci�c (i.e. constraint applications can only reduce the value

space of a type), which is a required property for the soundness of the λC-type system.

Table 3.8: S-VSpace

υ(S) ⊆ υ(T)

S <: T

Table 3.9: S-Width

S =
T⋂

i∈1..n+k

ci U =
T⋂

i∈1..n

ci

S <: U

Table 3.10: S-Depth

for each i ci <:: di S =
T⋂

i∈1..n

ci U =
T⋂

i∈1..n

di

S <: U

In the λC-calculus, the subtyping rule for function types is the standard one with

covariant return types and contravariant function parameters (i.e. a function type is con-

travariant in its domain and covariant in its range). For constrained atomic data types that

are embedded with a conventional object-oriented programming language, the subtyping

rule for function types could follow the same scheme. However, while covariant return

types and contravariant formal parameter types are generally safe, di�erent programming

languages support di�erent variance policies. For example, return type covariance is im-

plemented in the Java programming language version 1.5 while it is not in version 1.0

90

Table 3.11: S-App

S <: T

S.c <: T

of the C# programming language where both return and parameter types have to be

invariant. While the calculus presented in this work uses a speci�c implementation of the

subtyping rule for function types, di�erent o�-the-shelf behaviors of host programming

languages may be adopted. Unlike the current version of C#, in the Zhi# programming

language, constrained atomic data types as described in this section can be used as co-

variant return types and contravariant formal parameter types. Also, it is possible to use

source objects of more speci�c (i.e. more constrained) types at any time (i.e. read-only

substitutability, see [ZW97]).

3.4 Properties of the λC-Type System

The most fundamental property of type systems is safety (also called soundness). The

soundness of a type system can be shown by proving the progress and preservation theo-

rems, which say that a well-typed term is either a value or it can take a step of evaluation

and if a well-typed term takes a step of evaluation then the resulting term is also well-

typed, respectively. In [Pie02], proofs of the progress and preservation theorems for the

simply typed lambda-calculus with subtyping (λ<:) are given. Both proofs are based

on straightforward induction on a derivation of t : T . Both properties are preserved in

the λC-calculus because the type construction mechanisms do not pertain to the original

λ<:-typing and evaluation rules. What remains is to prove the subsumption property for

constrained types.

Intuitively, A <: B can be read �every value described by A is also described by B�.

According to rule S-Trans, type derivations must only yield types whose value spaces are

more speci�c than those of their base types. The proof of the following theorem will show

91

that this subsumption property is always satis�ed for type derivations in the λC-calculus.

Theorem 3.1 (Subsumption) If A′ <: A and A <: B then A′ <: B.

Proof: There is almost nothing to show since in the λC-calculus atomic types can only

be derived through constraint applications.

Case (Td-CstrApp): A′ = A.c, c = φ(TV){x|x ∈ υ(TV)} ∩ {. . . }

For a type derivation A′ = A.c, where c = φ(TV){x|x ∈ υ(TV)}∩{. . . } is an arbitrary

constraint, the value space υ(A′) = υ(c{{TV ← A}}) reduces to {x|x ∈ υ(A)} ∩ {. . . }.

Consequently, all elements of υ(A′) are also elements of υ(A) and the rule S-VSpace can

be applied to conclude that A′ <: B. �

3.5 Type Inference

Section 3.2 described how atomic types can be derived through explicit applications of

value space constraints. This form of type construction mimics the semantics of XML

Schema De�nition. Using the λC-type system it is also possible to infer transient con-

straints that hold for the instances of constrained types within only a limited scope

of a program. A scope within a program shall be denoted by �, a sub-scope of �

shall be denoted by ��. Considering the then-branch of an if -statement of the form

if (a ≺ literal) then � it is safe to add the constraint c[≺ literal] to the type of variable

a. The constraint c[≺ literal] holds for the instance a within scope � until a is assigned a

value (i.e. in a programming language with side e�ects a must also not be referenced by

method invocations). These two intuitions of adding constraints to the type of a variable

for a limited scope and eventually removing them upon an assignment to the variable

are captured by the rules Ti-IfAdd and Ti-AssignRem, where Γ and Γ� are a typing

context and a transient typing context for a limited scope �, respectively (i.e. Γ�� is the

typing context of the sub-scope ��).

92

Table 3.12: Ti-IfAdd

Γ ` a : A if (
∧

i∈1..n

(a ≺i literal i)) then �

Γ� ` a :
A⋂

i∈1..n

ci where ci = {x|x ∈ υ(A)} ∩ {x|x ≺i literal i}i∈1..n

Table 3.13: Ti-AssignRem

Γ ` t : T Γ ` a : A Γ� ` a :
A⋂

i∈1..n

ci a := t

Γ�� ` a : A

The following example illustrates the e�ect of the Ti-IfAdd rule on the type checking

of λC-programs. Under the assumption ` a : Axsd#int the following λC-application, where

the value space of type age includes integer numbers from 0 to 110, will fail to type-check

according to rule S-VSpace since υ(Axsd#int) * υ(age). The application does, however,

type-check if it occurs within the then-branch of an if -statement as shown below.

(λ x : age . x) (a)

i f ((a >= 0) && (a < 110)) then (λ x : age . x) (a) end i f

For the scope of the then-branch the type of a can be inferred to beAxsd#int.c[≥ 0].c[< 110].

Using the rule S-VSpace one can conclude that Axsd#int.c[≥ 0].c[< 110] is a subtype of age.

In the implementation of the λC-calculus in the XSD plug-in for the Zhi# compiler

framework only ANDed top-level expressions are used for type inference. In this way,

the type inference algorithm is rather conservative (i.e. incomplete), which proved to be

su�cient in practice since the e�ects of type inference should still be comprehensible for

the programmer. For fundamental reasons, the proposed kind of type inference will always

be incomplete since otherwise the inference algorithm would solve the Halting Problem

(for the same reason, there is no �optimal� compiler).

93

3.6 Implementation

The λC-type system as described in this chapter was fully implemented in C# and Java

for the XML Schema De�nition type system. Fig. 3.1 depicts the architecture of the

λC-type system implementation on a class level. A TypePool aggregates a number of

TypeSystem implementations such as the XSDTypeSystem, which contains the logic to

load and parse XML Schema De�nition �les and to create CTSimpleType objects. Each

loaded XSD type is represented by one CTSimpleType instance, which is aggregated by

the singleton class TypePool. There are 19 implementations of the CTSimpleType interface

in order to represent the 19 built-in primitive base types of XML Schema De�nition (for

the sake of conciseness, Fig. 3.1 comprises only CTAnyURI and CTTime). Note that the

devised architecture makes it possible to use not only types of one particular type system

but to join an arbitrary number of TypeSystem and CTSimpleType implementations in

one single TypePool in order to support the semantics of several di�erent type systems

(e.g., atomic SQL data types such as money and time). Each CTSimpleType aggregates

a LexicalSpace and a ValueSpace, which represent the lexical space and fundamental

value space facets (e.g., order, boundedness, cardinality) of a particular type de�nition,

respectively. Types can be derived from built-in primitive CTSimpleTypes by adding

ConstrainingFacets to the ValueSpace of a CTSimpleType. In XML Schema De�nition,

there are 12 constraining facets to derive from the 19 built-in primitive types. Only the

Enumeration and TotalDigits facets are shown in Fig. 3.1.

Constraining facets can be modifying (i.e. string literals that are assigned to instances

of constrained types are implicitly modi�ed upon assignment) or enforcing (i.e. certain

value space constraints must hold for the interpretations of string literals that are as-

signed to instances of constrained types). The devised architecture makes it possible to

implement arbitrary application speci�c constraints. For example, one may de�ne modi-

fying constraints �nonnull� or �translate� that automatically replace null values by empty

strings and replace string values by localized translations, respectively.

94

Figure 3.1: Architecture of the λC-type system implementation

RTSimpleType objects represent runtime occurrences of XML data types in, for ex-

ample, Zhi# programs. Each implementation of RTSimpleType such as RTAnyURI or

RTTime aggregates a corresponding CTSimpleType metaobject that carries the actual

type information. At runtime, assignments to the value member of RTSimpleType ob-

jects are guarded by the lexical space that is de�ned for the primitive base type of the

particular type (i.e. the LexicalSpace of the CTSimpleType metaobject) and by the con-

straining facets that are de�ned for the particular type (i.e. the ConstrainingFacets that

are aggregated by the ValueSpace of the CTSimpleType metaobject). A ViolatedLexical-

SpaceException and a ViolatedConstraintException is thrown if the enforcement of the

lexical space and value space constraints fails, respectively.

95

Internal data type speci�c representations of the RTSimpleType value member are

used in the XSD implementation of the λC-type system in order to facilitate comparisons

and arithmetic operations involving XML data type values. For example, components

of the xsd#dateTime data type such as year, month etc. are stored as separate integer

values. Also, XML Schema De�nition allows (countable) in�nite value spaces for numeric

data types. Big number arithmetic [Knu97] was used for the XSD implementation of the

λC-type system in order to resolve value space limitations of .NET numeric data types.

The Zhi# compiler can be con�gured to support numeric value spaces of almost arbitrary

cardinalities.

Fig. 3.2 depicts an object diagram of a λC-type pool that contains the type de�-

nition of an XML data type named chokyColaURI, which is derived from the built-in

primitive type xs#anyURI based on the enumeration of three valid URIs. Note how the

lexical and value space de�nitions of the XSD code snippet are represented by objects

in the diagram. Also, there is a named instance aChokyColaURI of the XSD data type

http://www.chokycola.com#chokyColaURI represented by an RTAnyURI object.

The λC-type system is not only used for static typing and dynamic checking in the

Zhi# programming language as described in Section 5.1; it has also been embedded

with the CHIL Knowledge Base Server [PRS09], which is an adapter for OWL ontology

management systems (see Section 4.1). The implementation of the λC-type system made it

particularly easy to augment the OWL API of the CHIL Knowledge Base Server with type

checking for OWL datatype properties, whose ranges are atomic XML Schema De�nition

data types. For experimental purposes a λC-interpreter, which can be used to load XSD

type de�nitions and to evaluate λC-terms, was implemented as a .NET Windows Forms

application. An ANTLR [Par05] grammar of the λC-syntax was developed in order to

automatically generate a lexer and parser for λC-terms whose abstract syntax trees are

eventually transformed into a λC-Code DOM in order to facilitate the semantic analysis

and execution (i.e. reduction) of λC-applications.

96

Figure 3.2: λC-type pool

3.7 Constraint Arithmetic

The evaluation and subtyping rules of the λC-calculus guarantee that in λC-abstractions

typed bound variables do only accept instances of types whose value spaces are in the

subset relation with the value space of the given type. In programming languages that

embed the type system of the λC-calculus instances of constrained data types may not only

be combined using λC-applications. Instead, typed terms may be combined in arbitrary

binary arithmetic expressions.

Section 3.5 already indicated that the λC-calculus includes type inference features that

allow the type of a variable to change within the scope of embracing if -statements. For

the scope within an if -statement constraints are transiently added to the type of an object

whose constrained value space is considered by subsequently applicable evaluation rules.

Similarly, the types of binary arithmetic expressions that include at least one instance

of a constrained data type are inferred based on constraint arithmetic. Here, the objective

97

is to preserve as many constraints of the two operands as possible in order to compute

the most speci�c constrained type of the binary expression. Let

A[< 50] = Axsd#positiveInteger.c[< 50],

A[< 100] = Axsd#positiveInteger.c[< 100], and

A[< 200] = Axsd#positiveInteger.c[< 200],

be XML Schema De�nition type de�nitions to represent positive integer numbers less

than 50, 100, and 200, respectively. Also, let Γ be a typing context where

t1 : A[< 50], t2 : A[< 100], and t3 : A[< 200].

Using a naïve constraint arithmetic that simply discards all constraints that may be

de�ned for the operands' types, the type of the binary expression t1 + t2 would simply

be inferred to be the most speci�c unconstrained common supertype. For XML Schema

De�nition data types, this strategy always yields an unconstrained primitive base type.

In this case, Γ ` (t1 + t2) : Pxsd#decimal. Consequently, the assignment t3 = t1 + t2 would

fail to type-check since Pxsd#decimal is not a subtype of A[< 200].

The architectural model of the λC-type system as depicted in Fig. 3.1 facilitates the

implementation of a constraint arithmetic that follows general interval arithmetic rules.

Fig. 3.3 shows the algorithm � given in pseudo code � that is executed by the XSD type

checker of the Zhi# programming language in order to compute the type of the arithmetic

expression t = t1+t2 where t : T , t1 : T1, and t2 : T2. According to the class model depicted

in Fig. 3.1 XML data types are represented by instances of the CTSimpleType class.

First, the types T1 and T2 are checked to be compatible (line 2). Following the stip-

ulation of the λC-calculus XSD types are considered compatible only if they are derived

from the same primitive base type. Still, implementations of the λC-type system may

add functionality to relate instances of types with disjoint values spaces (e.g., XSD and

.NET integers). Table E.1 lists how XML data types can be related in arithmetic oper-

ations. Zhi#'s XSD compiler plug-in adds functionality to relate XSD and .NET data

98

types. Next, an anonymous unconstrained clone is created of the �rst operand type

(line 3). Note that all Clone() methods in the implementation of the λC-calculus re-

turn deep copies. In the cloned type object, the type name is set to the �rst operand's

primitive base type name with all constraints removed from its value space. In the ma-

terialized type object clones T1' and T2' (lines 4 and 5) the set of de�ned constraining

facets is materialized (lines 11�19) such that, redundant constraints are removed from

the value space (e.g., c[< a] ∧ c[< b] ∧ a < b ⇒ c[< a]), related constraints are homoge-

nized (e.g., c[< a] ∧ c[≤ b] ∧ a < b ⇒ c[< a] ∧ c[≤ a]), and resulting constraints are inferred

(e.g., c[< a] ∧ c[≤ x] ⇒ c[< a] ∧ c[≤ a]). Implementations of the λC-type system may re�ne

the constraint materialization rules for particular constraints that are applied on partic-

ular primitive base types. For example, for the numeric XSD data type Pxsd#decimal the

maximum number of fraction digits is taken into account for the homogenization of the

xsd:maxExclusive and xsd:maxInclusive constraints (i.e. c[< a] ∧ c[≤ b] ∧ c[%. 0] ∧ a < b ⇒

c[< a] ∧ c[≤ (a−1)]). Table E.2 lists the materialization rules that are implemented by the

XSD plug-in for the Zhi# compiler framework. Finally, the resulting set of constraints

is generically computed using a brute-force approach where every valid constraint com-

bination is added to the resulting list of constraining facets; exceptions are thrown and

silently discarded for incompatible constraint combinations (lines 20�27).

Pairwise combinations of constraints are su�cient for interval addition and subtraction

where [x1, x2] + [y1, y2] = [x1 +y1, x2 +y2] and [x1, x2]− [y1, y2] = [x1−y2, x2−y1], respec-

tively, while multiplication ([x1, x2]·[y1, y2] = min(x1·y1, x1·y2, x2·y1, x2·y2),max(x1·y1, x1·

y2, x2 · y1, x2 · y2)) and division ([x1, x2]/[y1, y2] = [x1, x2] · (1/[y1, y2]), where 1/[y1, y2] =

[1/y2, 1/y1] if 0 /∈ [y1, y2]) would require constraint and type awareness in the getAddition-

Constraints(T1, T2) method. The architectural model of the λC-type system allows such

type and constraint speci�c re�nements of the constraint arithmetic. These re�nements,

however, were not implemented since the resulting complexity of such re�nements is un-

likely to be tractable by programmers. Implemented XSD constraint combinations are

listed in Table E.3.

99

1 CTSimpleType add (T1 : CTSimpleType , T2 : CTSimpleType) {

2 i f (areCompatible (T1 , T2)) {

3 CTSimpleType T = makeAnonymousUnconstrained (c l one (T1)) ;

4 CTSimpleType T1 ' = ma t e r i a l i z e (T1) ;

5 CTSimpleType T2 ' = ma t e r i a l i z e (T2) ;

6 T. c on s t r a i n t s = getAdd i t i onConst ra in t s (T1 ' , T2 ') ;

7 re turn ma t e r i a l i z e (T) ;

8 } e l s e {

9 throw new IncompatibleTypeException () ;

10 }}

11 CTSimpleType ma t e r i a l i z e (T: CTSimpleType) {

12 List<Constra in ingFacet> con s t r a i n t s = ↪→

13 removeRedundantConstraints (T. c on s t r a i n t s) ;

14 c on s t r a i n t s = T. homogenizeRelatedConstra ints (c on s t r a i n t s) ;

15 c on s t r a i n t s = T. i n f e rRe su l t i n gCon s t r a i n t s (c on s t r a i n t s) ;

16 CTSimpleType T' = T. c lone () ;

17 T ' . c o n s t r a i n t s = con s t r a i n t s ;

18 re turn T' ;

19 }

20 List<Constra in ingFacet> getAdd i t i onConst ra in t s (T1 , T2) {

21 List<Constra in ingFacet> con s t r a i n t s = new List<Constra in ingFacet >() ;

22 fo r each (Constra in ingFacet c1 in T1 . c on s t r a i n t s) {

23 fo r each (Constra in ingFacet c2 in T2 . c on s t r a i n t s) {

24 try {

25 c on s t r a i n t s += c1 . add (c2) ;

26 } catch { }

27 }}}

Figure 3.3: λC-constraint arithmetic algorithm

100

3.8 Related Work

Foster et al. [FTA02] developed the Cqual tool that can be used to extend standard

types with �ow-sensitive type quali�ers. The formal foundation of Cqual is constituted

by the type system of the call-by-value lambda calculus that was extended with pointers

and type quali�er annotations. Type inference checks that given annotations are correct,

where Cqual's �ow sensitivity is restricted to the decorating type quali�ers. In the λC-

calculus, types are explicitly constructed using value space constraints, which may be

modi�ed entirely by also �ow-sensitive type inference. Cqual's type quali�ers are rather

complementary to the actual type information in order to, for example, annotate objects

with required state information (e.g., to describe an open File) and there are only ad hoc

user-de�ned subtype relations between type quali�ers while there are formal subtyping

rules for value space constraints in the λC-calculus.

Brian Chin et al. introduced semantic type quali�ers [CMM05] to support user-de�ned

type re�nements, which ensure additional invariants of interest (e.g., nonnull, nonzero).

Just like in the λC-calculus, value-quali�ed types are always considered to be subtypes of

their associated unquali�ed types (cf. the width subtyping rules in the λC-calculus). Still,

in contrast to the λC-type system there is no support for explicit subtype declarations

between user-de�ned quali�ers. An important di�erence is that in the work of Brian

Chin et al. associated type rules of type quali�ers are de�ned for particular code patterns

(i.e. knowledge is assumed about the syntax of the programming language), which is

not required for constrained type de�nitions in Zhi#. On the other hand, Brian Chin

et al. provide an automatic soundness checker to prove the declared invariants for type

quali�er de�nitions. In their subsequent Clarity approach [CMM06], quali�er rules

can be automatically inferred from given invariants. Both Cqual and Clarity were

instantiated in frameworks for user-de�ned type quali�ers in C programs.

The Jqual tool [GF07] adds user-de�ned type quali�ers to Java. Jqual supports

subtyping orders of type quali�ers, which, however, must be supplied manually.

101

3.9 Summary

The author devised an extension of the simply typed lambda calculus with subtyping

(λ<:) for constrained atomic data types. Atomic data types can only have atomic values,

which are not allowed to be further fractionalized. A primitive atomic data type is a

three-tuple consisting of a set of distinct values called its value space, a set of lexical

representations called its lexical space, and a set of fundamental facets. The value space

is the set of values for a given data type. Each value in a value space is denoted by at

least one literal of its lexical space. Fundamental facets semantically characterize abstract

properties of the value space. The λC-calculus includes the fundamental facets equality,

order, boundedness, cardinality, numeric, and date-time.

Constrained data types are computational structures where the only operations are

constraint applications. Constraining facets are optional properties that can be applied

to a data type to restrict its value space. Constraining facets can be modifying (i.e.

string literals that are assigned to instances of constrained types are implicitly modi�ed

upon assignment) or enforcing (i.e. certain value space constraints must hold for the

interpretations of string literals that are assigned to instances of constrained types). Three

subsumption rules were de�ned for constraints based on their application on atomic data

types. A constraint is a sub-constraint of another constraint if the value space that results

from the application of the former constraint on a data type is a subset of the value

space that results from the application of the latter constraint on the same data type.

Constraints can be more restrictive based on the widths and depths of their de�nitions.

In the type system of the λC-calculus, data types are inductively de�ned by their value

spaces (i.e. the set of values for a data type). Starting from a set of built-in primitive types

with axiomatically de�ned value spaces, atomic types are derived through the application

of value space constraints. Constraint applications on atomic types can be reduced to set

operations on the types' value spaces. The form of type construction in the λC-calculus

can be used to mimic type derivation as in XML Schema De�nition.

102

An atomic type is a subtype of another type if the value space of the former is a

subset of the value space of the latter. In this way the basic rules of subtyping are

e�ective: re�exivity, transitivity, and subsumption. Subtyping rules were de�ned that

capture the intuition that it is safe to add constraints to an atomic type and to use more

speci�c constraints for type de�nition. Constraint applications always make types more

speci�c. The fact that constraint applications can only reduce the value space of a type

is a required property for the soundness of the λC-type system, which was proved based

on a straightforward induction on a derivation of a typed term in the λC-calculus.

It is possible to infer transient constraints that may hold for the instances of con-

strained types within only a limited scope of a program. Type inference rules were de�ned

that capture the two intuitions of adding constraints to the type of a variable for a limited

scope and eventually removing them upon modi�cations of the variable. The proposed

type inference algorithm is conservative to keep it comprehensible for programmers. The

implementation of the λC-calculus uses an extensive constraint arithmetic that can be

used to infer the types of binary expressions that involve constrained types. Without loss

of the soundness property of the λC-type system, the implementation of the λC-calculus

introduces reasonable compatibilities between intuitively compatible constraining facets

and primitive base types.

The λC-type system as described in this chapter was fully implemented in Java and

C# for the XML Schema De�nition type system. These implementations can be used

to load type de�nitions from XSD �les and classify these types in a hierarchy. The Java

implementation is used in the CHIL Knowledge Base Server to facilitate the handling

of OWL datatype properties (see Chapter 4). The C# implementation is used in the

Zhi# compiler plug-in for static typing and dynamic checking of XML Schema De�nition

data types (see Chapter 5). The architectural model of the λC-implementation makes is

possible to join an arbitrary number of particular type system implementations in one

single type pool. It is conceivable to implement further type systems that are similar to

XML Schema De�nition such as, for example, the SQL or OCL type systems.

103

104

CHAPTER 4

The CHIL OWL API

As the underlying Semantic Web standards such as RDF(S) [MM04, BG04b], DAML+OIL

[HHP01], and their common Description Logics (DL) [BCM03] based successor OWL DL

[MH04a] have matured, tools for ontology engineering have emerged both in commercial

as well as in academic �elds. Knowledge acquisition systems such as Protégé [Sta06]

make it particularly easy to construct domain ontologies and to enter data. Ontology

management systems such as HP Labs' Jena [HP 04] can be used for loading OWL DL

ontologies from �les and via the Internet and for creating, modifying, querying, and stor-

ing ontologies. Inference engines such as RACER [MH04b] and Pellet [Pel06] provide

support for query answering. There is a growing set of tools, projects, and applications

for the SHOIN (D) Description Logic based Web Ontology Language (OWL DL). How-

ever, processing ontological information using existing o�-the-shelf ontology management

systems is still laborious and error-prone. From the author's experience, this is inter alia

caused by two main problems.

Firstly, there are no formal speci�cations that fully de�ne the semantics of ontology

management APIs. This is particularly problematic since typical interface methods of

OWL APIs (e.g., listSubclasses, addIndividual) are closely related to the semantics of the

formal foundations (i.e. Description Logics) of the Web Ontology Language.

Secondly, existing o�-the-shelf ontology management systems provide only limited

connectivity with respect to native support for programming languages and remoting

protocols. Hence, it is particularly di�cult to use ontology management systems re-

motely or along with a variety of di�erent programming languages (i.e. in heterogeneous

105

distributed computing environments). More severely, it may be unfeasible to replace an

ontology management system by alternative products without rewriting signi�cant parts

of client code.

This chapter describes a pluggable architectural model for an ontological knowledge

base server, which can expose the ontology management functionality of arbitrary o�-

the-shelf OWL DL systems via a well de�ned API. A combination of Description Logics

terminology and Floyd-Hoare logic [Hoa69] was used to formally specify the result sets

and side e�ects of each method.

The architectural model of the developed knowledge base server facilitates adding and

replacing remoting protocol hosts and replacing the adapter code for arbitrary o�-the-shelf

OWL DL management systems. Implementations of the knowledge base server API can

automatically be tested for adherence to the formal speci�cation using a regression test

framework. In order to make it particularly easy for programmers to use the developed

OWL API, a code generation tool was devised that automatically generates client libraries

for a number of programming languages.

The ontological knowledge base server along with the code generation tool as described

in this chapter is actively used in the CHIL research project [Inf04]. This is why it will be

referred to as the CHIL Knowledge Base Server ; the OWL API that was de�ned in this

work will be called the CHIL OWL API. The CHIL research project aims to introduce

computers into a loop of humans interacting with humans, rather than condemning hu-

mans to operate in a loop of computers. In order to implement unobtrusive user friendly

services a semantic middleware has been developed that fusions information provided by

so called perceptual components in meaningful ways. Each perceptual component (e.g.,

image and speech recognizers, body trackers, etc.) contributes to the common domain of

discourse. The Web Ontology Language OWL DL was used to replace previous domain

models that had been based on particular programming languages. The CHIL Knowledge

Base Server is used as the back-end of an extensive semantic middleware [PRS06].

106

Whereas there are several approaches that aim to provide programming language

independent APIs for processing ontological knowledge bases, to the best of the author's

knowledge, the CHIL Knowledge Base Server is �rst to combine the following features.

• The CHIL OWL API is solely based on primitive built-in XML Schema De�nition

data types and is remotely accessible by virtually every programming language

capable of parsing strings and of communicating via TCP sockets.

• A combination of SHOIN (D) Description Logic semantics with Floyd-Hoare logic

was used to formally specify the result sets and side e�ects of each interface method.

• A regression test framework was developed for automatically validating implemen-

tations of the CHIL OWL API for adherence to the formal speci�cation.

The outline of this chapter is as follows. Section 4.1 elucidates the architectural model

of the CHIL Knowledge Base Server and the design of the CHIL OWL API. The formal

speci�cation of this API and a testing framework, which can be used to automatically

validate particular implementations, are described in Section 4.2. Section 4.3 describes the

implementation of an example scenario. Section 4.4 gives an overview of the connectivity

capabilities and API speci�cations of some of the most widely used ontology management

systems.

4.1 The CHIL Knowledge Base Server

The CHIL Knowledge Base Server is an adapter written in Java for o�-the-shelf ontol-

ogy management systems that implements a formally speci�ed and well de�ned OWL

DL API. It supports the interchange of adapted reasoners and ontology management sys-

tems. Moreover, client libraries can automatically be generated for a number of di�erent

programming languages.

107

4.1.1 Architectural model

For the CHIL Knowledge Base Server, the following most crucial requirements had to

be met. Since the server is targeted for a distributed system, it must be accessible both

locally and remotely through a single interface. Since client components in the CHIL

research project may be written in a variety of di�erent languages (e.g., Java, C#, C++,

Python), the remote interface must be programming language independent. Data rep-

resentation must be architecture independent such that, mixed use of architectures with

little-endian and big-endian byte order does not lead to interoperability issues. The CHIL

Knowledge Base Server must be capable of handling multiple, potentially competing in-

coming requests in parallel without corrupting the underlying database (i.e. thread-safe

server design). Since in the CHIL research project the Web Ontology Language OWL

DL is used, the CHIL OWL API should be tailored speci�cally to OWL DL, rather than

providing a more verbose and potentially error-prone interface to a more general ontology

model. Finally, it must be possible to replace adapted ontology management systems.

Figure 4.1: CHIL Knowledge Base Server components

108

The CHIL Knowledge Base Server software comprises several Java components as

depicted in Fig. 4.1. Excluding the automatically generated client libraries, the entire

software amounts to 15,000 lines of code (LOC).

Since the Web Ontology Language speci�cation allows atomic XML data types as the

range for OWL datatype properties, a full-�edged type system for constrained atomic

data types following the formal foundations of the λC-calculus as described in Chapter 3

was implemented. Thus, it is possible to register XML Schema De�nitions with the CHIL

Knowledge Base Server in order to properly consider range restrictions of OWL datatype

properties. This validation component enables improved type safety compared to other

existing ontology management systems. Still, it is the responsibility of the adapted infer-

ence engine to which extent the type information of RDF literals are used for reasoning.

The implementation of the XML type system component comprises 4,000 LOC. The inter-

faces of the CHIL Knowledge Base Server application are de�ned in a separate component,

which totals 1,000 LOC. Up to now adapters are available for the Jena Semantic Web

Framework [HP 04], which can be con�gured to use a transient in-memory ontology model

(2000 LOC) or a persistent RDF database. The DBMS adapter (500 LOC) is an extension

of the in-memory model adapter and supports Microsoft SQL Server [Mic07b], MySQL

[MyS07], and PostgreSQL [Pos07] as possible database back-ends. The CHIL OWL API

is exposed via an XML-over-TCP interface (3000 LOC). While it is conceivable to sup-

port further remoting protocols in the future, the XML-over-TCP port appeared to be

most compatible in order to be accessible from a variety of programming languages. The

factories (500 LOC) and hosts packages (500 LOC) implement functionality to dynam-

ically load ontology management system adapters and remoting protocol hosts. Every

implementation of these interfaces is loaded in a separate class loader in order to avoid

library version con�icts and dependency issues. The CHIL Knowledge Base Server can

be run as a standalone application (500 LOC) and as an Eclipse plug-in (3000 LOC) as

shown in Fig. 4.2 and 4.3, respectively. The Eclipse plug-in provides a GUI that can be

used to control the CHIL Knowledge Base Server and to browse managed ontologies.

109

The architectural model on a class level of the CHIL Knowledge Base Server is partly

depicted in Fig. 4.4. It makes extensive use of the Factory Design Pattern [GHJ94] and

re�ection capabilities of the Java programming language in order to be able to plug in

hosts for arbitrary remoting protocols dynamically at runtime.

The IOWLAPI interface was automatically generated from the XML-based API def-

inition as described in the following subsection. Up to now two implementations of this

interface exist that adapt the Jena Semantic Web Framework to the CHIL OWL API.

The OWLAPIJena adapter con�gures Jena to use an in-memory ontology model. The

OWLAPIJenaDBMS adapter provides for a persistent database back-end using Microsoft

SQL Server, MySQL, or PostgreSQL. The adapter classes are dynamically loaded in a sep-

arate class loader by the respective implementations of the IOWLAPIFactory interface.

Implementations of the OWLAPIServer interface make the CHIL OWL API available via

remoting protocols. Again, particular implementations of the OWLAPIServer interface

such as XMLoverTCPServer, which provides an XML-over-TCP port, are loaded dynam-

ically in separate class loaders by implementations of the IOWLAPIServerFactory. Both

the singleton instance of IOWLAPI as well as the arbitrary number of OWLAPIServers

are aggregated by the OWLAPIHost. The IOWLAPIHost and IOWLAPI interfaces are

referenced by server applications such as the stand-alone and Eclipse-based implementa-

tions of the CHIL Knowledge Base Server.

The author decided to implement a TCP/IP via the socket interface in the �rst

place because in state-of-the-art operating systems, local TCP/IP connections are usu-

ally routed via loopback or similar devices that bypass most of the TCP/IP stack. The

advantage of having a single interface for local and remote communication when using

the socket interface even for local communication therefore fully outweighs any marginal

performance slowdown or latency imposed by socket communication.

Language independence was achieved by a two-step approach. Firstly, all communi-

cation is performed by transmitting and receiving XML messages over TCP/IP, rather

110

Figure 4.2: CHIL Knowledge Base Server stand-alone application

Figure 4.3: CHIL Knowledge Base Server Eclipse plug-in

111

Figure 4.4: CHIL Knowledge Base Server architectural model

112

than building upon some language dependent RPC-based mechanism. Data values are

encoded with XML data types, rather than using programming language-speci�c data

types. While with XML messages based on XML data types one achieves a highly pro-

gramming language independent communication mechanism, one does not want to put

the burden of generating and parsing XML messages on client programmers. Therefore,

as a complementary step of the presented approach, for a selected set of programming lan-

guages, client libraries are provided that handle all XML-related work. Up to now client

libraries are available for Java (3000 LOC), C# (3500 LOC), and C++ (4500 LOC).

The CHIL Knowledge Base Server handles multiple incoming requests with standard

socket calls (i.e. listen on server port, accept request, rebind to di�erent port). Each

request is rebound to a di�erent port and delegated to a thread of its own. In this way,

another connection on the server port can be accepted while the previous one is still being

processed. In order to avoid corruption of the managed knowledge base data by concurrent

access, without relying on the capabilities of the underlying ontology management system,

all incoming requests are strictly serialized before they are executed on live data.

4.1.2 The CHIL OWL API

The CHIL Knowledge Base Server was designed to locally and remotely store, manage,

and retrieve arbitrary ontological data that meets OWL DL. Originally designed for use in

the highly distributed, heterogeneous environment of the CHIL research project, special

emphasis was put on good connectivity and compatibility with the most widely used

programming languages and runtime environments.

The CHIL OWL API de�nition is given as an XML instance document. Its XML

Schema De�nition is twofold. The �rst part as depicted in Fig. 4.5 provides a schema

for de�ning interfaces and methods on the meta-level. Interfaces and methods are given

names. The optional descriptions can be used to generate source code comments. A

method signature comprises an arbitrary number of named formal parameters. For formal

113

Figure 4.5: CHIL OWL API meta-level schema

parameters and the return value of each method interpretation information are provided,

which give meaning to them. Formal parameters and return values can be interpreted as

one of the OWL DL ontology elements listed in Table 4.1. These interpretation informa-

tion are used in two ways. First, they are translated into programming language data

types during code generation. Second, they are used in the formal speci�cation of the

CHIL OWL API elucidated in Section 4.2.

Note that the meta-level schema does not impose the usage of particular programming

language data types to represent elements of an ontology. Instead, CHIL OWL API

client libraries may use arbitrary data types that are most appropriate in a particular

programming language to represent particular elements of an ontology (as long as these

data types are correctly marshalled over the wire). As such, it is conceivable to use, for

example, an array of strings or dynamically growing container classes such as lists or

vectors to represent a list of ontological individuals.

CHIL OWL API methods may require certain preconditions to hold in order to exe-

cute properly. The precondition names used in the CHIL OWL API meta-level schema

refer to the formally speci�ed preconditions given in Appendix F, which were used to

automatically generate regression test cases as explained in Subsection 4.2.3.

114

Table 4.1: CHIL OWL API element interpretations

annotationProperty boolean class

comment datatype dataValuedProperty

individual individualValuedProperty label

language listOfAnnotationProperties listOfClasses

listOfDatatypes listOfDataValuedProperties listOfIndividuals

listOfIndividualValuedProperties listOfLiteralValues listOfOntologies

listOfOntologyProperties listOfStatements literalValue

naturalNumber numberOfIndividuals numberOfLiteralValues

ontology ontologyProperty property

rdfXML resource URIReference

URL validityReport versionInfo

void xsdXML

The CHIL OWL API comprises 37 tell operations to modify the TBox, 16 tell oper-

ations to modify the ABox, 26 ask operations to query the TBox, and 12 ask operations

to query the ABox of OWL DL knowledge bases. In addition, there are 15 methods to

query and modify the annotations of ontology elements and 17 auxiliary methods to, for

example, load an ontology from a �le or to serialize an ontology model to its RDF/XML

syntax. These methods are not included in the formal speci�cation of the CHIL OWL

API since their semantics cannot be founded on Descriptions Logics.

The following fragment of the XML-based CHIL OWL API de�nition describes the

listSubClasses method, which takes as input an ontological concept (line 4�7) and returns

a list of subsumed concepts (line 9). The XML-based method de�nition does not make

any assumptions about the programming language data types that may eventually be

used to denote the elements of an ontology (e.g., the name of the concept). Instead,

interpretation information are given that identify the input value as an ontological concept

(line 6) and the return value as a list of concepts (line 9). An OntologyManagement-

Exception (line 11) and UndeclaredConceptException (line 12) is thrown if the adapted

115

ontology management systems fails and the input concept is unde�ned in the ontology,

respectively. The exceptions that may be thrown by CHIL OWL API methods are listed

in Table 4.2. Again, this list is used both for code generation and in the formal API

speci�cation.

1 <Method>

2 <Name>l i s t SubC la s s e s </Name>

3 <FormalParameters>

4 <FormalParameter>

5 <Name>owlClass</Name>

6 <In t e rp r e t a t i on >c l a s s </In t e rp r e t a t i on >

7 </FormalParameter>

8 </FormalParameters>

9 <Resu l t In t e rp r e t a t i on>l i s tO fC l a s s e s </Resu l t In t e rp r e t a t i on>

10 <Exceptions>

11 <Exception>OntologyManagementException</Exception>

12 <Exception>UndeclaredConceptException</Exception>

13 </Exceptions>

14 <Precond i t ions>

15 <Precondit ion>

16 <DeclaredConcept>

17 <Concept>owlClass</Concept>

18 </DeclaredConcept>

19 </Precondit ion>

20 </Precond i t ions>

21 </Method>

The two listings below show the automatically generated Java code for the XML-

over-TCP server and the C# client code for the listSubClasses method, respectively. In

Java and C#, the java.lang.String and System.String data types are used, respectively, to

denote names of ontological concepts. The mapping from the ontology element interpre-

tations in Table 4.1 to programming language data types is de�ned by the code generator

for the particular programming language. In contrast to other OWL APIs, the CHIL

116

OWL API does not depend on programming language speci�c data types. Moreover,

the entire interface de�nition is service oriented, which also facilitates remote access and

integration with non object-oriented client programming languages.

Table 4.2: CHIL OWL API exceptions

InconsistentOntologyException InvalidConceptNameException

InvalidDataValueException InvalidIndividualNameException

InvalidLanguageException InvalidNamespaceException

InvalidPropertyDomainException InvalidPropertyNameException

InvalidPropertyRangeException InvalidPropertyValueException

InvalidXMLSchemaDe�nitionException NotANaturalNumberException

OntologyException OntologyIOException

OntologyManagementException OntologySerializationException

UncomparableTypesException UndeclaredConceptException

UndeclaredDatatypeException UndeclaredDatatypePropertyException

UndeclaredIndividualException UndeclaredNamespaceException

UndeclaredObjectPropertyException UndeclaredPropertyValueException

UndeclaredResourceException Unde�nedCommentException

Unde�nedIsDe�nedByException Unde�nedLabelException

Unde�nedSeeAlsoException Unde�nedVersionInfoException

1 [. . .]

2 // Handling of incoming 'listSubClasses' request message

3 e l s e i f (" l i s t SubC l a s s e s " . equa l s (strMethodName)) {

4 try {

5 St r ing strP0V = nParameter . g e tF i r s tCh i l d () . g e tNextS ib l ing () . ↪→

6 ge tF i r s tCh i l d () . getNodeValue () ;

7 nParameter = nParameter . ge tNextS ib l ing () ;

8 S t r ing [] a r r = owlapi . l i s t SubC l a s s e s (strP0V) ;

9 Element e lRe su l t = elResponse . getOwnerDocument () . createElementNS (↪→

10 "http ://www. semantic−so f tware . org /CHILKBSOWLAPI" , "Result ") ;

11 e lResponse . appendChild (e lRe su l t) ;

117

12 Element e l I n t e r p r e t a t i o n = elResponse . getOwnerDocument () . ↪→

13 createElementNS (" http ://www. semantic−so f tware . org /CHILKBSOWLAPI" , ↪→

14 " I n t e r p r e t a t i o n ") ;

15 e l I n t e r p r e t a t i o n . appendChild (e lResponse . getOwnerDocument () . ↪→

16 createTextNode (" l i s tO fC l a s s e s ")) ;

17 e lRe su l t . appendChild (e l I n t e r p r e t a t i o n) ;

18 f o r (i n t i = 0 ; i < ar r . l ength ; i++)

19 {

20 Element e lValue = elResponse . getOwnerDocument () . ↪→

21 createElementNS (" http ://www. semantic−so f tware . org /CHILKBSOWLAPI" , ↪→

22 "Value ") ;

23 e lValue . appendChild (e lResponse . getOwnerDocument () . ↪→

24 createTextNode (ar r [i] . t oS t r i ng ())) ;

25 e lRe su l t . appendChild (e lValue) ;

26 }

27 sendResponseDocument (e lResponse . getOwnerDocument ()) ;

28 } catch (Exception ex) {

29 sendResponseDocument (makeExceptionResponseDocument (ex)) ;

30 }

31 }

1 pub l i c s t r i n g [] L i s tSubClas se s (s t r i n g owlClass) {

2 XmlElement e lRequest = MakeRequestElement () ;

3 XmlElement elMethodName = elRequest . OwnerDocument . ↪→

4 CreateElement (" owlapi " , "MethodName" , ↪→

5 "http ://www. semantic−so f tware . org /CHILKBSOWLAPI") ;

6 elMethodName . AppendChild (e lRequest . OwnerDocument . ↪→

7 CreateTextNode (" l i s t SubC l a s s e s ")) ;

8 e lRequest . AppendChild (elMethodName) ;

9 XmlElement e lParameters = elRequest . OwnerDocument . ↪→

10 CreateElement (" owlapi " , "Parameters " , ↪→

11 "http ://www. semantic−so f tware . org /CHILKBSOWLAPI") ;

12 e lRequest . AppendChild (e lParameters) ;

13 XmlElement elParameter0 = elRequest . OwnerDocument . ↪→

118

14 CreateElement (" owlapi " , "Parameter " , ↪→

15 "http ://www. semantic−so f tware . org /CHILKBSOWLAPI") ;

16 e lParameters . AppendChild (e lParameter0) ;

17 XmlElement e l I n t e r p r e t a t i o n 0 = elRequest . OwnerDocument . ↪→

18 CreateElement (" owlapi " , " I n t e r p r e t a t i o n " , ↪→

19 "http ://www. semantic−so f tware . org /CHILKBSOWLAPI") ;

20 e l I n t e r p r e t a t i o n 0 . AppendChild (e lRequest . OwnerDocument . ↪→

21 CreateTextNode (" c l a s s ")) ;

22 elParameter0 . AppendChild (e l I n t e r p r e t a t i o n 0) ;

23 XmlElement e lValue0 = elRequest . OwnerDocument . ↪→

24 CreateElement (" owlapi " , "Value " , ↪→

25 "http ://www. semantic−so f tware . org /CHILKBSOWLAPI") ;

26 e lValue0 . AppendChild (e lRequest . OwnerDocument . CreateTextNode (owlClass)) ;

27 elParameter0 . AppendChild (e lValue0) ;

28 XmlDocument domResponse = SendReceive (e lRequest . OwnerDocument) ;

29 TestForExceptions (domResponse) ;

30 XmlNamespaceManager nsmgr = ↪→

31 new XmlNamespaceManager (domResponse . NameTable) ;

32 nsmgr . AddNamespace (" oa " , ↪→

33 "http ://www. semantic−so f tware . org /CHILKBSOWLAPI") ;

34 XmlNodeList n lValues = domResponse . ↪→

35 Se lectNodes ("/ oa :CHILKBSOWLAPI/oa : Response/oa : Result /oa : Value " , nsmgr) ;

36 i f (n lValues == nu l l) {

37 return nu l l ;

38 } e l s e {

39 s t r i n g [] va lue s = new s t r i n g [n lValues . Count] ;

40 f o r (i n t i = 0 ; i < nlValues . Count ; i++)

41 {

42 va lue s [i] = nlValues [i] . F i r s tCh i l d . Value ;

43 }

44 return va lue s ;

45 }

46 }

119

The second part of the CHIL OWL API de�nition as shown in Fig. 4.6 describes the

format of request and response messages on the object level (i.e. the format of the messages

that are sent over the wire). In order to make sure that XML messages sent between the

CHIL Knowledge Base Server and XML-over-TCP clients adhere to this schema de�nition

both the XML-over-TCP server component as well as the client libraries are generated

automatically as shown in the two preceding Java and C# listings. The code generation

approached helped a great deal during the development phase of the CHIL OWL API.

Client libraries could be automatically updated to instantaneously re�ect changes in the

API de�nition.

Figure 4.6: CHIL OWL API object-level schema

4.2 A Formally Speci�ed OWL API

A formal speci�cation of the CHIL OWL API was devised in order to make it possible to

consistently adapt o�-the-shelf ontology management systems and to provide knowledge

base clients with well de�ned semantics of the OWL API methods. In particular, ambi-

guities had to be resolved that may be caused by informal speci�cations such as �Add a

property to this resource. A statement with this resource as the subject, p as the predicate

120

and o as the object is added to the model associated with this resource.� (see HP Lab's

Jena's documentation of the com.hp.hpl.jena.rdf.model.Resource.addProperty(Property p,

boolean o) method). In this case, it remains totally unclear what the preconditions are

and under what circumstances the method will execute properly (i.e. what happens when

the host individual is unde�ned in the ontology or when the property value's type is

di�erent from the range description of the referred property). Also, with only informal

documentation there is no way to know how an ontology looks after a sequence of method

invocations, which makes it impractical to validate implementations of textually speci�ed

OWL APIs since there is no practical easy way to predict the results and side e�ects of

method calls in advance and on a meta-level.

In a �rst approach on formalizing the semantics of the CHIL OWL API [PRS06], the

author had utilized the Z notation language [Spi01] as a formal framework. In order to

accommodate the Z notation better to the needs of OWL, we had extended the Z notation

syntax by Description Logics notation. With this extended ontological Z notation, we

were able to formally specify the semantics of the OWL API of the CHIL Knowledge

Base Server in a clear and straightforward way. While this initial approach of using an

extended Z notation proved to be handy for specifying the CHIL OWL API's operational

semantics, it turned out to have only limited usefulness for practical exploitation of our

API speci�cation. In particular, the lack of Z notation tools that support our extended

notation made our speci�cation itself useful only in theory. We could have tried to develop

a mapping from our extended syntax to pure Z notation syntax in a pre-processing manner

in order to work around the lack of such tools. However, it turned out that such a mapping

would have gotten at least as complicated as the formal speci�cation of OWL DL itself,

thus losing the advantage of the handy syntax.

In this section, an alternative approach is presented to formalize the semantics of the

CHIL OWL API, using Floyd-Hoare logic [Hoa69] as a formal framework. Floyd-Hoare

logic provides a set of logical rules in order to reason about the correctness of computer

programs with the rigor of mathematical logic. This section concludes with an example

121

of how one can exploit the Floyd-Hoare logic based formal speci�cation to predict the

e�ects of a sequence of CHIL OWL API method calls by applying standard Floyd-Hoare

logic inference rules.

4.2.1 Notational framework

In Floyd-Hoare logic, theorems are of the form {P}Q{R}, where P and R are assertions

and Q is a program. P is called the precondition and R the postcondition. Standard

Floyd-Hoare logic proves only partial correctness, while termination would have to be

proved separately. Thus, the intuitive reading of a Hoare triple is: Whenever P holds of

the state before the execution of Q, then R will hold afterwards, or Q does not terminate.

In particular, if Q does not terminate the state of the computation is unde�ned, so R

can be any statement at all. In Hoare's original paper [Hoa69] six axioms are given as

shown in Table 4.3. There are two general logical rules, an assignment axiom and three

rules for control constructs. In the assignment axiom Hr-Assign, P [x/E] denotes that

in expression P all free occurrences of variable x have been replaced by expression E. In

rule Hr-While, P is the loop invariant.

Table 4.3: Hoare logic axioms and rules

Axiom Name

P ′ ⇒ P , {P}Q{R}
{P ′}Q{R}

(Hr-PreStrength)

{P}Q{R}, R⇒ R′

{P}Q{R′}
(Hr-PostWeak)

{P [x/E]} x := E {P}
(Hr-Assign)

122

Table 4.3: Hoare logic axioms and rules

Axiom Name

{P}Q1{R}, {R}Q2{S}
{P}Q1;Q2{S}

(Hr-Sequence)

{B ∧ P} Q1 {R}, {¬B ∧ P} Q2 {R}
{P} if B then Q1 else Q2 endif {R}

(Hr-Cond)

{P ∧B} Q {P}
{P} while B do Q done {¬B ∧ P}

(Hr-While)

The CHIL OWL API methods are speci�ed as Hoare triples following the schema in

Fig. 4.7 shown below.

{P}: {η(O) ∧ (
∧
Pc-OwlApi-Xi)

i∈0..n}

Q: O,m(p1, . . . , pn)

{R}: {(O ` (SHOIN (D) notation)) ∧ (R = SHOIN (D) notation)}

Figure 4.7: CHIL OWL API Hoare triple schema

In precondition P , the function η(O) returns true for consistent ontologies and false

for inconsistent ontologies. Thus, the function η(O) is used to assert the consistency

of ontology O. Further assertions are given as a conjunction of properties of ontology

O and of the input parameters of the method under consideration. The Hoare triples

of the CHIL OWL API speci�cation reference 18 recurring basic preconditions that are

described in Appendix F. These basic preconditions are given as conjunctions of Boolean

expressions. Each clause in the Boolean expressions is a statement about, for example,

the ontology under consideration. In practice, all conjoined basic preconditions must hold

123

before the execution of a method of the CHIL OWL API. The basic preconditions are

named Pc-OwlApi-. . . and are parameterized with formal parameters, which can be

used to devise the Boolean expressions in the Requires �eld of the precondition description

(see the schema of the exemplary precondition speci�cation in Fig. 4.8).

In program Q, the comma operator �,� applies the given method m � whose semantics

one wants to specify � with formal parameters p1,. . . ,pn on ontology O.

In postcondition R, SHOIN (D) notation is used to describe 1) properties of ontology

O after the application of the speci�ed method m and 2) the return value R of method

m. The symbol ∅ denotes an empty result set, which in practice corresponds to the

programming language return type void. SHOIN (D) terminology is used because the

SHOIN (D) Description Logic constitutes the formal foundation of the Web Ontology

Language OWL DL. Variables are used with respective semantics as given in Table 4.4.

The (possibly subscripted) variables C, D, R, U , o, and v stand for concepts, data types,

abstract roles, datatype roles, individuals, and data values, respectively. They may also

be used as meta-variables ranging over variables; the context will make clear which is

which. The complete speci�cation of the CHIL OWL API is given in Appendix G.

Table 4.4: SHOIN (D) metavariables

Constructor Name Syntax Semantics

atomic concept C CI ⊆ 4I

data type D DD ⊆ 4I
D

abstract role R RI ⊆ 4I ×4I

datatype role U UI ⊆ 4I ×4I
D

individual o oI ∈ 4I

data value v vI = vD

The order of the conjoined basic preconditions in the Hoare triples of the speci�cation

of the CHIL OWL API is irrelevant for applying the Hoare logic axioms and rules in

order to reason about the e�ects of subsequent method applications on an ontology. The

124

notation of the preconditions (i.e. the consistency check η(O) and the basic preconditions

Pc-OwlApi-Xi
i∈0..n) is, however, positional when the speci�cation of the CHIL OWL

API is used for automatic code generation and the validation of the deterministic behavior

of implementations of the CHIL OWL API speci�cation. An ordered list of preconditions

facilitates the automatic generation of regression test cases because for a particular basic

precondition Pc-OwlApi-Xi in the precondition P of a Hoare triple the ontology on

which the test code operates can be assumed to be in a certain state.

Fig. 4.8 shows the speci�cation of the basic precondition Pc-OwlApi-Declared-

Concept. The speci�cations of the basic preconditions comprise protocol information

to create elements in the ontology under consideration (�elds Creates) and to bind the

precondition parameters to these elements (�elds Binds) such that, the speci�ed con-

ditions initially evaluate to false and eventually to true. The speci�ed exception (�eld

Expects) is expected if the required properties (�eld Requires) do not hold for the on-

tology under consideration. Required predecessors of a basic precondition (�eld Required

predecessor) are given to allow for chained up preconditions whose Boolean expressions

in the Requires �eld assume a particular context (e.g., an individual with a particular

name in the ontology). The provided information proved to be su�cient to automatically

generate regression test code for the formally speci�ed methods of the CHIL OWL API

(see Subsection 4.2.3). The 18 basic preconditions are described in Appendix F.

Pc-OwlApi-Declared-Concept(C)

Requires: C ∈ NC

Required predecessor: �

Creates: �

Binds: C = Cfresh

Expects: UndeclaredConceptException

Creates: CA v >

Binds: C = CA

Figure 4.8: Basic precondition Pc-OwlApi-Declared-Concept

125

4.2.2 Examples

Following the Hoare triple schema in Fig. 4.7 and the notation of Table 4.4, the Hoare

triples Ht-OwlApi-DeclareSubClass and Ht-OwlApi-AddIndividual specify the

CHIL OWL API methods declareSubClass(C1, C2) and addIndividual(o, C), respectively,

as shown in Fig. 4.9.

(Ht-OwlApi-DeclareSubClass)

declareSubClass(C1, C2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Concept(C1),

O ` Pc-OwlApi-Declared-Concept(C2)


{Q}: O, declareSubClass(C1, C2)

{R}:
{

(O ` C1 v C2) ∧ (R = ∅)
}

(Ht-OwlApi-AddIndividual)

addIndividual(o, C)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Concept(C)


{Q}: O, addIndividual(o, C)

{R}:
{

(O ` o : C) ∧ (R = ∅)
}

Figure 4.9: Formally speci�ed CHIL OWL API methods

The Hoare triple Ht-OwlApi-DeclareSubClass should be read as follows. Given

a consistent ontology O with declared named concept descriptions C1 and C2, the method

call O, declareSubClass(C1, C2) declares C1 to be a sub-concept of C2, where C1 and C2

are meta-variables. The semantics of this sub-concept relation is that the interpretation

·I of C1 (i.e. for consistent ontologies the set of individuals in the extension of the con-

cept description C1) is a subset of C2
I . The return type of O, declareSubClass(C1, C2)

is the empty set, which in practice corresponds to the programming language return

126

type void. According to the Hoare triple Ht-OwlApi-AddIndividual, the method call

O, addIndividual(o, C) requires the concept C to be declared in the ontology. The post-

condition asserts that the individual o is in the extension of the concept description C.

Again, o and C are meta-variables.

With such Hoare triple based speci�cations available, Floyd-Hoare logic rules can be

used to reason on a meta-level about the e�ect of subsequent method calls on an ontology.

For example, assuming a previous method call O, addSubclass(BodyTracker , Tracker)1,

the Hoare tripleHt-OwlApi-DeclareSubClass asserts only that in ontologyO Body−

Tracker v Tracker while a method call O, addIndividual(BT, BodyTracker) requires

the concept BodyTracker to be declared in the ontology (i.e. the named concept de-

scription BodyTracker is an element of the set of concept names of the ontology: O `

BodyTracker ∈ NC). Using the Floyd-Hoare logic rule Hr-PreStrength one can

infer that the basic precondition Pc-OwlApi-Declared-Concept(BodyTracker) is

met by the postcondition O ` BodyTracker v Tracker of the previous method call

O, declareSubClass(BodyTracker , Tracker).

Hr-PreStrength:
O ` C1 v C2 ⇒ O ` (C1 ∈ NC), Ht-OwlApi-AddIndividual

{P}:

 η(O),

O ` C1 v C2


{Q}: O, addIndividual(o, C1)

{R}:
{

(O ` o : C1) ∧ (R = ∅)
}

Figure 4.10: Application of the Floyd-Hoare pre-strengthening rule

The Hoare logic rule Hr-Sequence can be used to infer that, given a consistent ontol-

ogy O, the two subsequent method calls O, declareClass(Tracker) and O, addIndividual -

(T1, Tracker) result in an ontology that contains an individual T1, which is in the

extension of the named concept description Tracker .

1In CHIL, a body tracker is a perceptual component that tracks the positions of persons as they move
around in smart room environments.

127

Hr-Sequence:
Ht-OwlApi-DeclareClass, Ht-OwlApi-AddIndividual

{P}:
{
η(O)

}
{Q}: O, declareClass(C) ; O, addIndividual(o, C)

{R}:
{

(O ` o : C) ∧ (R = ∅)
}

Figure 4.11: Application of the Floyd-Hoare sequencing rule

Note that the postcondition R of no method of the CHIL OWL API asserts an ontology

O to be consistent after the application of a method on O. In fact, this would require to

intermingle the meta-level of the speci�cation with the object level of particular ontologies.

In order to be able to apply standard Hoare logic rules, the following assumption is made.

After each method invocation on an ontology O the consistency of O is validated. If O

is inconsistent, the program terminates with an exception. Thus, for subsequent method

calls on O one can assume O to be consistent since otherwise the program would not have

executed until that point.

4.2.3 The CHIL OWL API testing framework

The CHIL Knowledge Base Server explicitly supports the replacement of adapted o�-

the-shelf ontology management systems. In order to make these changes transparent to

knowledge base clients it is crucial for implementations of the CHIL OWL API to obey

the operational semantics according to the speci�cations as elucidated in the previous

subsection. In particular, an ordered sequence of basic preconditions is part of the formal

speci�cations of CHIL OWL API methods. Implementations of the CHIL OWL API are

required to check these preconditions in the given order. For example, the implementa-

tion of the listObjectPropertyValuesOf Individual(o, R) method (see Appendix G.2) must

examine the presence of individual o and object property R in the ontology. Regression

test code must call the method in the context of an ontology such that, with the given pa-

rameters 1) the method fails once because of every violated basic precondition and 2) the

128

method succeeds. Manually devising such test code would be particularly tedious since

for every basic precondition of every method one would have to create ontology contexts

that let a method fail and continue to execute. For the 91 formally speci�ed methods of

the CHIL OWL API 176 basic preconditions were de�ned. Still, only 18 di�erent precon-

ditions as given in Appendix F were needed to describe all the properties of an ontology

under which the CHIL OWL API methods execute properly. This 18:176 ratio was reason

enough to automate the generation of test cases as depicted in Fig. 4.12.

Figure 4.12: CHIL OWL API test case generation

The speci�cation of the CHIL OWL API and the protocol information of the 18

basic preconditions were used to provide a test case generator application with su�cient

information to generate regression test code, which utilizes the CHIL OWL API C#

client library. The test generator code for the listObjectPropertyValuesOf Individual(o, R)

method is shown below followed by an excerpt of the generated regression test code.

1 i n t e r n a l s t a t i c Protoco l l i s tOb j e c tPrope r tyVa lue sOf Ind iv idua l () {

2 Method m = new Method () ;

3 m. I n t e r f a c e = "IAskingABox " ;

4 m.Name = " l i s tOb j e c tPrope r tyVa lue sOf Ind iv idua l " ;

5 m. Re su l t I n t e r p r e t a t i on = " l i s tO f I n d i v i d u a l s " ;

6 FormalParameterIndividual ow l Ind iv idua l = ↪→

7 new FormalParameterIndividual (" ow l Ind iv idua l ") ;

8 m. FormalParameters .Add(ow l Ind iv idua l) ;

9 FormalParameterObjectProperty owlObjectProperty = ↪→

10 new FormalParameterObjectProperty (" owlObjectProperty ") ;

129

11 m. FormalParameters .Add(owlObjectProperty) ;

12 m. Precond i t i ons .Add(new Dec l a r ed Ind iv idua l (owl Ind iv idua l , m, f a l s e)) ;

13 m. Precond i t i ons .Add(new DeclaredObjectProperty (owlObjectProperty , ↪→

14 m, f a l s e)) ;

15 m. Precond i t i ons .Add(new HasObjectProperty (owl Ind iv idua l , ↪→

16 owlObjectProperty , m, t rue)) ;

17 re turn new Protoco l (m) ;

18 }

1 [TestMethod]

2 [Desc r ip t i on (" IAskingABox ")]

3 pub l i c void L i s tObjec tProper tyVa luesOf Ind iv idua l () {

4 ob j e c t obj = nu l l ;

5 // Precondition: Declared individual 'owlIndividual'

6 t ry {

7 obj = o . L i s tObjec tProper tyVa luesOf Ind iv idua l (↪→

8 "#Unde f inedInd iv idua l " , ↪→

9 "#Undef inedObjectProperty ") ;

10 Assert . Fa i l (" Expected ' Undec laredIndiv idua lExcept ion ' ") ;

11 }

12 catch (Undec laredInd iv idua lExcept ion) {

13 o . Dec la reClas s ("#A") ;

14 o . AddIndividual ("#oa " , "#A") ;

15 try {

16 obj = o . L i s tObjec tProper tyVa luesOf Ind iv idua l (↪→

17 "#oa " , ↪→

18 "#Undef inedObjectProperty ") ;

19 } catch {}

20 }

21 catch (Exception ex2) {

22 Assert . Fa i l (ex2 . Message) ;

23 }

24 [. . .]

25 }

130

The generated test cases are executed by the regression test framework of Microsoft

Visual Studio [Mic07c]. The CHIL OWL API adapter code and the Jena Semantic Web

Framework [HP 04] were instrumented using the code coverage tool Emma [Rou07]. In

the adapter component, the measured method-, block-, and line coverage based on the

purely automatically generated test code was 100%, 88%, and 86%, respectively. For the

ten mostly used Jena Semantic Web Framework 2.5.5 Java packages a class-, method-,

block-, and line coverage of 65%, 42%, 43%, and 44%, respectively, could be achieved.

For the �ve mostly used packages, the class-, method-, block-, and line coverage was 69%,

47%, 53%, and 55%, respectively. The code coverage of the Jena system was several

percentage points better for previous releases of the Jena Semantic Web Framework.

The automatically generated test code puts emphasis on the behavior of the CHIL

OWL API implementation with respect to the de�ned preconditions for each method.

This is why it is conceivable that even though a method passes the automatically generated

test cases, it may fail under certain circumstances. In particular, there is no explicit testing

yet of the results of ontological reasoning. For example, for the listObjectPropertyValues-

Of Individual(o, R) method it can be imagined that there is a sub-property of R, which

relates o to further individuals. In order to cover test cases that depend on such inferred

entailments in the ontology (i.e. proper reasoning in the adapted ontology management

system), a regression test framework as depicted in Fig. 4.13 was used. Together with a

reference ontology, the formal speci�cation of the CHIL OWL API was taken to manually

compute the result sets and side e�ects of each interface method. The same kind of output

is computed by the adapted o�-the-shelf ontology management system. Both results are

automatically compared with each other in order to validate the implementation.

The design of the reference ontology and the set of test cases were crucial in order

to validate the CHIL OWL API as completely as possible. The reference ontology had

to comprise both a TBox and an ABox. Moreover, special e�ort was put in covering

ontology features that are speci�c to the SHOIN (D) Description Logic on which the

Web Ontology Language OWL DL is based (e.g., transitive roles, transitivity of the

131

Figure 4.13: CHIL OWL API testing framework

subsumption relation, and nominals). Test cases were chosen in a similar way such that,

with a presumably minimal number of method calls, a maximum of reasoning and ontology

management features could be covered. For example, for a TBox C1 v C2 v C3 the

method listSubClasses(C) is called with both concepts C2 and C3 in order to be able to

check for the indirectly subsumed subclass C1 as well.

The combination of the automatically generated regression test cases with 98 manually

devised test cases increased the block- and line coverage of the adapter code by eight and

six percentage points, respectively. The code coverage of the Jena Semantic Web Frame-

work did not change signi�cantly, which indicates the applicability of the automatic test

case generation approach. However, the manually devised test cases explicitly check for

compliance with particular OWL DL language features, which may make it easier to adapt

further ontology management systems to the CHIL OWL API. Note that the presented

testing framework is not to validate the behavior of o�-the-shelf ontology management

132

systems against the speci�cation of the Web Ontology Language. Rather, adapters of

such systems are tested to comply with the speci�cation of the CHIL OWL API with

respect to the given reference ontology.

4.3 Example Scenario Implementation

Using the CHIL OWL API, knowledge base queries and modi�cations as they occur in the

example scenario described in Subsection 1.3.7 can be implemented. The project meeting

of the example scenario can be scheduled and the set starting times queried in C# as

follows (object o refers to an instance of the ICHILOWLAPI interface).

1 s t r i n g ns = "http :// c h i l . s e r v e r . de/ onto logy#";

2 s t r i n g xs = "http ://www.w3 . org /2001/XMLSchema#";

3 o . AddDatatypePropertyValue (ns + "ProjectMeeting" , ↪→

4 ns + " scheduledAt " , "2008−06−27T13 : 0 0 : 0 0Z" , xs + "dateTime ") ;

5 s t r i n g [] s tar t ingTimes = o . L i s tDatatypePropertyValuesOfInd iv idua l (↪→

6 ns + "ProjectMeeting" , ns + " scheduledAt ") ;

The CHIL Knowledge Base Server ships with a full-�edged XSD validator. Still, using

an API to modify external data is inherently unsafe and error-prone. For the code snippet

above a conventional C# compiler does not 1) check that the referenced OWL datatype

property actually exists in the ontology and 2) type-check that the string literal in line

4 denotes a valid xsd#dateTime value. Hence, a well typed C# program may be invalid

with respect to a particular ontology and XML schema. In line 5, the burden to parse

the returned xsd#dateTime string is put on the programmer.

In programming languages such as C#, the is-operator can be used to check the

runtime type of an object. For ontological individuals such a runtime type check has to

be devised manually as shown below, where the list of RDF types of the individual under

consideration is checked to include the required type. Again, undetected syntax errors

may lead to program failure at runtime.

133

1 s t r i n g ns = "http :// c h i l . s e r v e r . de/ onto logy#";

2 s t r i n g [] arrTypes = ↪→

3 o . ListRDFTypesOfIndividual (ns + "ProjectMeeting ") ;

4 i f (arrTypes . Contains (ns + "ActiveMeeting ")) { [. . .] }

In statically typed programming languages, the structure of input objects that can

substitute a formal method parameter can be restricted by its declared type. This feature

is not applicable for external types since there is no isomorphic mapping from ontological

concept descriptions and XSD type de�nitions to C# classes. As shown below, a method

that returns the start time of an example scenario Event object can only be declared with

a string parameter that references the individual in the knowledge base. There is, however,

no guarantee that at runtime the referenced individual actually is in the extension of the

Event concept. A manual �type check� as shown above would be necessary.

1 pub l i c i n t getStartTime (s t r i n g Event) { [. . .] }

The author developed the Zhi# programming language on request by CHIL project

partners in order to make OWL concept descriptions and XSD type de�nitions �rst class

citizens of an object-oriented programming language.

4.4 Related Work

This section gives an overview of some widely used ontology management systems and

reasoning engines along with a bird's eye view of some generic interface speci�cations

for DL systems and related attempts to improve the remoting capabilities of such APIs.

Available ontology management systems at the time the CHIL research project started

were KAON, the Jena Semantic Web Framework, Snobase, the Protégé knowledge ac-

quisition system, Sesame, and RACER. Available Description Logic APIs at this time

include the DIG protocol and former frame-oriented knowledge representation systems

such as the Generic Frame Protocol and OKBC.

134

4.4.1 O�-the-shelf ontology management systems

This subsection gives an overview of existing o�-the-shelf ontology management systems

that can be used to manage RDF(S) data. In particular, the following three dimensions are

considered. Firstly, remoting capabilities are assessed based on the number of supported

remoting protocols (e.g., Java RMI [Sun06a], SOAP [Mit07], and CORBA [Obj09c]).

Secondly, the extent of native support for programming languages such as Java or C++

is considered. Thirdly, the way how the API speci�cations were devised is listed.

Table 4.5: O�-the-shelf ontology management systems

Ont. mgt. system Remoting support Prog. languages API speci�cation

KAON2 limited to Java Java Java Docs

Jena no Java Java Docs

Snobase no Java Java Docs

Protégé no Java Java Docs

Sesame HTTP Java, Python Java Docs

RACER HTTP, Sockets Java, Lisp DIG

KAON2 [Mot06] is an open source ontology management infrastructure targeted for

business applications. It ships as a Java library �le. The core of the KAON2 Java library

are two APIs for RDF and the KAON ontology language. These APIs are represented

by Java interfaces for which several implementations exist. Remote access is supported

but limited to the Java programming language. Moreover, additional application server

software is required, which may be impractical in practice. KAON2 comes with natural

language descriptions of its RDF and KAON ontology language APIs.

HP Labs' Jena Semantic Web Framework [HP 04] provides an ontological framework

for the Java language environment. The internal representation of ontological data in

Jena is tightly bound to the RDF model of triples. Originally designed for DAML+OIL,

but later adopted to OWL, Jena ships with a layered API. On the upper layers, it o�ers

135

a uni�ed view onto the features of the DAML+OIL and OWL languages, while providing

access to speci�c ontology language dependent constructs via speci�c ontology models.

Jena makes it possible to con�gure and to replace the underlying reasoning engine. This

is why there are only informal speci�cations of the exposed Jena API since the actual

behavior depends on the used reasoner. Remote access is not supported.

The IBM Ontology Management System (also known as SNOBASE, for Semantic

Network Ontology Base) [LGA03] is a Java framework that provides a mechanism for

querying ontologies and a programming interface for interacting with vocabularies of

standard ontology speci�cation languages such as OWL. Applications can query against

the created ontology models and the inference engine deduces the answers and returns

result sets similar to JDBC (Java Data Base Connectivity) result sets [Sun06b]. In theory,

Java-based remote access is possible but not available yet.

Stanford University School of Medicine's Protégé [Sta06] is an interactive Java appli-

cation with a GUI that focuses on creating and editing ontologies. Having started as a

project before OWL was available, it was designed to support a variety of di�erent on-

tology languages. For ontology management Protégé focuses on user input through the

graphical user interface. It also supports an API for plug-ins that essentially can be used

as a management API. However, there is no support for remote access and the Protégé

OWL API is speci�ed only by example.

Sesame [Ope06] is an open source RDF database with support for RDF(S) inferencing

and querying. It can be deployed on top of a variety of storage systems and o�ers a

signi�cant number of wrappers that facilitate HTTP-based access to the Sesame system

for a number of programming languages. However, the semantics of the Sesame API

for processing OWL data are de�ned by third party extensions, which up to now only

implement fragments of the OWL speci�cation.

RACER [MH04b] is a Semantic Web inference engine for query answering over RDF

documents, and, with respect to speci�ed RDF(S)/DAML ontologies, registering perma-

136

nent queries. RACER implements a Description Logics reasoning system with support

for TBoxes with generalized concept inclusions, ABoxes, and concrete domains. It sup-

ports native access from Java and Lisp and implements the DIG protocol [Bec02] via

XML-over-HTTP.

4.4.2 Knowledge base interface speci�cations

The DIG protocol [Bec02], which is a simple API for a general Description Logics system,

is one representative of a class of interface de�nitions that consist of simple mechanisms to

tell and ask DL knowledge bases. These mechanisms follow foundational aspects that have

been well-studied over time [Lev84]. Many previous frame-oriented knowledge representa-

tion systems such as the Generic Frame Protocol [CFF97] and OKBC (Open Knowledge

Base Connectivity) [CFF98] also embody such distinctions.

Although well de�ned, the DIG speci�cation merely de�nes an XML schema that

has to be used along with HTTP as the underlying communication protocol. There

is no speci�c support for a particular programming language. In contrast, the KRSS

speci�cation [PS93], which is an earlier approach to de�ne a number of DL tell and ask

operations, was tightly bound to the LISP [Gra95] syntax, which may not be adequate

for programmers who prefer other languages such as Java or C#.

In addition to RACER, the FaCT reasoner [Hor98, Hor99] from the University of

Manchester is another implementation of the DIG 1.0 interface speci�cation, which also

requires further application server software to facilitate remote access.

Bechhofer et al. proposed a CORBA interface to the FaCT system [BHP99]. Be-

yond the fact that CORBA may not be an appropriate remoting technology in today's

service-oriented and XML-based computing environments, Bechhofer et al. note that �the

CORBA IDL does not support the de�nition of the kinds of recursive data types that

may be required for the representation of DL concepts and roles�. This is why an XML-

based workaround was devised to pass ontological concepts and roles as single data items.

137

Previous approaches to augment DL knowledge base interfaces with remoting capabilities

include the wines [BMP91] and stereo [MRJ95] con�guration demonstration systems.

Common to all mentioned DL knowledge base interface speci�cations is the lack of

support for arbitrary state-of-the-art remoting protocols and adequate error and excep-

tion handling. In particular, there are no detailed error messages presented to knowledge

base clients in case invalid requests are passed to the ontology management system. Fur-

thermore, none of the discussed API de�nitions is formally speci�ed in the sense of a foun-

dation on formal Description Logic semantics. Their partially unintelligible speci�cations

make it particularly di�cult to develop applications and to interchange the underlying

OWL API. Moreover, support for XML Schema De�nition data types is throughout very

limited.

4.5 Summary

The author devised a pluggable architectural model of an ontological knowledge base

server. The CHIL Knowledge Base Server can be used to adapt o�-the-shelf ontology

management systems. In the current implementation, the Jena Semantic Web Framework

[HP 04] is adapted and con�gured to use the Pellet OWL DL reasoner [Pel06] with in-

memory and database backed ontology models. The CHIL Knowledge Base Server can be

started as a standalone application and as an Eclipse plug-in as shown in Fig. 4.2 and 4.3,

respectively. The Eclipse plug-in provides a GUI that can be used to control the CHIL

Knowledge Base Server and to browse managed ontologies.

The CHIL Knowledge Base Server implements the formally speci�ed CHIL OWL API

for SHOIN (D) knowledge bases. The CHIL OWL API was de�ned based on a com-

bination of Floyd-Hoare logic and formal Description Logics terminology. The formal

speci�cation was devised in order to make it possible to consistently adapt o�-the-shelf

ontology management systems and to provide knowledge base clients with well de�ned

programming language independent semantics of the CHIL OWL API.

138

Complementary to the formal speci�cation, the CHIL OWL API de�nition is given

as an XML instance document. Its XML Schema De�nition is twofold. The �rst part as

depicted in Fig. 4.5 provides a schema how interfaces and methods can be de�ned on the

meta-level. The second part as shown in Fig. 4.6 de�nes the format of request and response

messages on the object level (i.e. the format of the messages that are sent over the wire).

Both the XML-over-TCP server component of the CHIL Knowledge Base Server as well

as the client libraries were generated automatically from the XML-based API de�nition.

The code generation approached helped a great deal during the development phase of

the CHIL OWL API. Client libraries could be automatically updated to instantaneously

re�ect changes in the API de�nition. Regression test code was automatically generated

from the formal speci�cation. The CHIL OWL API adapter code and the Jena Semantic

Web Framework were instrumented using the code coverage tool Emma [Rou07]. In the

adapter component, the measured method-, block-, and line coverage based on the purely

automatically generated test code was 100%, 88%, and 86%, respectively. For the ten

mostly used Jena Semantic Web Framework Java packages a class-, method-, block-, and

line coverage of 65% (68%), 42% (51%), 43% (48%), and 44% (49%), respectively, could

be achieved. For the �ve mostly used packages, the class-, method-, block-, and line

coverage was 69% (75%), 47% (58%), 53% (57%), and 55% (55%), respectively. Numbers

in brackets were e�ective for a previous Jena release.

The formally speci�ed CHIL OWL API facilitates access to the CHIL Knowledge

Base Server from a variety of heterogeneous client applications. A case study [PRS09],

conducted in course of the CHIL research project, showed that in order to bene�t from

common conceptualizations as de�ned by OWL DL ontologies, it is crucial to improve

the connectivity of ontology management systems in order to fully exploit their potential

application scope and to support a variety of di�erent programming languages. The CHIL

Knowledge Base Server proved to be a reliable back-end for a semantic middleware that

incorporates more than �fty image and speech recognition based perceptual components

used in the CHIL research project.

139

140

CHAPTER 5

XSD Aware Compilation � Types and. . . Constraints

Since their standardizations by theW3C, the Extensible Markup Language (XML) [BPS06]

and XML Schema De�nition (XSD) [FW04] have been widely adopted as a format to de-

scribe data and to de�ne programming language agnostic data types and content models.

Several other W3C standards such as the Resource Description Framework (RDF) [MM04]

and the Web Ontology Language (OWL) [MH04a] are based on XML and XSD. In RDF,

it is possible to have typed literals whose types are declared in an XML schema de�nition.

Processing OWL data implicitly requires the use of constrained atomic XML Schema Def-

inition data types, which may be the range of OWL datatype properties. For example, an

ontological concept Person may have de�ned a property hasAge of type xsd#unsignedInt.

This type could be mapped to the C# data type System.UInt32. If, however, the XML

schema de�ned a further constrained atomic data type such as unsignedIntLessThan110

in order to constrain possible hasAge values of a Person to reasonable values less than 110,

there would be no appropriate C# data type with a value space that comprises integer

values between 0 and 110. Instead, assignments to objects of type System.UInt32 would

have to be explicitly checked to be schema valid.

An XML instance document � or in this case an instance of a constrained atomic data

type � is said to be a valid instance of a schema if there is an XML schema given and

the content of the XML instance document � or of the data type value � conforms to the

content model as de�ned in the schema. Up to now, schema validation has been particu-

larly error-prone since there is no isomorphic mapping between XML schema de�nitions

and programmatic data types.

141

The objective of this work is to incorporate XML Schema De�nition data types into a

conventional object-oriented programming language and to automate tedious validation

and type checking tasks. Except for conjoint type derivation along with di�erent type

systems, it should be possible to use XML data types and values of these types in any

context of Zhi# programs that is valid for built-in .NET value types. In particular,

programming language features such as method overriding, user-de�ned operators, and

runtime type checks should abide by XML Schema De�nition type system rules. In the

Zhi# programming language, the constrained types of the λC-calculus are used in order to

implement programming language inherent support for constrained atomic XML Schema

De�nition data types. In this chapter, the term �constrained types� refers to atomic

data types that represent a value space, which may be constrained by explicitly de�ned

constraining facets (e.g., xsd:minExclusive, xsd:maxExclusive) as described in Chapter

3. Note that this is di�erent to constraint-based type inference algorithms found in the

literature where constraints are not checked but rather recorded for later consideration.

The outline of this chapter is as follows. Section 5.1 describes the application of λC-

calculus type system features in order to embed atomic XML Schema De�nition data

types with the C# programming language. Section 5.2 alludes to related work in the �eld

of domain speci�c languages for XML. A summary is given in Section 5.3.

5.1 Integrating XSD with the C# Programming Language

The XML Schema De�nition type system was implemented based on the formal founda-

tion of the λC-calculus as described in Chapter 3. This implementation of XML Schema

De�nition data types was integrated with the Zhi# programming language by means of

a plug-in for the Zhi# compiler framework that facilitates loading of XML schema de�ni-

tions, static typing of constrained atomic types in Zhi# programs, and the transformation

of XSD type references in Zhi# programs into C# code. Dynamic checking of XML data

types is facilitated by the accompanying XSD plug-in for the Zhi# runtime library.

142

5.1.1 Referencing XML Schema De�nitions

The Zhi# programming language introduces a feature henceforth called XSD aware com-

pilation. The Zhi# compiler takes as input both Zhi# source �les as well as XML schema

de�nitions as depicted in Fig. 5.1.

Figure 5.1: XSD aware compilation

Atomic XML data types de�ned in XML schemas are made public as native data types

in Zhi# programs using the keyword import, which works analogously for XML data types

like the C# using keyword for .NET programming language type de�nitions. It permits

the use of atomic XML data types in a Zhi# namespace such that, one does not have

to qualify the use of a type in that namespace. Thus, the productID data type, which is

de�ned in the XML namespace http://www.chokycola.com in the following schema, can

be used in a Zhi# program as shown below.

1 <xsd : schema targetNamespace="http ://www. chokycola . com" [. . .] >

2 <xsd : simpleType name="productID">

3 <xsd : r e s t r i c t i o n base="xsd : i n t">

4 <xsd : min Inc lu s ive va lue="4000"/>

5 <xsd : maxExclusive va lue="8000"/>

6 </xsd : r e s t r i c t i o n >

7 </xsd : simpleType>

8 </xsd : schema>

143

1 // Import XML namespace 'http://www.chokycola.com' and bind it to alias 'coke'

2 import XML coke = http ://www. chokycola . com ;

3 namespace MyBusinessAppl icat ion {

4 c l a s s MyClass {

5 #coke#productID pID ;

6 }}

In the given example, the value space of the XML data type productID is limited to

integer values greater than or equal to 4000 and less than 8000.

For each imported XML namespace (e.g., http://www.chokycola.com in line 2 in the

code snippet above) the Zhi# XSD compiler plug-in loads the respective type de�nitions

from the referenced library �les. The set of library �les that is made available to each

Zhi# compiler plug-in comprises all referenced non-source code �les (e.g., .xsd-, .owl-,

.dll �les). From these �les XML Schema De�nitions (i.e. .xsd-�les) are considered by the

XSD compiler plug-in. An error is raised if in the referenced schema �les no XSD type

de�nitions exist in the imported namespaces. Types that are de�ned in the imported XSD

namespaces may be used in the code following the import statement; they are syntactically

highlighted in the Eclipse-based Zhi# editor and are available in form of autocompletion

proposals as shown in Fig. 5.2. Imported XSD types are subject to concise static typing.

In the current implementation of the Zhi# compiler, external type references must

be fully quali�ed using an alias that is bound to the namespace in which the external

type is de�ned. In particular, it is not possible to 1) use external namespace references

at arbitrary positions in Zhi# programs and 2) use unquali�ed external type references.

The decision to not support external namespace references at arbitrary positions is

due to the fact that di�erent external type systems may use arbitrary schemes to denote

a namespace. However, without syntactical restrictions that are known beforehand it is

not feasible to allow for such arbitrary naming schemes in the Zhi# language grammar.

Even for XSD and OWL namespaces, which follow the generic syntax rules for URIs

144

[BFM98], it may not be desirable to repeatedly use lengthy namespaces instead of handy

aliases. Both the external namespace alias and the local type name must be preceded by

a '#'-symbol (i.e. type references must be of the form #alias#local_name, see line 5 in

the Zhi# code snippet above and line 15 in Fig. 5.2 below).

Figure 5.2: Autocompletion of XSD types

5.1.2 Static typing

The XSD compiler plug-in provides exhaustive static type checking of XML Schema Def-

inition type references. At compile time, the types of XSD objects are checked according

to the constraint-based (sub-)typing rules of the λC-calculus (see Chapter 3). The gener-

ated C# code eventually contains dynamic type checks in order to allow for a safe usage

of Zhi# assemblies from conventional .NET programs. The dynamic checking code for

XML data types is provided by the XSD plug-in for the Zhi# runtime library.

145

XML Schema De�nition incorporates features from both nominal and structural type

systems. XML data types are given names and are explicitly derived from a named base

type. Each type eventually re�nes one of the 19 built-in primitive base types. Still, a

subtype relation between two XML data types exists not only based on the explicitly

de�ned derivation tree. Instead, a type S can also be considered to be a subtype of T

based on a more speci�c value space. Type S is a subtype of T if the set of schema valid

elements for type S is a subset of the set of schema valid elements for type T.

In the following schema de�nition, the XML data types lessThan100 and lessThan10

are explicitly derived from the built-in primitive type xs#integer. Accordingly, there is

no explicit subtype relation between lessThan10 and lessThan100.

1 <xsd : schema xmlns : xsd="..." >

2 <xs : simpleType name="lessThan100">

3 <xs : r e s t r i c t i o n base="xs : i n t e g e r">

4 <xs : maxExclusive va lue="100"/>

5 </xs : r e s t r i c t i o n >

6 </xs : simpleType>

7 <xs : simpleType name="lessThan10">

8 <xs : r e s t r i c t i o n base="xs : i n t e g e r">

9 <xs : maxExclusive va lue="10"/>

10 </xs : r e s t r i c t i o n >

11 </xs : simpleType>

12 </xsd : schema>

The classi�ed type hierarchy as shown in Fig. 5.3 is revealed by the subtyping rules of

the λC-calculus. The dashed arrow indicates the implicit subsumption of type lessThan10

by lessThan100. The Zhi# type checker always uses the classi�ed derivation tree that

includes both explicit and implicit �is-a� relationships between XSD type de�nitions. Note

that throughout this work only atomic XML data types are considered while there is no

support for complex XML Schema De�nition content models.

146

Figure 5.3: Implicit subtype relationship between XSD types

The Common Language Speci�cation [Mic06] de�nes several value types for which

isomorphic mappings exist to XML Schema De�nition types as shown in Table 5.1.

Table 5.1: Isomorphic mappings between .NET and XSD types

.NET value type XSD type .NET value type XSD type

System.String xsd#string System.Int16 xsd#short

System.Boolean xsd#boolean System.UInt16 xsd#unsignedShort

System.Single xsd#�oat System.Int32 xsd#int

System.Double xsd#double System.UInt32 xsd#unsignedInt

System.SByte xsd#byte System.Int64 xsd#long

System.Byte xsd#unsignedByte System.UInt64 xsd#unsignedLong

In spite of the obvious subsumption relationships between several of these types, there

is no explicit subtype relation between them (e.g., System.Int16 is not derived from

System.Int32). Since there is no structural typing in C# 1.0 (except for some questionable

subtleties) one cannot infer implicit compatibilities between these types. Instead, the C#

programming language de�nes a number of implicit conversion operators between the

built-in value types. These operators are not de�ned in the mscorlib.dll but are provided

extra by the C# compiler. Similarly, the Zhi# compiler allows for implicit conversions

between the built-in .NET value types listed in Table 5.1 and XML data types for which a

value space based subtype relation exists. For example, an xsd#int value can be assigned

to a System.Int32 variable and vice versa. The following subsections will elaborate on

the use of XML data types in Zhi# programs, which is illustrated in Fig. 5.4.

147

1 import XML cc = http ://www. chokycola . com/ bus in e s s ;

2 c l a s s Product {

3 pub l i c s t a t i c imp l i c i t operator #cc#itemPr ice (Product p) { [. . .] }

4 }

5 c l a s s Bi l l ingApp {

6 pub l i c i n t getPostageOfSpec ia lProducts(#cc#spec ia lProduct ID pID) { [. . .] }

7 pub l i c #cc#shippingAndHandling getPostage(#cc#productID pID) {

8 i f (pID i s #cc#spec ia lProduct ID) {

9 i n t i = getPostageOfSpec ia lProducts (pID) ;

10 i f ((i > 0) && (i < 20)) {

11 return i ;

12 }

13 e l s e {

14 throw Exception (" Inva l i d postage value ") ;

15 }

16 }

17 e l s e {

18 return 7 .0F ;

19 }

20 }

21 pub l i c void prepar e Invo i c e (Product p , #cc#shippingAndHandling SaH) {

22 #cc#itemPr ice p r i c e = p ;

23 #cc#invo i c eTota l = p r i c e + SaH ;

24 [. . .]

25 }

26 }

27 c l a s s Der ivedBi l l ingApp : Bi l l ingApp {

28 pub l i c ov e r r i d e #cc#shippingAndHandling

29 getPostage(#cc#extendedProductID pID) { [. . .] }

30 }

Figure 5.4: XML data types in Zhi#programs

148

5.1.2.1 Method overriding

Method overriding allows the new implementation of a method inherited from a base class.

The implementation in the subclass replaces the implementation in the superclass. It is

resolved at runtime which of these methods is used. Di�erent programming languages

use di�erent variance rules for the return types and formal parameter types of method

declarations involved in overriding. Assuming the following method declarations, the

covariance rule for return types stipulates that B must be a descendant type of A; the

contravariant rule for formal parameters imposes that P must be a descendant type of Q.

1 c l a s s T {

2 pub l i c A f (P p) { [. . .] }

3 }

4 c l a s s S : T {

5 pub l i c B f (Q q) { [. . .] }

6 }

In C# 1.0, both the return types as well as the formal parameter types of methods

involved in method overriding must be invariant (i.e. identical). In Zhi#, methods can

be declared using XSD input and output parameters. The Zhi# compiler provides for

covariant XSD return types and contravariant XSD formal parameter types as follows.

1 c l a s s T {

2 pub l i c #xsd#long f (#xsd#byte p) { [. . .] }

3 }

4 c l a s s S : T {

5 pub l i c #xsd#in t f (#xsd#shor t q) { [. . .] }

6 }

This change to the standard behavior of C# 1.0 was made since covariant output

parameter types and contravariant input parameter types are generally safe and recent

versions of Java and C# are no longer restricted to invariant parameter types either.

149

The getPostage Method in line 7 in the Zhi# example program shown in Fig. 5.4 yields

the shipping and handling costs that apply for particular products, which are distinguished

by their product ID. The input parameter of the overriding getPostage method method

in line 28 must be at least as general as the original parameter type productID, which is

true for the used extendedProductID type.

5.1.2.2 Method overloading

Method overloading is a type of polymorphism usually found in statically-typed program-

ming languages that allows the declaration of a number of methods that share the same

name but have di�erent method signatures. It is resolved at compile time which of these

methods is used.

In Zhi#, methods must not be overloaded based on XML data types. This current

restriction is a result of the compilation of XML data types to C# code where the single

proxy type RTSimpleType (see Section 3.6) is substituted for all XML data types that are

used in Zhi# programs. This restriction is similar to method and operator overloading

using generic types in Java and is inherent to programing language features compared to

features of the runtime environment. The Zhi# compiler reports an error for the following

method de�nitions. Still, XML data types may occur in signatures of overloaded methods

where overloading stems from conventional formal parameter types as shown below.

1 c l a s s C {

2 pub l i c void f (#xsd#shor t p) { [. . .] }

3 pub l i c void f (#xsd#byte p) { [. . .] } // Error!

4 }

1 c l a s s C {

2 pub l i c void f (#xsd#shor t p , shor t q) { [. . .] }

3 pub l i c void f (#xsd#byte p , byte q) { [. . .] } // OK!

4 }

150

5.1.2.3 is-Operator

The is-operator is used to check whether the runtime type of an object is compatible with

a given type. For constrained value types this corresponds to checking whether the value

of an object is an element of the value space of the given type. For the scope within the

checking statement the type of the given object is inferred to be at least as speci�c as

the given type. In line 8 in the Zhi# program shown in Fig. 5.4, the is-operator is used

to check whether the productID value pID is in the value space of type specialProductID.

According to the λC-subtyping rules, both types do not necessarily need to be in the

same derivation chain. A compile-time error occurs if both types are derived from two

di�erent (i.e. incompatible) primitive base types in order to avoid unnecessary type checks

at runtime. Runtime type checks using the is-operator adhere to changes in the schema

de�nition. The type check in line 8 will still function properly even if the type de�nition

of specialProductID changes after the compilation of the Zhi# program. However, the

type de�nition must not change during the execution of a compiled Zhi# program since

XML schema �les are loaded and parsed only once at application startup.

5.1.2.4 User-de�ned operators

In line 22 in the Zhi# program shown in Fig. 5.4, an instance of class Product is assigned

to an itemPrice variable. This assignment utilizes the user-de�ned implicit conversion

operator from Products to itemPrices that is de�ned in line 3.

In Zhi#, user-de�ned conversion operators and user-de�ned binary operators may

contain XSD types as long as one type in the parameter list is the containing .NET type,

which is a limitation imposed by the C# language speci�cation (i.e. Zhi# does not restrict

the set of de�nable operators). Note that in the output C# code all XML data types are

represented by the single proxy type RTSimpleType. As a consequence, it is not possible

yet to de�ne a number of operators whose signatures vary only in the used XML data

types at the same positions in the signatures (cf. method overloading).

151

User-de�ned operators that relate XSD types are complementary to Zhi#'s built-in

operators for XSD types since the built-in operators do only relate XSD types with XSD

types and .NET primitive types (XSD type de�nitions cannot contain operator de�nitions;

.NET primitive type de�nitions are sealed (i.e. cannot be inherited) and cannot contain

additional operator de�nitions either).

5.1.2.5 Binary operators

Zhi#'s XSD compiler plug-in (i.e. the implementation of the λC-calculus for XML Schema

De�nition) de�nes a number of built-in binary operators for XML data types as listed

in Table E.1. Instances of XML data types can be compared with instances of compat-

ible types using the comparison operators '>=', '>', '==','<=', and '<' and combined

through addition, subtraction, multiplication, division, modulo, bitwise AND, OR and

XOR, and logical AND and OR using the '+', '-', '*', '/', '%', '&', '|', '�', '&&', and '||'

operators, respectively. The comparison operators return a .NET bool value instead of an

xsd#boolean in order to faciliate their usage in, for example, if -statements.

5.1.2.6 Conversion operators

The Zhi# XSD compiler plug-in de�nes a set of conversion operators for all XSD and

primitive .NET value types that are compatible with each other according to the subtyp-

ing rules of the λC-type system. Compatible .NET value types such as System.Int32 (7→

xsd#int) or System.Double (7→ xsd#double) are implicitly converted to their XSD coun-

terparts and may thus be used conjointly with XML data types. Also, XML data type

values can be assigned to .NET string variables. The built-in implicit ToString-conversion

operators serialize the values of XSD objects to .NET strings. Moreover, in Zhi#, the

XSD type xsd#boolean implements the .NET true and false operators, which facilitates

the use of xsd#boolean objects in controlling expressions in, for example, if -statements

and in conditional expressions.

152

5.1.2.7 Assignments to instances of XSD array types

The Zhi# programming language extensions were devised to most closely adhere to the

standard behavior of conventional C#. The most remarkable deviation pertains to the

typing rule of arrays. Interestingly, C# (like Java) actually permits covariant subtyping

of arrays. According to [Pie02], this feature was �originally introduced [in Java] to com-

pensate for the lack of parametric polymorphism in the typing of some basic operations

such as copying parts of arrays�. In C#, the following two lines are well-typed. However,

the assignment in line 2 causes an ArrayTypeMismatchException at runtime.

1 ob j e c t [] a r r = new s t r i n g [1] ; // OK for C# compiler

2 a r r [0] = 23 ; // ArrayTypeMismatchException at runtime

Nowadays, covariant subtyping of arrays is generally considered a �aw in the language

design and was decidedly modi�ed for constrained types in Zhi#. The XSD compiler plug-

in enforces invariant subtyping for arrays of XSD types (it does allow covariant subtyping

for �references�, though, see below). For arrays of constrained types, the XSD plug-in

emits a compile-time error if the target and source array type are di�erent.

#xsd#in t [] a r r = new #xsd#byte [1] ; // Rejected by Zhi# compiler

5.1.2.8 Assignments to instances of XSD non-array types

Assignments to instances of constrained non-array types would implicate the same issues

as for array types since Zhi#'s constrained value types are in fact represented by .NET

reference types in the generated C# code (cf. Fig. 3.2). As a consequence, if assignment

expressions that comprise constrained types in Zhi# were straightforwardly translated

into assignment statements of their corresponding C# proxy types, not only the value of

an object but also its type (i.e. the constraints) would be assigned to the target object.

That would lead to incorrect program behavior in the presence of the desired covariant

subtyping for constrained types since for subsequent assignments the target object may

153

be guarded by too restrictive constraints of the previous source object. This is why

declarations and assignments that involve constrained types are translated into object

creation expressions and setter-function calls on the Zhi# runtime library, respectively.

The following two lines of Zhi# code are translated into C# as shown below. For the

sake of brevity, methods and types of the Zhi# runtime library are not fully quali�ed in

code snippets in this chapter. Also, the namespace aliases from the input Zhi# program

are used in the output C# code for XML namespaces.

1 #cc#productID pID = 4000 ;

2 pID = 4001 ;

1 RTSimpleType pID = NewXSD(" cc#productID " , 4000) ;

2 SetValue (" cc#productID " , out pID , 4001) ;

The de�nition of variable pID is translated into a declaration of an instance of its

abstract C# proxy type that is assigned the result of the invocation of the static NewXSD

method, which creates an instance of the concrete productID proxy type (i.e. RTDecimal)

and initializes it with the value 4000. The invocation of the static setter-function in line

2 in the C# program creates a new instance of the productID proxy type, initializes it

with the value 4001, and assigns it to variable pID. The out parameter keyword causes

the SetValue method to refer to the same variable that was passed into it, i.e. any changes

made to pID in the method will be re�ected in that variable when control passes back to

the calling method. Thus, even assignments to null -objects are handled properly (at the

cost of the creation of a fresh instance).

Assignments to instances of constrained XML data types are statically type checked

by the Zhi# compiler. As a consequence, an assignment of a System.Int32 value to a

productID variable as shown in the code snippet below results in �(Line 3) Error: Viola-

tion of constraint xsd:minInclusive = 4000� and �(Line 3) Error: Violation of constraint

xsd:maxExclusive = 8000� compile-time errors. In contrast, in plain C#, where one may

use System.Int32 or System.Int16 integer types instead, the violation of the value space

154

constraints of the productID data type would result in error messages during costly schema

validations at runtime. Even worse, invalid assignments may as well remain undiscovered

and lead to application failure at runtime.

1 i n t i ;

2 #coke#productID pID ;

3 pID = i ; // Rejected by Zhi# compiler

In Zhi#, for assignments to and from instances of constrained XML data types four

di�erent cases must be considered. Firstly, the type of the source operand may have

a de�ned value space that is subsumed by the value space of the type of the target

object. In addition to the λC-subtyping rules .NET data types such as System.Int32 and

System.Double are by de�nition compatible with their XSD counterparts (see Table 5.1

and Subsection 5.1.2.6). Such assignments are generally safe.

Secondly, the type of the source operand may have an appropriate value space that was

inferred based on control and data �ow analysis as described in the following subsection.

Such assignments are safe, too.

Thirdly, an implicit user-de�ned conversion operator may be de�ned for assignments

to and from instances of a constrained XML data type. In this case no Zhi# compiler

warnings are emitted. Still, the conversion may fail in the implementation of the user-

de�ned conversion operator. This may of course also happen with any conventional user-

de�ned .NET conversion operator.

Eventually, source operands may be downcasted to the type of the target object.

Unsafe downcasts (i.e. type casts to subtypes of the type of the casted expression) defer

type checking from compile time to runtime (see Subsection 5.1.5). The Zhi# compiler

emits warnings for value space constraints of the target type that are not known at compile

time to hold for the value space of the source type and may thus cause the downcast to

fail at runtime. Unsafe downcasts should therefore only be used rarely in cases where the

type inference mechanisms of the XSD compiler plug-in are not su�cient.

155

5.1.3 Type inference

The Zhi# compiler framework supports the implementation of static type inference rules

by external compiler plug-ins. The Zhi# compiler plug-in for XML Schema De�nition

infers types of variables based on control and data �ow analysis. Types of literals are

inferred based on the particular values of the literal expressions. Types of binary arith-

metic expressions are inferred using the constraint arithmetic of the λC-type system as

described in Section 3.7.

In the λC-calculus, the type inference rule Ti-IfAdd can be used to infer the value of

a variable within the scope of an embracing if -statement. The rule Ti-AssignRem can

be used to remove transiently added constraints from the type of a variable.

Table 5.2: Ti-IfAdd

Γ ` a : A if (
∧

i∈1..n

(a ≺i literal i)) then �

Γ� ` a :
A⋂

i∈1..n

ci where ci = {x|x ∈ υ(A)} ∩ {x|x ≺i literal i}i∈1..n

Table 5.3: Ti-AssignRem

Γ ` t : T Γ ` a : A Γ� ` a :
A⋂

i∈1..n

ci a := t

Γ�� ` a : A

A scope within a program shall be denoted by �, a sub-scope of � shall be denoted by

��. Considering the then-branch of an if -statement of the form if (a ≺ literal) then � it

is safe to add the constraint c[≺ literal] to the type of variable a. The constraint c[≺ literal]

holds for the instance a within scope � until a is assigned a value (i.e. in a programming

language with side e�ects a must also not be referenced by method invocations). Γ and Γ�

are a typing context and a transient typing context for a limited scope �, respectively (i.e.

Γ�� is the typing context of the sub-scope ��). Both type inference rules are implemented

by Zhi#'s XML Schema De�nition compiler plug-in.

156

In the following Zhi# program, the type of variable xpi is inferred to be xsd#positive-

Integer{< 10} for the assignment expression in line 3. Accordingly, the type of the lvalue

x can be as speci�c as xsd#positiveInteger{< 10}, too. The transiently added constraint

{< 10} is removed from the type of xpi upon the assignment in line 4. Therefore, xpi is

again of the explicitly declared type xsd#positiveInteger for the assignment expression in

line 5.

1 #xsd#po s i t i v e I n t e g e r xpi = [. . .] ;

2 i f (xpi < 10) {

3 #xsd#in t x = xpi ; // xpi is an #xsd#positiveInteger{< 10}

4 xpi = [. . .] ;

5 #xsd#in t x i = xpi ; // xpi is an #xsd#positiveInteger

6 }

In the current implementation of the Zhi# compiler plug-in for constrained XML

Schema De�nition data types, only ANDed top-level expressions are used for type infer-

ence. In this way, the type inference algorithm is rather conservative (i.e. incomplete),

which proved to be su�cient in practice since the e�ects of type inference should still be

comprehensible for the programmer. For fundamental reasons, the proposed kind of type

inference will always be incomplete since otherwise the inference algorithm would solve

the Halting Problem (for the same reason, there is no �optimal� compiler).

In C#, it is possible to create loops by using the for, while, do, and foreach-statements.

The for and while-loops execute a block of statements repeatedly until a speci�ed expres-

sion evaluates to false. Because the test of the expression takes place before the execution

of the loop (i.e. for and while-loops execute zero or more times) the loop termination

criteria can be exploited for type inference. In contrast, a do-statement cannot be used

for type inference since the loop body of a do-statement is executed at least once regard-

less of the value of the controlling expression. The foreach-statement repeats a group of

embedded statements for each element in an array. These elements are not subject to any

tests, which makes the foreach-statement useless for type inference.

157

In order to take advantage of the constraining e�ects of for and while-loops the two

additional type inference rules Ti-ForAdd and Ti-WhileAdd are implemented by the

XSD compiler plug-in.

Table 5.4: Ti-ForAdd

Γ ` a : A for ([initializers];
∧

i∈1..n

(a ≺i literal i); [iterators]) then �

Γ� ` a :
A⋂

i∈1..n

ci where ci = {x|x ∈ υ(A)} ∩ {x|x ≺i literal i}i∈1..n

Table 5.5: Ti-WhileAdd

Γ ` a : A while (
∧

i∈1..n

(a ≺i literal i)) then �

Γ� ` a :
A⋂

i∈1..n

ci where ci = {x|x ∈ υ(A)} ∩ {x|x ≺i literal i}i∈1..n

All described type inference rules are applied to XML data type variables and variables

of primitive .NET value types such as System.Int32 for which an isomorphic mapping

exists to an XSD type (see Table 5.1).

In the following Zhi# program the type of variable i is inferred to be System.Int32{<

10} for the assignment in line 3 using the type inference rule Ti-ForAdd. Similarly to

the previous code snippet the transiently added constraint {< 10} is removed from the

type of i upon the assignment in line 4 and i is again of the explicitly declared type

System.Int32 for the assignment expression in line 5.

1 i n t i = [. . .] ;

2 f o r (i = 0 ; i < 10 ; i++) {

3 #xsd#in t x = i ; // i is a System.Int32{< 10}

4 i = [. . .] ;

5 #xsd#in t x i = i ; // i is a System.Int32

6 }

158

Note that in Zhi# only local variables can be constrained. Especially, properties

of .NET objects that are used along with relational operators are not subject to type

inference since the values that are yielded by .NET properties may be di�erent for each

single property access.

In the preceding code snippet, the expression i < 10 can be used for type inference since

the C# �less than� relational operator (<) corresponds to the XML Schema De�nition

constraining facet xsd:maxExclusive. In order to cover all XSD constraining facets seven

additional comparison operators as listed in Table 3.2 were added to the Zhi# language

grammar. The e�ects of these operators on type inference are described in the following

subsections.

5.1.3.1 ?>, ?=, and ?< Operator

In Zhi#, the string data types System.String and xsd#string de�ne �minimum length�

(?>), �length� (?=), and �maximum length� (?<) operators that return true if the �rst

operand has the given minimum length, exact length, and maximum length, respectively.

The second operand can be a .NET or an XSD integer type or a typeof -expression used

with an XSD string type. In the following Zhi# code snippet, the string length of the

.NET string variable s is tested to not exceed the maximum string length that is de�ned

for the XSD string type streetAddress. An error is emitted by the Zhi# compiler if no

xsd:maxLength constraint is de�ned for type streetAddress.

1 s t r i n g s = [. . .] ;

2 i f (s ?< typeo f (#cc#st r e e tAddre s s)) { [. . .] }

Additionally, the Length property that is de�ned for the .NET System.String data type

is used for type inference along with the �greater than or equal� (>=), �greater than� (>),

�less than� (<), and �less than or equal� (<=) operators. For the block of statements

within the if -statement in the following code snippet the type of the .NET string variable

s is inferred to be System.String{?< 10}.

159

1 s t r i n g s = [. . .] ;

2 i f (s . Length < 10) { [. . .] }

5.1.3.2 ?? Operator

The xsd:pattern constraint restricts the value space of a data type by constraining its

lexical space to literals that match a speci�c pattern. In Zhi#, the relational �pattern�

operator (??)1 can be used to test the string representation of an object to match a regular

expression. For .NET objects the string representation corresponds with the return value

of the ubiquitous ToString()-method. In Zhi#, XSD objects de�ne an implicit conversion

operator to System.String. The second operand of the �pattern� operator must be either a

string literal, which is statically checked to denote a valid regular expression, or a typeof -

expression used with an XML data type for which a �pattern� constraint is de�ned. In

the following code snippet, the .NET System.String variable s is checked to hold a word

of the type 3 language de�ned by the regular expression �[0-9]5� (i.e. a number with �ve

digits).

1 s t r i n g s = [. . .] ;

2 i f (s ?? "[0−9]{5}") { [. . .] }

Because regular languages are closed under intersection, union, and complementation

the word problem can be reduced to the emptiness problem. The e�ciency of this pro-

cedure heavily depends on how a type 3 language is de�ned. If both languages are given

as DFAs the complexity is O(n2). Unfortunately, if both languages are given as NFAs

or � as is the case here � as regular expressions, the equivalence problem is NP-hard. In

the current implementation of the Zhi# XSD compiler plug-in, two XML data types for

which xsd:pattern constraints are de�ned are compatible only if both patterns (i.e. regular

expressions) are syntactically identical.

1In C# 3.0 the �null coalescing� operator (??) was introduced, which checks whether the value provided
on the left side of the expression is null, and if so it returns an alternative value indicated by the right
side of the expression.

160

5.1.3.3 ?$ Operator

The xsd:enumeration pattern constrains the value space of an XML data type to a speci�ed

set of values. In Zhi#, the relational �enumeration� operator (?$) checks whether the value

provided on the left side of the expression is an element of the value space of the type

provided on the right side. The second operand of the �enumeration� operator must be a

typeof -expression used with an XML data type for which an xsd:enumeration constraint

is de�ned. The set of values cannot be explicitly speci�ed yet in order to keep the Zhi#

language grammar simple. It is conceivable, though, to allow for literal set notations of

the form {x, y, z} or container objects such as instances of System.List. In the following

Zhi# program, the value of the .NET System.String variable s is checked to be a valid

title according to the title type de�nition.

1 s t r i n g s = [. . .] ;

2 i f (s ?$ typeo f(#cc#t i t l e)) { [. . .] }

5.1.3.4 %. Operator

The xsd:fractionDigits pattern controls the size of the minimum di�erence between val-

ues in the value space of data types derived from xsd#decimal by restricting the value

space to numbers that are expressible as i × 10−n where i and n are integers and 0 ≤

n ≤ fractionDigits . The value of fractionDigits must be a non-negative integer. Note

that xsd:fractionDigits does not restrict the lexical space directly; a non-canonical lexical

representation that adds additional leading zero digits or trailing fractional zero digits is

still permitted. In Zhi#, the relational �fraction digits� operator (%.) checks whether

the xsd#decimal number on the left side of the expression has at most a given number

of fractional digits. The second operand of the �fraction digits� operator must either be

a .NET or an XSD integer object or a typeof -expression used with an XML data type

for which an xsd:fractionDigits constraint is de�ned. An xsd#decimal variable d can be

checked to have at most two fractional digits as follows.

161

1 #xsd#decimal d = [. . .] ;

2 i f (d % . 2) { [. . .] }

5.1.3.5 %% Operator

The xsd:totalDigits pattern controls the maximum number of values in the value space of

data types derived from xsd#decimal by restricting it to numbers that are expressible as

i × 10−n where i and n are integers such that |i| < 10totalDigits and 0 ≤ n ≤ totalDigits .

The value of totalDigits must be a positive integer. Note that xsd:totalDigits does not

restrict the lexical space directly; a lexical representation that adds additional leading

zero digits or trailing fractional zero digits is still permitted. In Zhi#, the relational

�total digits� operator (%%) checks whether the xsd#decimal number on the left side

of the expression has at most a given number of total digits. The second operand of

the �total digits� operator must either be a .NET or an XSD integer object or a typeof -

expression used with an XML data type for which an xsd:totalDigits constraint is de�ned.

An xsd#decimal variable d can be checked to have at most four total digits as follows.

1 #xsd#decimal d = [. . .] ;

2 i f (d %% 4) { [. . .] }

Constraints that are transiently added to the types of variables are preserved when

the same variable is again subject to type inference. In this way, the type of an object can

be accumulatively inferred to eventually have the required value space. An xsd#decimal

variable d can be constrained to have at most two fractional digits and at most four total

digits as shown in the following code snippet. In line 3 the type of d is inferred to be

xsd#decimal{%. 2}. For the block of embedded statements in line 4 the type of d is

inferred to be xsd#decimal{%. 2}{%% 4}.

Note how the accumulation of constraints with each controlling expression in if, for,

and while-statements directly corresponds to the construction of types in the λC-calculus

using the rule TD-CstrApp (see Section 3.2).

162

1 #xsd#decimal d = [. . .] ;

2 i f (d % . 2) {

3 i f (d %% 4) { // d is an xsd#decimal{%. 2}

4 [. . .] // d is an xsd#decimal{%. 2}{%% 4}

5 }

6 }

5.1.3.6 is-Operator

Instead of considering every single constraint separately, which requires manual lookup

in the XML schema and using a number of nested if -statements, value spaces may be

checked as a whole as shown in the code snippet below. In Zhi#, the is-operator (is)

can be used to check that the value space of the type of the operand on the left side is

subsumed by the value space of the type reference on the right side of the expression. The

�rst operand of the is-operator can be an instance of an XML data type or a primitive

.NET value type from the list in Table 5.1. The second operand must be a type reference

of an XML data type. The Zhi# compiler emits an error if the given expression is never of

the provided type. In the current implementation of the Zhi# programming language the

second operand must be a type reference that follows the syntactic requirements stipulated

in Subsection 5.1.1.

1 s t r i n g s = [. . .] ;

2 i f (s i s #cc#st r e e tAddre s s) { [. . .] }

For type systems that are known beforehand it is conceivable to extend the Zhi#

language grammar to allow for anonymous type de�nitions as the second operand of the

is-operator. Anonymous type de�nitions that are embedded in Zhi# programs would be

agnostic to changes in the referenced XML schema de�nitions while for referenced named

types the de�nitions in the schema may change and the value space check still functions

properly with respect to the modi�ed type de�nition (cf. Subsection 5.1.2.3).

163

5.1.3.7 Literals

In Zhi#, it is also possible for compiler plug-ins to infer more speci�c types of .NET

literals. A literal is a source code representation of a value. In C#, there are boolean-

literals, integer-literals, real-literals, character-literals, string-literals, and null -literals.

For the types of integer-literals it is possible to statically add the XSD constraints xsd:-

minExclusive, xsd:minInclusive, xsd:maxExclusive, xsd:maxInclusive, xsd:totalDigits, and

xsd:fractionDigits. In the following variable declaration, the type of integer i is inferred by

the XSD compiler plug-in to be System.Int32{> 22}{>= 23}{<= 23}{< 24}{%% 2}{%.

0}. The constraints {> 22} and {< 24} are the result of the application of the constraint

inference rules described in Section 3.7.

i n t i = 23 ;

The XSD constraints xsd:minInclusive and xsd:maxInclusive are added to the types

of real-literals. In the following variable declaration, the type of the real number r is

inferred to be System.Double{>= 23}{<= 23}.

double r = 23 ;

The XSD constraints xsd:minLength, xsd:length, and xsd:maxLength are added to the

types of string-literals. In the following variable declaration, the type of the string variable

s is inferred to be System.String{?> 3}{?= 3}{?< 3}.

s t r i n g s = "abc " ;

Note that additional compiler plug-ins may cooperatively add further non-XSD con-

straints to the types of both literals and variables. In particular, constraints from di�erent

external types systems are not mutually exclusive. For literals and binary expressions in

Zhi# programs, all activated compiler plug-ins are consulted one after the other in order

to add constraint information. Hence, additional plug-ins should be aware of the syntax

of the constraining facets from existing compiler plug-ins and should not reuse the same

constraint symbols.

164

5.1.4 Compilation to C#

Zhi# program text is compiled into conventional C#. External type and member refer-

ences as well as binary expressions that relate instances of external types are replaced by

.NET proxy types and multi-argument function calls, respectively.

The abstract λC-type system class RTSimpleType (see Fig. 3.1) is substituted for XML

Schema De�nition type references in compiled Zhi# programs (i.e. all referenced XSD

types are represented by one single proxy class). The λC-type system interfaces were

implemented as described in Section 3.6 in order to implement XSD type de�nitions and

constraint-based type derivation. In particular, 19 implementations of the abstract RT-

SimpleType class embody the 19 built-in XSD primitive types as listed in Table 5.6. Note

that none of these concrete classes is explicitly referenced in compiled Zhi# programs.

Instead, C#'s polymorphism is used to make RTSimpleType objects respond to method

invocations according to the actual XML data type for which they stand.

Table 5.6: XSD built-in primitive types

anyURI base64Binary boolean date

dateTime decimal double duration

�oat gDay gMonth gMonthDay

gYear gYearMonth hexBinary NOTATION

QName string time

The following Zhi# code snippet is compiled into the C# program shown below. The

XSD types cc#itemPrice and cc#invoiceTotal are both represented by the same proxy

type RTSimpleType in the output C# program. The source values 23 and 42 are not

directly assigned to the variables p1 and p2. Instead, the NewXSD method provided by

the ZhiSharpRuntime class is used to create RTSimpleType objects from the given values.

Because expressions, which comprise XML data types, are statically type-checked the

creation of the proxy type instances is guaranteed to succeed at runtime for immutable

165

XML schema de�nitions; it may fail if the Zhi# program is started with modi�ed XSD

type de�nitions (cf. Subsection 5.1.1).

1 #cc#itemPr ice p1 = 23 ;

2 #cc#itemPr ice p2 = 42 ;

3 #cc#invo i c eTota l t o t a l = p1 + p2 ;

1 RTSimpleType p1 = ↪→

2 NewXSD(" http ://www. chokycola . com/ bus ine s s#itemPr ice " , 2 3) ;

3 RTSimpleType p2 = ↪→

4 NewXSD(" http ://www. chokycola . com/ bus ine s s#itemPr ice " , 4 2) ;

5 RTSimpleType t o t a l = ↪→

6 NewXSD(" http ://www. chokycola . com/ bus ine s s#invo i c eTota l " , ↪→

7 Addit ion (" http ://www.w3 . org /2001/XMLSchema#double ↪→

8 {>= "0"}{< "200"}{<= "200"}" , ↪→

9 p1 , p2)) ;

The partial static ZhiSharpRuntime class is required at runtime by compiled Zhi#

programs. Its static constructor loads external type de�nitions and initializes external

type systems. External compiler plug-ins can extend the ZhiSharpRuntime class with

type system speci�c functionalities. The XSD compiler plug-in contributes among others

the static NewXSD and Addition methods and the RTSimpleType class.

XML schema de�nitions that are to be loaded by the Zhi# runtime must be speci�ed

in the App.con�g2 con�guration �le as values of the ZhiSharpXSDFiles key as follows.

1 <con f i gu ra t i on>

2 <appSett ings>

3 <add key="ZhiSharpXSDFiles " value="chokycola . xsd"/>

4 </appSett ings>

5 </con f i gu ra t i on>

2.NET programs can be con�gured using an XML con�guration �le named App.con�g. Its contents
can be conveniently extracted using the .NET Con�gurationManager class.

166

In Zhi# programs, binary expressions that comprise instances of XSD types are trans-

lated into multi-argument function calls on the Zhi# runtime library.

x = a τ b
is translated into−→ x = fτ (a, b, . . .)

The addition expression p1 + p2 in line 3 the Zhi# code snippet above is translated

into an invocation of the Addition function provided by the XSD plug-in for the Zhi#

runtime library. The Addition function adds the RTSimpleType objects p1 and p2. The

sum object is then taken as the input for the creation of an xsd#double{>= "0"}{<

"200"}{<= `"200"} object. This constrained xsd#double data type is statically inferred

as the type of the expression p1 + p2. The result of the addition operation is also dy-

namically type-checked by the generated C# code to not exceed the statically computed

value space. Note that the anonymous constrained xsd#double data type is agnostic to

schema changes at runtime. Eventually, the output of the Addition function is used to

initialize a cc#invoiceTotal variable. This variable de�nition is dynamically type-checked

such that, the XSD lvalue total will never be assigned an invalid value according to the

schema de�nition loaded at runtime. In particular, the assigned value will neither be too

general nor too speci�c. If a too speci�c object was assigned to an XSD variable subse-

quent assignments would fail in the presence of the covariant subtyping for constrained

data types because RTSimpleType objects do not only aggregate the value but also the

type of the represented XML data type value (i.e. the target object may subsequently be

guarded by too restrictive constraints of the previous source object). This is why de�ni-

tions and assignments that involve constrained types are translated into object creation

expressions and setter-function calls on the Zhi# runtime library, respectively.

In Subsection 5.1.2.8 an example is given how assignments to XSD variables are com-

piled into C# in the presence of covariant subtyping. See Appendix B.1 for how Zhi#

code that contains XML Schema De�nition data types is translated into C# by the XSD

compiler plug-in.

167

5.1.5 Dynamic checking

In Zhi#, XML Schema De�nition objects can be downcast to XML data types whose value

space is a subset of the value space of the original type. This conversion is analogous to

downcasting in C# where a variable is bound to a value that is an instance of a class

that is a subtype of the variable's original type. Downcasting is useful because it allows

symmetric binding of classes. Still, InvalidCastExceptions can occur at runtime if the cast

object is not of the provided type. The C# compiler statically checks if the provided type

is a subtype of the type of the cast object in order to avoid �unnecessary� runtime errors.

Analogously, the Zhi# compiler reports an error if an XSD object is cast to a type that

is incompatible with the primitive base type of the object. Other possible constraint and

value space violations at runtime dwindle to compiler warnings.

At runtime, invalid downcasts to XML data types are detected by Zhi#'s dynamic type

checking3 for XSD types. In Zhi#, every assignment to an XSD variable is dynamically

checked. This includes assignments that were statically type-checked and considered

to be safe as well as unsafe expressions such as downcasts. For performance reasons

dynamic type checks of statically checked expressions may be omitted for code that is not

visible to other .NET programming languages than Zhi# if the underlying XML schema

de�nitions are not subject to change after compilation of the Zhi# program. For the

sake of simplicity, the current implementation of the Zhi# compiler generates code that

contains dynamic type checks for all assignments that comprise instances of XML data

types. As a consequence, XML schemata, which contain the referenced type de�nitions,

are allowed to be modi�ed after compilation before startup of a Zhi# application (this

may heavily in�uence the execution of the Zhi# program, though). Moreover, compiled

Zhi# assemblies can be used by di�erent .NET programming languages since assignments

to the Value �eld of the RTSimpleType class are always checked to be valid in respect of

the underlying XML Schema De�nition.

3In [Pie02], Pierce notes that �Terms like `dynamically typed' are arguably misnomers and should
probably be replaced by `dynamically checked', but the usage is standard.�.

168

For assignments to XSD variables a ViolatedLexicalSpaceException and a Violated-

ConstraintException are thrown if the value that is represented by the source object is

not an element of the lexical space and the value space, respectively, of the type of the

XSD lvalue. Standard XML Schema De�nition validation principles as implemented in

the λC-type system are employed as depicted in Fig. 5.5. First, modifying facets such as

xsd:whitespace are applied to the source object's string representation. Next, the lexical

space is checked to be valid for the given built-in primitive base type from which the type

of target object t is derived. Subsequently, all constraining facets that are de�ned for

the XSD target type are enforced. Finally, the Value �eld of the XSD object t (i.e. the

instance of RTSimpleType) is updated.

Figure 5.5: XSD validation

Zhi# programs are fully interoperable with standard .NET assemblies. In particular,

publicly visible instances of constrained XML data types can be accessed in conventional

C# programs via the Value property of the RTSimpleType proxy class. In this way it

is possible to assign System.String values to and read System.String values from XSD

objects with the same dynamic type checking as described above (i.e. it is not possible to

bypass stipulated XML Schema De�nition constraints).

169

5.2 Related Work

Around ten years ago computers eventually became fast enough to a�ord the luxury of

XML (recall that XML is a subset of SGML, which was invented already in 1969). Since

then major software companies have come out strongly in favor of standardizing both on

XML and XML Schema De�nition. As a result, a number of approaches have emerged to

de�ne programming languages speci�cally for the XML domain.

XDuce [HP03] is a functional programming language that is speci�cally designed for

processing XML data. One can read an XML document as an XDuce value, extract

information from it or convert it to another format, and write out the result value as

an XML document. The subsequent Xtatic project [GP03] aims to develop theoretical

foundations and implementation techniques for a lightweight extension of C# tailored for

native XML processing. In contrast to Zhi#, both approaches focus on content models

of aggregated XML structures and lack support for atomic XML data types. In this

way, they are similar to Xen and Cω, which are amalgamations of Microsoft's Common

Language Runtime (CLR) [Mic06], XML, and SQL programming languages.

The JWIG development system [CMS03] is a Java-based high-level language for the

development of interactive Web services. JWig integrates the central features of the

<bigwig> language [BMS02] into Java by providing explicit support for web service ses-

sions and safe XHTML dynamic document construction. In particular, JWIG facilitates

the construction of XHTML documents by introducing XML templates, which can con-

tain inlined pieces of code, called code gaps. At runtime, code gaps can be substituted

by other templates or literals. In the Xact project [KMS04], JWig's validation algo-

rithm is extended to implement further compile time guarantees such that, dynamically

transformed XML documents are valid according to a given XML schema.

XL [FGK02] adopts to XQuery [BCF07] and combines imperative and declarative

programming language features to facilitate the development of Web services. The XML

Objects Programming Language [SL05] integrates XML and XPath [CD99] into the Java

170

programming language with a main emphasis on valid updates of persistent XML objects.

In [BW04], a constraint algebra is proposed in which complex constraint expressions

can be built up from primitive constraints using logical connectives like conjunction or

disjunction. This algebra, however, has not been embedded with a type system. A

constraint model for XML is presented in [FKS01]. Just like the XML domain speci�c

languages mentioned above this model focuses on the content model of aggregated types

and does not include value space constraints of atomic data types as they may be de�ned

by XML Schema De�nition.

To the best of the author's knowledge, all of these approaches lack support for con-

strained atomic XML data types. Rather, the Zhi# approach presented in this work

is complementary to some technologies that do only support content models of complex

XML Schema De�nition types.

Type quali�ers can be used to express properties of objects in addition to their type

information. For example, in the C programming language, the type quali�er const can

be used to declare variables constant in order to allow the compiler to make certain

optimizations. Type quali�ers encode a simple form of subtyping, which can be used to

guarantee a certain program behavior at runtime or to �nd bugs.

Foster et al. [FTA02] developed the Cqual tool that can be used to extend standard

types with �ow-sensitive type quali�ers. In contrast, Zhi#'s constrained atomic types are

not decorated with type quali�ers in the program text but are de�ned using value space

constraints (i.e. value space �quali�ers� are �rst class citizens of type construction). Unlike

Cqual, �ow-sensitivity in Zhi# is not restricted to constrained (i.e. quali�ed) types but

is also used to infer properties of .NET value type objects. In Zhi#, subtype relations

of constraints are not de�ned in an ad hoc manner but by formal subtyping rules. Brian

Chin et al. introduced semantic type quali�ers [CMM05]. This work was later augmented

with inference of type quali�ers and quali�er rules in a system called Clarity [CMM06].

Their framework can be used to restrict the values of expressions (e.g., nonnull, nonzero)

171

and to restrict the �ow of values through a program (e.g., tainted, untainted). The

former class of quali�ers is similar to constrained types in Zhi#. An important di�erence

here is that in the work of Brian Chin et al. associated type rules of type quali�ers are

de�ned for particular code patterns (i.e. knowledge is assumed about the syntax of the

programming language), which is not required for constrained type de�nitions in Zhi#.

In both approaches constrained (i.e. quali�ed) types are considered to be subtypes of their

associated base types. In Zhi#, value space constraints are automatically classi�ed based

on formal subtyping rules while the language of Brian Chin et al. does not support explicit

subtype declarations between two user-de�ned quali�ers. The Cqual system supports

subtyping relationships among quali�ers, too. The Clarity framework boasts quali�er

rule inference from given quali�er invariants. By contrast, in Zhi#, the type of a term

is computed by combining the types for its subterms. Subtyping orders of type quali�ers

are supported by the Jqual tool for Java [GF07]; users have to specify the subtyping

order manually, though. In contrast to the Zhi# compiler framework, Jqual assumes

that the input program is correct with respect to the standard Java types.

5.3 Summary

The XML Schema De�nition type system was implemented based on the formal founda-

tion of the λC-calculus as described in Chapter 3. XML Schema De�nition data types

were integrated with the Zhi# programming language by means of a plug-in for the Zhi#

compiler framework that facilitates loading of XML schema de�nitions, static typing of

constrained atomic data types in Zhi# programs, and the transformation of XSD type

references in Zhi# programs into C# code. Except for conjoint type derivation along

with di�erent type systems, XML data types can be used in any context of Zhi# pro-

grams that is valid for built-in .NET value types. In particular, XML Schema De�nition

type system rules were integrated with programming language features such as method

overriding, user-de�ned operators, and runtime type checks (i.e. XSD aware compilation).

172

The XSD compiler plug-in implements static typing of XML data types that takes into

account both nominal and structural aspects of the XML Schema De�nition type system.

Implicit conversions are provided between primitive .NET value types and XML data

types for which a value space based subtype relation exists. The XSD compiler plug-in

enforces invariant subtyping for XSD array types, which is a deviation from the covariant

subtyping of .NET array types, and allows covariant subtyping for non-array types.

The Zhi# compiler framework supports the implementation of static type inference

rules by compiler plug-ins. The compiler plug-in for XML Schema De�nition infers types

of variables based on control and data �ow analysis. The type inference rule for if -

statements in the λC-calculus was complemented with type inference rules for for and

while-statements. The types of literals are inferred based on the literal values. Types of

binary arithmetic expressions are inferred based on the constraint arithmetic of the λC-

type system. In order to cover all XSD constraining facets seven additional comparison

operators as listed in Table 3.2 were added to the Zhi# language grammar.

Zhi# program text is compiled into conventional C#. External type and member ref-

erences as well as binary expressions that relate instances of external types are replaced by

.NET proxy types and multi-argument function calls, respectively. The abstract λC-type

system class RTSimpleType (see Fig. 3.1) is substituted for XML Schema De�nition type

references in compiled Zhi# programs (i.e. all referenced XSD types are represented by

one single proxy class). The λC-type system interfaces were implemented as described in

Section 3.6 in order to implement XSD type de�nitions and constraint-based type deriva-

tion. In particular, 19 implementations of the abstract RTSimpleType class embody the

19 built-in XSD primitive types. The generated C# code facilitates dynamic checking of

XML data types, which is provided by the accompanying XSD plug-in for the Zhi# run-

time library. The XSD plug-in detects invalid downcasts to XML data types and invalid

assignments to the Value property of compiled XML data types by conventional C# code.

In this way, Zhi# programs are fully interoperable with standard .NET assemblies with

full consideration of the stipulated XML Schema De�nition value space constraints.

173

174

CHAPTER 6

OWL Aware Compilation � Complex Data, Simple

Code

Widely used object-oriented programming languages such as Java or C# include a built-in

static type system. Programming language type systems provide a conceptual framework

that makes it particularly easy to design, understand, and maintain object-oriented sys-

tems. However, with the emergence of ontology languages such as the Web Ontology Lan-

guage (OWL) [MH04a] conventional built-in programming language type systems have

reached their limits.

In course of the CHIL research project [Inf04] an ontology was deployed in order to

provide a formal high level description of the CHIL domain of discourse that can be ef-

�ciently used to build intelligent applications. By using the Description Logics [BCM03]

based Web Ontology Language (OWL DL) for modeling concepts, properties, and indi-

viduals of the CHIL domain of discourse it is possible to use a reasoner for automatically

checking the consistency of the knowledge base and making implicit knowledge explicit,

which can be considered to be a form of arti�cial intelligence.

A typical OWL DL knowledge base comprises two components � a TBox and an ABox.

The TBox contains general knowledge about a problem domain in form of a terminology

and is built through declarations that describe general properties (roles) of concepts. The

ABox contains assertional knowledge, which is speci�c to the individuals of the domain

of discourse. While the TBox is usually thought to be immutable, the ABox may be

subject to occasional or even constant change. In particular, modi�cations may lead to

175

an ABox that violates terminological de�nitions such as cardinality constraints or value

space restrictions of OWL datatype properties.

Up to now, ontological knowledge bases are modi�ed using APIs, which are provided

by a variety of di�erent ontology management systems [HP 04, MH04b, Sta06]. From a

software developer's perspective, there is no support for statically detecting illegal oper-

ations based on given terminologies (e.g., unde�ned concepts, invalid datatype property

values) and conveniently integrating ontological concepts, roles, and individuals with the

program text of a general purpose programming language.

A common di�culty of widely used OWL APIs and academic approaches to use wrap-

per classes to represent elements of an ontology are the di�erent conceptual bases of

types and instances in a programming language and concepts, roles, individuals, and

XML Schema De�nition [BM04b] data type values in OWL DL. In particular, the Web

Ontology Language reveals the following major di�erences to object-oriented program-

ming languages and database management systems.

• Ontology entailment for the Web Ontology Language can be reduced to knowl-

edge base satis�ability in the SHOIN (D) Description Logic [HP04]. In contrast

to object-oriented programming languages and less expressive Description Logics,

SHOIN (D) provides a rich set of concept constructors (see Table 1.4). For exam-

ple, concepts can be described via cardinality and value restrictions on properties

(e.g., a small meeting is a meeting with at most three participants). As a conse-

quence, the consistency of a knowledge base cannot be checked �statically� on the

meta-level since both a particular TBox and a particular ABox are required to infer

the RDF types of individuals in the knowledge base.

• OWL concept descriptions are automatically classi�ed in a subsumption hierarchy.

Imitating this inherent behavior of ontological knowledge bases using a hierarchy of

programming language wrapper classes would result in reimplementing a complete

OWL DL reasoner.

176

• Unlike object-oriented programming languages or database management systems,

OWL makes the open world assumption (OWA), which codi�es the informal notion

that in general no single observer has complete knowledge. The open world assump-

tion limits the deductions a reasoner can make. In particular, it is not possible to

infer from the lack of knowledge of a statement being true, anything that follows

from that statement being false. For example, assuming a concept description of

a big meeting, which is to have at least 5 participants, a consistency check will

not fail if there are big meeting instances with less than �ve participants. From

the absence of information about meeting participants in the available knowledge,

a reasoner cannot surmise that these additional participants actually do not exist

in the real world; they can only be considered unknown. A consistency check will

fail, however, if there are small meetings with too many participants. Note that

the OWA is closely related to the monotonic nature of �rst-order logic (i.e. adding

information never falsi�es previous conclusions).

• The Web Ontology Language does not make the unique name assumption (UNA). In

contrast to logics with the unique name assumption, di�erent ontological individuals

do not necessarily refer to di�erent entities in the described world. In fact, two

individuals can be inferred to be identical (e.g., values of functional object properties

can be inferred to be identical because of the property cardinality of `1'). In OWL,

it is also possible to explicitly declare that two given named individuals have the

same identity or di�erent identities.

• Unlike object-oriented programming languages, ontological roles in OWL DL are not

de�ned as part of class de�nitions but form a hierarchy of their own (i.e., property

centric modeling).

• In OWL, property domain and range restrictions are not authoritative. Instead,

the de�ned domain and range of an OWL property is used to infer the types of the

subjects and objects of RDF triples, respectively.

177

With programming language inherent support for constrained atomic XML Schema

De�nition data types, Zhi# provides the prerequisite for compile-time support and dy-

namic type checking for Web Ontology Language concept descriptions. The implemented

compile-time support includes not only static type checking of expressions that involve

OWL DL objects but also features of the Zhi# development environment such as auto-

completion of ontological concept and role names.

6.1 Integrating OWL DL with the C# Programming Language

Based on the formally speci�ed CHIL OWL API (see Chapter 4) an OWL plug-in [Paa07]

for the Zhi# compiler framework was developed that makes it possible to use OWL

concepts, roles (properties), and individuals in Zhi# programs. In Zhi#, ontological

reasoning is integrated with the conventional .NET type system and C# programming

language features. In particular, the OWL compiler plug-in can be used cooperatively

with the XSD plug-in described in the previous chapter in order to facilitate the handling

of OWL datatype properties. Imported OWL concept descriptions are subject to both

static typing and dynamic checking. Zhi# expressions that comprise ontological concepts

and roles are transformed into conventional C# code.

6.1.1 Referencing OWL DL Ontologies

Zhi#'s ontology aware compilation makes it possible to reference ontological concepts and

roles as de�ned in OWL DL ontologies and to use these references along with constrained

XML Schema De�nition data types and C# programming language features. The Zhi#

compiler takes as input Zhi# source �les and OWL DL ontologies encoded in RDF/XML

syntax as depicted in Fig. 6.1. Both the CHIL OWL API and the Zhi# OWL compiler

plug-in support XML data types. The CHIL Knowledge Base server uses an implementa-

tion of the λC-type system (see Chapter 3). The Zhi# OWL compiler plug-in delegates

the evaluation of XSD objects to the XSD compiler plug-in.

178

Figure 6.1: OWL aware compilation

The Zhi# keyword import works analogously for OWL concepts and roles like the

C# using keyword for .NET programming language type de�nitions. It can be used to

import concepts and roles that are de�ned in OWL DL ontologies. OWL concepts and

roles can be used in a Zhi# namespace such that, one does not have to qualify the use

of a concept or role in that namespace. Concepts and roles of the TBox describing the

domain of discourse on which a software application operates are made available right in

the application's program text.

The following OWL DL ontology, encoded in RDF/XML syntax, declares the onto-

logical concepts Meeting and ActivityLevel, the ontological role hasActivityLevel, and the

ontological individuals Low and High in the namespace http://chil.server.de/ontology.

In the Zhi# program shown below the concepts and roles are referenced by using the alias

cho, which is bound to the ontology namespace by the import statement in line 1 in the

Zhi# program.

Even the shown few lines of Zhi# code indicate possible programming language fea-

tures that are likely to ease the development of knowledge base client applications. First,

the imported namespace could be checked to actually contain concept and role de�nitions.

Second, the used concepts and roles could be checked to exist in the imported namespace.

Eventually, the range description of the role hasActivityLevel can be statically checked to

not be disjoint with the concept description ActivityLevel.

179

1 <rd f :RDF xmlns="http :// c h i l . s e r v e r . de/ onto logy " [. . .] >

2 <owl : Ontology rd f : about=""/>

3 <owl : Class rd f : ID="Act i v i t yLeve l "/>

4 <owl : Class rd f : ID="Meeting"/>

5 <owl : ObjectProperty rd f : ID="hasAct iv i tyLeve l">

6 <rd f s : domain rd f : r e s ou r c e="#Meeting"/>

7 <rd f s : range rd f : r e s ou r c e="#Act iv i tyLeve l "/>

8 </owl : ObjectProperty>

9 <Act iv i tyLeve l rd f : ID="Low"/><Act iv i tyLeve l rd f : ID="High"/>

10 </rd f :RDF>

1 import OWL cho = http :// c h i l . s e r v e r . de/ onto logy ;

2 namespace MyCHILApplication {

3 c l a s s MyClass {

4 #cho#Meeting m = [. . .] ;

5 m.#cho#hasAct iv i tyLeve l =

6 new #cho#Act iv i tyLeve l (" http :// c h i l . s e r v e r . de/ onto logy#High ") ;

7 }

8 }

For each imported OWL namespace the Zhi# OWL compiler plug-in loads the respec-

tive type de�nitions from the referenced RDF/XML library �les. The set of library �les

that is made available to each Zhi# compiler plug-in comprises all referenced non-source

code �les (e.g., .xsd-, .owl-, .dll �les). From these �les RDF/XML encoded ontology de�ni-

tions (i.e. .owl- and .rdf-�les) are considered by the OWL compiler plug-in. A compile-time

error occurs if no ontology is de�ned in imported OWL namespaces. Concept descriptions

and ontological roles that are de�ned in the imported OWL namespaces may be used in

the code following the import statement. OWL concepts and roles are subject to static

typing and dynamic checking, and are syntactically highlighted in the Eclipse-based Zhi#

editor. Also, they are available as autocompletion proposals (cf. Fig. 5.2).

180

6.1.2 Static typing

C# is a statically typed programming language. Type checking is performed during

compile time as opposed to runtime. As a consequence, many errors can be caught early at

compile time (i.e. fail-fast), which allows for e�cient execution at runtime. Unfortunately,

the non-contextual property centric data modeling features of the Web Ontology Language

render compile-time type checking only a partial test on Zhi# program text. In a well-

typed C# program, every expression is guaranteed to be of a certain type at runtime. In

Zhi#, the same is not generally true for ontological individuals. Eventually, static type

checking of computer programs that use elements of an ontology amounts to ontological

reasoning on the meta-level, which cannot be complete for all possible incarnations of

an ontology. This subsection describes the static type checks that can be performed on

ontological expressions in Zhi# programs.

6.1.2.1 Syntax checks

The most fundamental compile-time feature that the OWL plug-in provides is checking

the existence of referenced ontology elements in the imported terminology. The C#

statements below declare the ontological individuals a and b. Individual b is added as a

property value for property R of individual a. For the sake of brevity, in this chapter, the

URI fragment identi�er �#� may be used to indicate ontology elements in Zhi# programs

instead of using fully quali�ed names. The object o shall be an instance of the C#

implementation of the CHIL OWL API (see Chapter 4). The given code is a well-typed

C# program. It may, however, fail at runtime if in the TBox of the referenced ontology

classes A and B and property R do not exist.

1 ICHILOWLAPI o = [. . .] ;

2 o . addInd iv idua l ("#a" , "#A") ;

3 o . addInd iv idua l ("#b" , "#B") ;

4 o . addObjectPropertyValue("#a" , "#R" , "#b ") ;

181

In Zhi#, the same declarations can be rewritten as shown below. As a result, the

Zhi# compiler statically checks if concept descriptions A and B and property R exist in

the imported ontology and raises an error if they are unde�ned.

1 import OWL alias = ontology namespace ;

2 #A a = new #A("#a ") ;

3 #B b = new #B("#b ") ;

4 a.#R = b ;

6.1.2.2 Creation of individuals

In C#, the new operator can be used to create objects on the heap and to invoke con-

structors. In Zhi#, the new operator can also be used to answer ontological individuals

in a knowledge base as follows.

1 #Event e = new #Meeting("#Briefing ") ;

2 #Meeting m = new #Event("#Briefing ") ; // Rejected by Zhi# compiler

For ontological concepts the Zhi# programming language provides a constructor that

takes the URI of the individual. As in conventional C#, the new operator cannot be

overloaded. In contrast to .NET objects, ontological individuals are not created on the

heap but in the addressed ontological knowledge base, and as such they are subject to

ontological reasoning. This is in contrast to naïve approaches where wrapper classes for

ontological concepts are instantiated as plain .NET objects. In Zhi#, the instances of the

single wrapper class are just handles to the individuals in the ontology. Also note that

any existing individual in the ontology with the given identi�er is reused, which is the

standard behavior of ontology management systems for the Web Ontology Language.

As for assignments of .NET object creation expressions to variables or �elds, the type

of the individual creation expression must be subsumed by the type of the lvalue based

on the classi�ed concept hierarchy (see line 2 in the code snippet above). Zhi# supports

covariant coercions for ontological individuals and arrays of ontological individuals.

182

6.1.2.3 Disjoint concepts

In OWL DL, classes can be stated to be disjoint from each other using the owl:disjoint-

With constructor. It guarantees that an individual that is a member of one class cannot

simultaneously be an instance of a speci�ed other class. For example, MeetingRoom and

LargeRoom can be stated to be disjoint classes as follows.

1 <rd f :RDF xmlns="http :// c h i l . s e r v e r . de/ onto logy " . . . >

2 <owl : Class rd f : ID="LargeRoom">

3 <owl : d i s jo intWith>

4 <owl : Class rd f : ID="MeetingRoom"/>

5 </owl : d i s jo intWith>

6 <rd f s : subClassOf>

7 <owl : Class rd f : ID="Locat ion"/>

8 </rd f s : subClassOf>

9 </owl : Class>

10 <owl : Class rd f : about="#MeetingRoom">

11 <owl : d i s j o in tWith rd f : r e s ou r c e="#LargeRoom"/>

12 <rd f s : subClassOf rd f : r e s ou r c e="#Locat ion"/>

13 </owl : Class>

14 </rd f :RDF>

From the owl:disjointWith statements a reasoner will deduce an inconsistency when

an individual is stated to be an instance of both classes. Similarly a reasoner can de-

duce that if an individual is an instance of MeetingRoom, then it is not an instance of

LargeRoom. These conclusions do not depend on the context (i.e. a particular ABox)

of the disjoint class de�nitions and can thus be drawn on the meta-level. In Zhi#, the

disjointness of classes is exploited to statically type-check cast expressions and property

value declarations. The following Zhi# program will produce a compile-time error in line

2 because the ontological individual that is referred to by variable l will never be in the

extension of the ontological concept MeetingRoom for consistent ontologies.

183

1 #LargeRoom l = [. . .] ;

2 #MeetingRoom m = (#MeetingRoom) l ;

Property domain and range restrictions along with disjoint concept descriptions are

exploited by the Zhi# compiler as follows. The range of a property limits the individuals

that the property may have as its value. If a property relates an individual to another

individual, and the property has a class as its range, then the other individual must belong

to the range class. In OWL, multiple range values are interpreted as a conjunction. In

the following ontology snippet, which extends the previous de�nitions of a MeetingRoom

and a LargeRoom, the property takesPlaceInAuditorium is stated to have the range of

LargeRoom. From this a reasoner can deduce that if an event takes place in an auditorium

then then this location must be a LargeRoom.

1 <rd f :RDF xmlns="http :// c h i l . s e r v e r . de/ onto logy " . . . >

2 <owl : Class rd f : ID="Event"/>

3 <owl : Class rd f : ID="Lecture">

4 <rd f s : subClassOf rd f : r e s ou r c e="#Event"/>

5 <owl : d i s jo intWith>

6 <owl : Class rd f : ID="Meeting"/>

7 </owl : d i s jo intWith>

8 </owl : Class>

9 <owl : Class rd f : about="#Meeting">

10 <owl : d i s j o in tWith rd f : r e s ou r c e="#Lecture"/>

11 <rd f s : subClassOf rd f : r e s ou r c e="#Event"/>

12 </owl : Class>

13 <owl : ObjectProperty rd f : ID="takesPlaceInAuditor ium">

14 <rd f s : domain rd f : r e s ou r c e="#Lecture"/>

15 <rd f s : range rd f : r e s ou r c e="#LargeRoom"/>

16 </owl : ObjectProperty>

17 </rd f :RDF>

184

Consequently, the assignment in line 2 in the following Zhi# code snippet results

in a compile-time error because � in the given ontology � a location can never be a

MeetingRoom and a LargeRoom at the same time.

1 #Lecture l = [. . .] ;

2 l .#takesPlaceInAuditor ium = new #MeetingRoom ([. . .]) ;

The domain of a property limits the individuals to which the property can be applied.

If a property relates an individual to another individual, and the property has a class as

one of its domains, then the individual must belong to the class (multiple domain values

are interpreted as a conjunction). For example, the property takesPlaceInAuditorium is

stated to have the domain Lecture. From this a reasoner can deduce that if an event

takes place in a auditorium, then the this event must be a Lecture. As a consequence, the

assignment in line 2 in the following Zhi# code snippet results in a compile-time error

because an event can never be a Meeting and a Lecture at the same time.

1 #Meeting m = [. . .] ;

2 m.#takesPlaceInAuditor ium = new #LargeRoom ([. . .]) ;

Note that the described reasoning based on property domain and range restrictions,

where the types of subjects and objects of RDF triples are inferred based on the properties'

domain and range restrictions, happens only at runtime and is not available at compile

time. The Zhi# compiler does not perform any type inference for ontological individuals,

which are always considered to be of the explicitly declared type.

OWL DL includes language constructs to describe boolean combinations of class ex-

pressions. The owl:complementOf construct selects all individuals from the domain of

discourse that do not belong to a given class . Therefore, similar conclusions can be drawn

on the meta-level for owl:complementOf concept descriptions as for the owl:disjointWith

concept constructor. This has, however, not yet been implemented in the current release

of the Zhi# OWL compiler plug-in because owl:complementOf traits are more di�cult

to reconstruct for given concept descriptions.

185

6.1.2.4 Disjoint XML data types

In Zhi#, a �frame-like� view on OWL object properties is provided by the checked -operator

used in conjunction with assignments to OWL object properties (see Subsection 6.1.5). For

assignments to OWL datatype properties in Zhi# programs, the �frame-like� composite

view is the default behavior. The data type of the property value must be a subtype

of the datatype property range restriction. The following assignment in line 2 fails to

type-check for a datatype property hasCapacity with domain MeetingRoom and range

xsd#byte because in Zhi# programs the literal 23.5 is interpreted as a .NET �oating

point value (i.e. xsd#double), which is disjoint with the primitive base type of xsd#byte.

1 #MeetingRoom r = [. . .] ;

2 r .#hasCapacity = 23 . 5 ;

The XSD compiler plug-in allows for downcasting objects to compatible XML data

types (i.e. XSD types that are derived from the same primitive base type). The assignment

in line 3 in the following Zhi# code snippet is validated by such a downcast. In general,

this may lead to an InvalidCastException at runtime, which prevents OWL datatype

properties from being assigned invalid property values.

1 i n t i = [. . .] ;

2 #MeetingRoom r = [. . .] ;

3 r .#hasCapacity = (#xsd#byte) i ;

6.1.2.5 Ontological roles

In Zhi# programs, ontological individuals can be related to other individuals and XML

data type values using an object-oriented notation. In contrast to authoritative type

declarations of class members in statically typed programming languages, domain and

range restrictions of OWL object properties are used to infer the types of the subject (i.e.

host object) and object (i.e. property value) of the declared RDF triple in the ontology.

186

Hence, the types of the related individuals do not necessarily need to be subsumed by the

domain and range concept descriptions of the used object property before the declaration.

The only requirement here is that the related individuals are not declared to be in the

extensions of concept descriptions that are disjoint with the object property's domain and

range restrictions. This case is statically checked by the Zhi# compiler (see above).

Similarly, OWL datatype properties can only be used with elements of the value space

of that XSD data type that was used for the datatype property range restriction (cf.

Subsection 3.1.1). Consequently, the following assignment statement fails to type-check

for a datatype property U with domain A and range xsd#byte since the literal 23.5 is

interpreted as a .NET �oating point value (i.e. xsd#double) and the value spaces of the

two primitive base types xsd#decimal and xsd#double are disjoint.

a.#U = 23 . 5 ;

Both for OWL object and non-functional OWL datatype properties the property as-

signment semantics are additive. The following assignment statement adds the individual

b as a value for property R of individual a; it does not remove existing triples in the

ontology model. Note: a and b are the individuals referred to by a and b, respectively.

a.#R = b ;

Correspondingly, property access expressions yield arrays of individuals and arrays

of XML data type values for OWL object properties and non-functional OWL datatype

properties, respectively, since an individual may be related to more than one property

value. Accordingly, the type of OWL object property and non-functional OWL datatype

property access expressions is always an array type, where the base type is the range

restriction of the property. Note that this typing rule is incomplete for OWL object

properties since the related individuals may as well be in the extensions of a number of

di�erent concept descriptions than the property range restriction. Still, at compile time

(i.e. on the meta-level with no knowledge about particular ontology models) no further

conclusions are safe.

187

The type of an assignment to an OWL object property and a non-functional OWL

datatype property is always an array type, too. This behavior is slightly di�erent from the

typical typing assumptions in programming languages. Because the assignment operator

(=) cannot be overloaded in .NET, after an assignment of the form x = y = z all three

objects can be considered equal based on the applicable kind of equivalence (i.e. reference

and value equality). The same is not always true for assignments to OWL properties

considering the array ranks of the types of the involved objects. In the following cascaded

assignment expression, the static type of the expression b.#R = c is Array Range(R)

because individual b may be related by role R to more individuals than only c. As a

result, with the following assignment, individual a is related by role R to all individuals

that are related to individual b by role R (a, b, and c are referred to by a, b, and c).

a.#R = b.#R = c ;

In the following ontology fragment, which extends the previous de�nitions in this

subsection, the non-functional properties hasParticipant and beginsAt are introduced to

relate events with their participants and starting times.

1 <rd f :RDF xmlns="http :// c h i l . s e r v e r . de/ onto logy " . . . >

2 <owl : Class rd f : ID="Par t i c i pan t">

3 <rd f s : subClassOf><owl : Class rd f : ID="Person"/></rd f s : subClassOf>

4 </owl : Class>

5 <owl : ObjectProperty rd f : ID="hasPar t i c ipant">

6 <rd f s : domain rd f : r e s ou r c e="#Event"/>

7 <rd f s : range rd f : r e s ou r c e="#Par t i c i pan t"/>

8 </owl : ObjectProperty>

9 <owl : DatatypeProperty rd f : ID="beginsAt">

10 <rd f s : domain rd f : r e s ou r c e="#Event"/>

11 <rd f s : range rd f : r e s ou r c e="xsd : dateTime"/>

12 </owl : DatatypeProperty>

13 </rd f :RDF>

188

As shown in the Zhi# code snippet below, arrays of individuals and XML data type

values can be assigned to OWL object properties and non-functional OWL datatype

properties. As a result, every non-null array element is added as a property value of

the speci�ed subject (i.e. individual). As for assignments of single individuals, for OWL

object properties the base type of the array type of the source object does not need to

be in the extension of the property range restriction before the assignment (i.e. covariant

subtyping). In the given example, PersonsAlice andBob are inferred to be Participants.

As can be seen, the property centric modeling features of the Web Ontology Language

make it possible to add �members� of ontological individuals on a per instance basis.

Thus, OWL properties facilitate ad hoc relationships between objects that may not have

been foreseen when a concept was de�ned.

1 #Event e = [. . .] ;

2 #Person [] persons = new #Person [] { ↪→

3 new #Person("#Alice") , new #Person("#Bob") } ;

4 e.#hasPar t i c ipant = persons ;

5 #xsd#dateTime [] s tartTimes = new #xsd#dateTime [] { ↪→

6 new #xsd#dateTime("2008−06−27T13 : 0 0 : 0 0Z") , ↪→

7 new #xsd#dateTime("2008−07−07T13 : 0 0 : 0 0Z") } ;

8 e.#beginsAt = startTimes ;

6.1.2.6 Cardinality restrictions

In OWL, cardinalities can be stated on a property with respect to a particular class. If

a maximum cardinality of 1 is stated on a property with respect to a class, then any

instance of that class will be related to at most one individual by that property. Since

there is no unique name assumption in OWL, there may be more than one value also for

functional OWL object properties. From this a reasoner will infer that these individuals

are equivalent and refer to the same entities in the described world. Accordingly, in Zhi#,

for functional OWL object properties the property assignment semantics are additive.

189

In contrast, assignments to functional OWL datatype properties, which relate an OWL

individual with an XML data type value, update the property value of the speci�ed

individual. The value is added if no such property value has been added to the individual

before. In the following ontology snippet, the OWL object property takesPlaceIn and the

OWL datatype property startsOnlyAt are declared to be functional.

1 <rd f :RDF xmlns="http :// c h i l . s e r v e r . de/ onto logy " . . . >

2 <owl : Funct iona lProperty rd f : about="#takesP lace In">

3 <rd f : type rd f : r e s ou r c e="owl : ObjectProperty"/>

4 <rd f s : domain rd f : r e s ou r c e="#Event"/>

5 <rd f s : range rd f : r e s ou r c e="#Room"/>

6 </owl : Funct ionalProperty>

7 <owl : Funct iona lProperty rd f : ID="startsOnlyAt">

8 <rd f : type rd f : r e s ou r c e="owl : DatatypeProperty"/>

9 <rd f s : domain rd f : r e s ou r c e="#Event"/>

10 <rd f s : range rd f : r e s ou r c e="xsd : dateTime"/>

11 </owl : Funct ionalProperty>

12 </rd f :RDF>

Tagging an OWL object property as functional does not limit the number of property

values (there may as well be no property values at all). Instead, a number of values may be

added for the OWL object property takesPlaceIn. As a result, based on the assignments

in lines 2 and 3 in the following Zhi# code snippet the two individuals Room248 and

MeetingRoom can be inferred to be identical (i.e. refer to the same room in the real

world). In Zhi#, when functional object properties are accessed no arbitrary choice is

made between the identical property values but all related individuals are returned. In

line 4, the array rooms will contain both Room248 and MeetingRoom. Accordingly,

for functional object properties the type of assignment and access expressions is an array

type with the property range restriction as the base type (e.g., the type of the property

access expression in line 4 is #Room[]).

190

1 #Event e = [. . .] ;

2 e .# takesP lace In = new #Room("#Room248 ") ;

3 e.# takesP lace In = new #Room("#MeetingRoom ") ;

4 #Room [] rooms = e.# takesP lace In ;

5 e.#startsOnlyAt = new #xsd#dateTime("2008−06−27T13 : 0 0 : 0 0Z") ;

6 e.#startsOnlyAt = new #xsd#dateTime("2008−07−07T13 : 0 0 : 0 0Z") ;

7 #xsd#dateTime startTime = e.#startsOnlyAt ;

In line 6, the only start time of the event under consideration is updated (i.e. the event

starts only on July 7). The type of property access and property assignment expressions is

always the property range restriction (i.e. a non-array type) for functional OWL datatype

properties because XML data type values are not subject to ontological reasoning and

cannot inferred to be identical (e.g., the type of the property access expression in line 7

is xsd#dateTime).

6.1.2.7 Ontological concepts vs. frames

In general, neither domain nor range restrictions of OWL properties are authoritative.

This is in contrast to frame languages, object-oriented programming languages, some

primitive ontology management systems with limited reasoning capabilities, and some

knowledge acquisition systems such as Protégé.

Marvin Minsky introduced frame languages in the �eld of Arti�cial Intelligence in the

1970s. In most frame-based knowledge representations inheritance is the central inference

mechanism. In a general context, a frame is �something that has to be ful�lled�. In this

sense object-oriented programming languages are frame languages.

In statically typed object-oriented programming languages such as C#, properties

are declared as class members. The domain of a property corresponds to the type of the

containing host object. Only instances of the domain type can have the declared property.

The range of a property (i.e. class attribute) is also given by an explicit type declaration.

191

This type declaration is authoritative, too. All objects that are declared to be values of

a property must be instances of the declared type at the time of the assignment.

Ontology management systems that are not able to exploit the di�erences between

object and datatype properties in order to perform e�cient reasoning over ontologies

only accept object property values that are already in the extension of the range class of

the object property before the property value statement is made (i.e. the property range

restriction cannot be exploited to infer the type of the property value). Similarly, domain

restrictions are interpreted like frames or class attributes in object-oriented programming

languages (i.e. only objects that are in the extension of the property domain restriction

can have values for this property).

The ontology editor Protégé partly ignores the e�ects of ontological reasoning, too. For

an Event individual, the �frame slot� takesPlaceInAuditorium is omitted in the individual

editor. For the takesPlaceInAuditorium property of a cognitive systems Lecture only

individuals that are asserted or inferred to be in the extension of the property range

restriction (i.e. the concept LargeRoom) before the assignment are made available in the

GUI as shown in Fig. 6.2.

In contrast, in RDF and OWL it is not possible to ask �Which properties can be

applied to resources of class C ?�. Except for disjoint OWL concept descriptions, the

RDF answer is �Any property�. Ontology engineers do not need to make premature

commitments about all possible relationships that instances of concept C may have (in

a statically typed object-oriented programming language such as C# this corresponds to

using the top level type System.Object for the domain and range of a property). Instead,

ontological individuals can be constructed in a prototype-style (which is not possible if the

type of the property domain and range is System.Object). Still, many developers favor

a rather frame-like composite view of classes and their associated properties. Indeed,

the advantage of using property domain and range descriptions to constrain the set of

conforming RDF triples is a more succinct structuring of an ontology or schema.

192

Figure 6.2: Protégé individual editor

In the Jena Semantic Web Framework, this requirement is taken into consideration

by the listDeclaredProperties() method, which attempts to identify the properties that

are intended to apply to instances of this class. The CHIL OWL API provides the Add-

ObjectPropertyValueChecked() and AddDatatypePropertyValueChecked() methods, which

check that 1) the speci�ed subject is in the extension of the domain of the speci�ed

property and 2) the speci�ed object is in the extension of the range of the speci�ed

property before the RDF triple is added to the ontology. In Zhi#, the checked -operator

(see Subsection 6.1.5.1) can be used to support the frame-like notion of property domain

and range restrictions. Checked property assignments throw an exception if the subject

and object of the RDF triple, which is being declared, are not in the extension of the

domain and range, respectively, of the used OWL object property.

193

6.1.2.8 Referential equality vs. ontological equality

In the C# programming language, the equality operator (==) can be used to test if its two

operands are equal. For prede�ned value types, == returns true if the values of its two

operands are equal. For reference types other than System.String, the equality operator

returns true if its two operands refer to the same object. In the Zhi# programming

language, the equality semantics of the == and != operator for ontological individuals

implements the notion of ontological equality.

In Zhi#, the equality operator (==) can thus be used to determine if two ontological

individuals are identical (i.e. refer to the same entity in the described world). Ontological

individuals are identical if they are explicitly declared to be the same (using the OWL

sameAs feature) or if the reasoner infers their identity based on, for example, the use of

several individuals as values of a functional object property as shown below.

1 #Event e = [. . .] ;

2 #Room r1 = new #Room("#Room248 ") ;

3 #Room r2 = new #Room("#MeetingRoom ") ;

4 bool b1 = r1 != r2 ; // b1 will be false since it is not known

5 // that r1 and r2 refer to di�erent rooms

6 e.# takesP lace In = r1 ;

7 e.# takesP lace In = r2 ;

8 bool b2 = r1 == r2 ; // b2 will be true because r1 and r2 refer to the same room

9 // (i.e. an event only takes place in one room)

The inequality operator (!=) is implemented such that, it returns true if two individu-

als are not identical. Since in OWL there is no unique name assumption, != returns true

for ontological individuals if they are explicitly stated to be di�erent using OWL's di�er-

entFrom or AllDi�erent modeling features, or if the individuals each belong to pairwise

disjoint class descriptions. Note that the inequality operator is not implemented as the

logical negation of == as individuals can be unknown to be identical or di�erent.

194

6.1.3 Auxiliary properties and methods

The Zhi# compiler framework supports a full-�edged object-oriented notation for external

types. In particular, external compiler plug-ins can provide methods, properties, and

indexers for static references and instances of external types. The OWL compiler plug-in

implements a number of auxiliary properties and methods for ontological concepts and

individuals in Zhi# programs.

In Zhi#, RDF triples of the form [Subject Property Object] can be added to an onto-

logical knowledge base using an object-oriented property assignment notation. In order to

remove property value assertions from the ontology, the OWL compiler plug-in provides

the auxiliary methods Remove and Clear for OWL properties to remove one particular

value and all values for an OWL property of the speci�ed individual, respectively. In

line 2 in the following code snippet the ontological individual b is removed as a property

value for property R of individual a (i.e. the RDF statement [a R b] is removed from the

knowledge base). In line 3 all property values for property R of individual a are removed

(i.e. all RDF statements of the form [a R x] are removed).

1 #A a = new #A("#a ") ;

2 a.#R.Remove(new #B("#b ")) ;

3 a.#R. Clear () ;

In Zhi#, OWL properties also provide the Exists and Count properties. The Exists

property yields true if any values are de�ned for the given OWL property for the given

individual; otherwise false. The Count property yields the number of the de�ned property

values for the given individual (i.e. for the following usage the number of RDF statements

of the form [a R x]).

i n t i = a.#R. Count ;

For static references of OWL concepts the auxiliary properties Exists, Count, and In-

dividuals are de�ned. The Exists property yields true if individuals of the given type exist

195

in the ontology, otherwise false. Count returns the number of individuals in the extension

of the speci�ed concept description. Individuals yields an array of de�ned individuals of

the given type. The Individuals property is generic in respect of the static type reference

on which it is invoked. In the following array de�nition, the type of the property access

expression #Person.Individuals is Array Person (and not Array Thing). Accordingly, it

can be assigned to variable persons of type Array Person.

#Person [] persons = #Person . I nd i v i dua l s ;

Instances of OWL concepts provide the Types property, which yields a System.String

array of the RDF types of the given individual. Note that this property is not meant to

manually check the RDF type of an ontological individual as indicated in line 2 in the

following code snippet. Preferably, the is-operator shall be used to check whether the

RDF type of an ontological individual is compatible with a named concept description

as shown in line 3. Also note that there is no type inference for ontological individuals

based on the is-operator. This is di�erent from the e�ect of the is-operator when used

with, for example, XSD variables (cf. Subsection 5.1.3.6).

1 #Person p = [. . .] ;

2 i f (Contains (p . Types , "#Par t i c i pan t ")) { [. . .] } ;

3 i f (p i s #Par t i c i pan t) { [. . .] } ;

The IdenticalIndividuals property yields an array of individuals that are declared or

inferred to be identical to the given individual (i.e. refer to the same entities in the

described world). The IdenticalIndividuals property is generic in respect of the type of

the individual on which it is invoked (i.e. the base type of the returned array is the

declared type of the host individual). In the following array de�nition, the type of the

property access expression p.IdenticalIndividuals is Array Person (and not Array Thing).

Accordingly, it can be assigned to variable persons of type Array Person.

1 #Person p = [. . .] ;

2 #Person [] persons = p . I d e n t i c a l I n d i v i d u a l s ;

196

6.1.4 Compilation to C#

Zhi# expressions that comprise elements of an ontology are compiled into conventional C#

code. The Zhi# runtime library was extended with OWL speci�c functionality in order to

keep the generated C# code simple (e.g., C# code for declaring an ontological individual is

not reproduced for each declaration but exists only once in the Zhi# runtime library). The

single proxy class OWLIndividual is substituted for ontological concept names in Zhi#

programs. The only class member of OWLIndividual is a read only System.String �eld

Name, which references the actual ontological individual in the knowledge base. Because

di�erent OWL concept names are replaced by one single proxy class (i.e. the presented

solution is a language feature and not yet a feature of the runtime) the same restrictions

apply for OWL concepts in Zhi# programs as for generic types in the Java programming

language: OWL concepts cannot be used for method and operator overloading.

Ontological individuals can be downcast and cross cast to OWL concepts. Cast expres-

sions are translated into calls of the Zhi# runtime library method CastOWLIndividual,

which checks dynamically whether the ontological individual referred to by the OWL-

Individual source object is in the extension of the target type of the cast expression (i.e.

the cast is performed in the context of the ontology and not based on types of the program-

ming language). The following cast expression is compiled into the C# code shown below.

The AssertKindOf method facilitates a dynamic type check on the provided object (see

next subsection). For the sake of brevity, in the following code snippets qualifying aliases

and namespaces of Zhi# runtime library methods and ontology elements are omitted.

1 #B b = [. . .] ;

2 #A a = (#A) b ;

1 OWLIndividual b = [. . .] ;

2 OWLIndividual a = CastOWLIndividual (AssertKindOf (b , "#B") , "#A") ;

The object-oriented notation that allows access of and assignments to ontological

properties of ontological individuals is translated into invocations of Zhi# runtime library

197

methods for getting and setting property values of ontological individuals in the knowledge

base. The following assignment of individual b as a value for property R of individual

a (i.e. the declaration of the RDF statement [a R b]) is replaced by an invocation of

the AddOWLObjectPropertyValues method as shown below. The last parameter of the

AddOWLObjectPropertyValues method (i.e. the property values parameter) is declared

with the C# params keyword. Hence, the argument can be both a single OWLIndividual

object, a number of OWLIndividual objects, as well as an OWLIndividual array.

a.#R = b ;

1 AddOWLObjectPropertyValues (↪→

2 AssertKindOf (a , "#A") , "#R" , AssertKindOf (b , "#B")) ;

In contrast to declarations of OWL object properties and non-functional OWL datatype

properties, assignments to functional OWL datatype properties update existing prop-

erty value statements in the knowledge base and are thus substituted by invocations

of the SetOWLDatatypePropertyValue method. Assignments to OWL object properties

and non-functional OWL datatype properties are additive while assignments to func-

tional OWL datatype properties update an existing property value. In order to allow

for cascaded assignments to OWL properties of ontological individuals, the AddOWL-

ObjectPropertyValues, the AddOWLDatatypePropertyValues, and the SetOWLDatatype-

PropertyValue methods return the value(s) that are declared for the speci�ed property

of the speci�ed individual as an array of OWLIndividual objects, an RTSimpleType ar-

ray, and an RTSimpleType object, respectively. Note that this requires a query on the

knowledge base, which determines � for some ontology management systems � the latest

point in the execution of a Zhi# program when a knowledge base can be reported to be

inconsistent and the Zhi# program aborts with an exception (see next subsection).

Usages of the auxiliary properties and methods of static OWL concept references,

ontological roles, and ontological individuals in Zhi# programs are translated into multi-

argument function calls on the Zhi# runtime library as follows.

198

o.R[.p][= v]
is translated into−→ fR/p(o,R[, p][, v])

In C#, so called indexers can be declared for classes and structs in order to index a

class or struct in the same way as an array. In Zhi#, indexers can return enumerators that

read data in collections of .NET objects and ontological individuals. Because ontological

individuals are subject to dynamic type checks, the elements of a collection must not be

returned directly as with the use of a conventional IEnumerator object. Instead, foreach-

statements that operate on user de�ned class or struct indexers, which return collections

of ontological individuals, are compiled into invocations of the ForEachOWL method of

the Zhi# runtime library. The following user de�ned indexer returns an enumerator that

reads from an array of ontological individuals.

1 pub l i c c l a s s T : IEnumerable {

2 pub l i c IEnumerator GetEnumerator () {

3 ArrayList l = new ArrayList () ;

4 l .Add(new #C("#c1 ")) ;

5 l .Add(new #C("#c2 ")) ;

6 re turn l . GetEnumerator () ;

7 }}

The following foreach-statement is transformed as shown below.

1 T t = new T() ;

2 f o r each (#C c in t) { [. . .] }

1 T t = new T() ;

2 f o r each (OWLIndividual c in ForEachOWL("#C" , t)) { [. . .] }

The ForEachOWL method implements a coroutine, which subsequently yields the

elements (i.e. ontological individuals) of a speci�ed IEnumerable object (i.e. object t in

the above example). Each ontological individual is dynamically type checked to be in the

extension of the given concept (i.e. C in the given example) before it is returned.

A complete list of OWL related program transformations is given in Appendix B.2.

199

6.1.5 Dynamic checking

In a statically typed programming language such as C# the possible types of an object

are known at compile time. Hence, typing errors can be caught early at compile time

(i.e. fail-fast) as opposed to runtime, which allows for e�cient execution at runtime.

Unfortunately, the non-contextual property centric data modeling features of the Web

Ontology Language render static type checking only a partial test on Zhi# programs. As

a result, the OWL plug-in for the Zhi# compiler framework and the Zhi# runtime library

facilitate dynamic checking of ontological knowledge bases.

Ontological individuals can be in the extensions of a number of di�erent concept

descriptions, which do not necessarily subsume each other and which cannot completely

be predicted at compile time (i.e. on the meta-level). In the same way, explicitly made

RDF type assertions may be inconsistent with particular property values or the number

of values for a particular property of an individual. More severely, ontological knowledge

bases are subject to concurrent modi�cations via interfaces of di�erent levels of abstraction

(e.g., RDF triples, logical concept view).

The Zhi# solution for dynamic checking of ontological knowledge bases is as follows:

In Zhi# programs, declarations of ontological individuals do not guarantee that the indi-

vidual will ever be in the extension of the provided concept description and the knowledge

base to be consistent. Instead, before each single usage of an individual 1) the individual is

dynamically checked to be in the extension of the declared concept and 2) the knowledge

base is checked to be consistent; an exception is thrown if either is not the case.

The following ontology de�nes a small meeting as a meeting with at most three par-

ticipants. In line 1 in the Zhi# code snippet shown below the ontological individual m

is declared as a SmallMeeting. This, however, does not prevent the declaration of more

than three values for the property hasParticipant of individual m. These declarations can

be made by the Zhi# program itself as shown in line 4 or by di�erent knowledge base

clients, which may, for example, directly modify the RDF triple store.

200

1 <rd f :RDF xmlns="http :// c h i l . s e r v e r . de/ onto logy " . . . >

2 <owl : Class rd f : ID="Person"/>

3 <owl : ObjectProperty rd f : about="#hasPar t i c ipant">

4 <rd f s : domain rd f : r e s ou r c e="#Meeting"/>

5 <rd f s : range rd f : r e s ou r c e="#Person"/>

6 </owl : ObjectProperty>

7 <owl : Class rd f : ID="SmallMeeting">

8 <owl : equ iva l entC la s s>

9 <owl : Class>

10 <owl : i n t e r s e c t i o nO f rd f : parseType="Co l l e c t i o n">

11 <owl : Re s t r i c t i on>

12 <owl : maxCardinal ity rd f : datatype="xsd : i n t ">3

13 </owl : maxCardinality>

14 <owl : onProperty>

15 <owl : ObjectProperty rd f : ID="hasPar t i c ipant"/>

16 </owl : onProperty>

17 </owl : Re s t r i c t i on>

18 <owl : Class rd f : ID="Meeting"/>

19 </owl : i n t e r s e c t i onOf >

20 </owl : Class>

21 </owl : equ iva l entC la s s>

22 </rd f :RDF>

1 #SmallMeeting m = new #SmallMeeting("#m ") ;

2 #Person p1 = [. . .] , p2 = [. . .] , p3 = [. . .] ,

3 p4 = [. . .] , p5 = [. . .] , p6 = [. . .] ;

4 m.#hasPar t i c ipant = new #Person [] { p1 , p2 , p3 , p4 , p5 , p6 } ;

5 #Person [] persons = m.#hasPar t i c ipant ;

Note that based on the above example ontology it is admissible to relate an arbitrary

number of Persons with SmallMeeting m. Since OWL does not make the unique name

201

assumption, the related individuals will be assumed to somehow refer to the same three

Persons in the described world. The ontology will, however, be in an inconsistent state if

m is related with more than three di�erent Persons. In the ontology, individuals can be

declared to be mutually distinct using OWL's di�erentFrom and AllDi�erent language

constructs. In Zhi#, the same statements can be made by calling the auxiliary IsDi�erent-

From method with an individual or an array of individuals on m.

If the Zhi# program itself modi�es the knowledge base after the declaration of in-

dividual m in line 1 inconsistencies between the declared type of m and the number of

declared values for its property hasParticipant are reported in course of the assignment

of the array of Persons in line 4. Early error reporting (i.e. fail-fast) is worth having here

for two reasons. First, the program does not go on to operate on inconsistent data (e.g.,

for an inconsistent ontology one cannot assume that a small meeting has at most three

participants). Second, the Zhi# program itself can contain exception handlers, which

undo the modi�cations that presumably caused the inconsistency (e.g., remove the values

for the hasParticipant property of individual m).

In the above Zhi# program the assignment of the Persons array in line 4 appears to

be an atomic operation. In fact, the actual property value declarations in the knowledge

base are executed sequentially for each contained variable in the array (i.e. p1,. . . ,p6).

Under the assumption that Persons p1,. . . ,p6 have been declared to be di�erent from

each other the knowledge base is in an inconsistent state already after the assignment of

variable p4. In such cases the fail-fast design principle takes precedence over the apparent

atomicity of the assignment statement. This happens for two reasons. Firstly, using

some simple logging mechanisms to, for example, record the individuals that have already

been added as property values, it is likely to be easier to restore the knowledge base to a

consistent state. Secondly, some ontology management systems such as the Pellet OWL

DL Reasoner [Pel06] completely cease to process inconsistent ontologies on a concept view

level, which makes it impossible to add further property values after an inconsistent state

has been reached.

202

If the knowledge base is modi�ed (on the RDF triple level) by a third party the

inconsistency between the declared type of individual m and the number of property

values is at the latest detected right before the usage of individual m in line 5.

In compiled Zhi# programs all references to ontological individuals are substituted by

invocations of the AssertKindOf method, which is provided by the OWL component of the

Zhi# runtime library. The AssertKindOf method takes as input anOWLIndividual object

and a number of strings that denote OWL concept names. The ontological individual

referred to by the speci�ed OWLIndividual object is checked to be in the extensions of

the given concept descriptions. The input OWLIndividual object is returned if this type

check succeeds; an exception is thrown if it fails. The type check fails if the individual is

not subsumed by the given concept descriptions or the ontology is inconsistent for other

reasons. Inconsistent ontologies cause failure since the reasoning results (e.g., the inferred

RDF types of the checked individual) may be incorrect or even be unavailable from the

ontology management system.

The Zhi# program above is compiled into C# as follows. Note the invocations of

the AssertKindOf method for each reference of an ontological individual. Recurring

de�nitions and usages of variables p2,. . . ,p6, qualifying aliases and namespaces of Zhi#

runtime library methods and types, and qualifying namespaces of ontological concepts,

roles and individuals are omitted for brevity.

1 OWLIndividual m = CreateOWLIndividualByName("#m" , "#SmallMeeting ") ;

2 OWLIndividual p1 = AssertKindOf ([. . .] , "#Person ") , [. . .] ;

3 AddOWLObjectPropertyValues (↪→

4 AssertKindOf (m, "#SmallMeeting ") , ↪→

5 "#hasPar t i c ipant " , ↪→

6 new OWLIndividual [] { AssertKindOf (p1 , "#Person ") , [. . .] }) ;

7 OWLIndividual [] persons = ↪→

8 GetOWLObjectPropertyValues (↪→

9 AssertKindOf (m, "#SmallMeeting ") , "#hasPar t i c ipant ") ;

203

An important form of dynamic typing is �duck typing� in which only the considered

methods and properties of an object are considered rather than its inheritance from a

particular class. Zhi#'s dynamic type checking of OWL individuals is di�erent to �duck

typing� since not that part of a type's structure that is accessed is checked but rather

the declared type of the object. As a consequence, typing errors at runtime are detected

not when a particular object property is accessed but when the object itself is referenced.

The following �duck typed� pseudo code program will run properly if the object a has a

property R; it will fail otherwise. Due to the lack of type declarations no particular types

are required for objects a and b. Instead, only the used aspects of a are considered, which

allows for the dynamism in programming languages such as Perl and Python.

1 var a = [. . .] ;

2 var b = a .R;

In contrast, Zhi#'s dynamic type checking enforces the declared types at runtime

while the referenced property may be unde�ned for the considered individual. Given

the ontological concepts A and B, and the OWL object property R, which relates As

with Bs, the following typing constraints are enforced for the Zhi# statements shown

below. First, the Zhi# compiler statically checks that the type of the lvalue in line 2 is

an array type with a base type that subsumes the property range restriction of property

R. At runtime, the individual referred to by a must be an A (i.e. be in the extension

of the concept description named A) and the individual referred to by b must be a B.

On the other hand, Zhi#'s dynamic type checking is negligent in terms of the number of

de�ned values for property R. In particular, if no values are de�ned for property R of the

individual referred to by a an empty array of individuals and data type values is returned

for OWL object properties and non-functional OWL datatype properties, respectively. A

null reference is returned if no value is declared for functional OWL datatype properties.

1 #A a = [. . .] ;

2 #B [] b = a.#R;

204

One of the main reasons for null pointer exceptions in object-oriented programming

languages are mutually referential data structures, which are not initialized properly in

constructors. This issue is apparently evident for ontological data, too, since OWL DL

allows for concept constructors that include constraints such as cardinalities of ontological

properties or the existence of property values of a particular type. Still, the Web Ontology

Language allows two di�erent interpretations of an apparent inconsistency between the

RDF type of an individual and its declared property values.

On the one hand, in OWL, individuals can be declared to be of a certain type even if

required property values do not exist for the individual. This issue is resolved by OWL's

open world assumption (OWA) in which no single observer has complete knowledge (and

therefore cannot make the closed world assumption). Assume, for example, an ontological

TBox that includes two atomic concepts A and B, role R, and the complex concept

description C ≡ ∃R.B. Under the closed world assumption it is inadmissible to declare

an instance of concept C with no value of type B for property R. Under OWA, the required

property value can be assumed to exist but to be unknown for the current observer. From

the lack of knowledge of a value for property R of type B a reasoner cannot conclude that

individual c is not a C. The other way around one cannot conclude from the asserted

type of an individual that particular property values exist. Consequently, the following

isolated de�nition is a valid Zhi# statement.

#C c = new #C("#c ") ;

On the other hand, in OWL, the asserted RDF types of an individual can be comple-

mented by inferred types based on the individual's particular properties. In the current

example one may therefore preferably create a C starting from an A, which is successively

initialized, as follows.

1 #A a = new #A("#c ") ;

2 a.#R = new #B("#b ") ;

3 #C c = (#C) a ;

205

After the declaration and initialization of the ontological individual c in line 1 and 2,

respectively, the downcast of variable a to concept C is e�ectively a dynamic type check

that individual c is in the extension of concept C based on its particular properties. Note

that in an environment where the ontological knowledge base is concurrently modi�ed a

di�erent knowledge base client may assert that individual c is a C � without c having any

property values. Again, in contrast to frames, because of the OWA it is inadmissible to

presume from the RDF type of an individual the existence of particular property values.

It is, however, allowed to presume the non-existence of property values in a consistent

knowledge base for concept descriptions that comprise a maximum cardinality restriction

(e.g., a small meeting that is de�ned as a meeting with at most three participants can

only have at most three di�erent participants in a consistent knowledge base).

6.1.5.1 Checked property assignments

In C#, the checked -keyword can be used to control the over�ow-checking context for

integral-type arithmetic operations and conversions. It can be used as an operator or a

statement. In a checked context, if an expression produces a value that is outside of the

range of the destination type, the result may be a compile-time error or an exception at

runtime depending on whether the expression is constant or non-constant.

In a similar manner, the checked -keyword can be used in Zhi# to support the frame-

like notion of OWL object properties. The following example demonstrates the checked -

operator on an OWL object property assignment expression.

1 #Event e = [. . .] ;

2 #Locat ion l e c t u r eHa l l = [. . .] ;

3 e .#takesPlaceInAuditor ium = checked (l e c t u r eHa l l) ;

The OWL object property takesPlaceInAuditorium (see Subsection 6.1.2.3) relates

Lectures with LargeRooms (i.e. the subject of the RDF statement must be a Lecture and

the object of the statement must be a LargeRoom). Usually, an OWL DL reasoner will

206

use these domain and range restrictions to infer the RDF types of the related individuals.

If, however, concepts and roles are interpreted as frames and frame slots, respectively, the

used subjects and objects must be of the given types already before the declaration of the

RDF triples that relate them by the takesPlaceInAuditorium role. Exactly this frame-like

behavior is enforced by the checked -operator in the code snippet above. At runtime, an

exception is thrown since the individual referred to by variable e is not in the extension

of the domain restriction of property takesPlaceInAuditorium (i.e. Lecture). Similarly, an

error is raised if the individual referred to by variable lectureHall is not in the extension

of the range restriction of property takesPlaceInAuditorium (i.e. LargeRoom). Note that

the checked -operator does not in�uence the static type checks that apply, for example, to

disjoint concept de�nitions.

By default, assignments of XML data type values to OWL datatype properties are

executed in a checked context, where incompatible property values are detected at compile

time.

6.2 Example Scenario Implementation

Based on the TBox and ABox of the example scenario described in Subsection 1.3.7

an OWL DL knowledge base can be queried and modi�ed in Zhi# as shown in the

following code snippet. In line 1 and 2, primitive built-in XML data types from the

XSD namespace and elements from the CHIL ontology, respectively, are made public in

the Zhi# program using the keyword import. The referenced OWL concepts, roles, and

XML data types are statically checked to exist in the imported namespaces. The string

literal in line 8 is checked at compile time, too, to denote a valid xsd#dateTime value.

The getFirstStartingTime method in line 22 takes as input an Event and returns the

�rst xsd#dateTime the given Event occurs. The foreach-statement in line 14 bene�ts

from ontological reasoning in two ways. Firstly, Meetings such as the one referred to by

variablem are also classi�ed as Events. Secondly, Room248 hosts the ProjectMeeting

207

because the ontological role hosts was declared as the inverse of role takesPlaceIn. RDF

type checks do not have to be devised manually but are facilitated by the is-operator as

shown in line 19. See Section 7.2 for how OWL DL concept constructors would have to

be manually implemented in conventional C#.

1 import XML xsd = http ://www.w3 . org /2001/XMLSchema ;

2 import OWL cho = http :// c h i l . s e r v e r . de/ onto logy ;

3 namespace MyCHILApplication {

4 c l a s s MyClass {

5 pub l i c void f () {

6 #cho#Meeting m = ↪→

7 new #cho#Meeting (" http :// c h i l . s e r v e r . de/ onto logy#ProjectMeeting ") ;

8 #xsd#dateTime dt = "2008−07−07T13 : 0 0 : 0 0 " ;

9 m.#cho#scheduledAt = dt ;

10 #xsd#dateTime f i r s tT ime = getF i r s tS ta r t ingTime (m) ;

11 Console . WriteLine (" F i r s t meeting at " + (s t r i n g) f i r s tT ime + " ! ") ;

12 #cho#Room r = ↪→

13 new #cho#Room(" http :// c h i l . s e r v e r . de/ onto logy#Room248 ") ;

14 fo r each (#cho#Event e in r .#cho#host s) {

15 Console . WriteLine ("Room " + r + " host s event " + e + " ! ") ;

16 }

17 #cho#Person a l i c e = ↪→

18 new #cho#Person (" http :// c h i l . s e r v e r . de/ onto logy#Alice ") ;

19 i f (a l i c e i s #cho#Moderator) {

20 Console . WriteLine (" A l i c e i s a moderator ! ") ;

21 }

22 pub l i c s t a t i c #xsd#dateTime ge tF i r s tS ta r t ingTime(#cho#Event e) {

23 [. . .]

24 }

25 }}}

208

6.3 OWL and XSD

Recently, several approaches have emerged to re�ne on the integration of external type

systems such as XML Schema De�nition and the Web Ontology Language. Pan and

Horrocks presented an extension of OWL DL, called OWL-Eu [PH06], which allows for

class descriptions based on (customized) data types. Especially, customized data types can

be used in datatype exists restrictions (∃T.D) and datatype value restrictions (∀T.D). It

can be imagined to use the Zhi# compiler framework with an OWL-Eu API since Zhi#'s

XSD compiler plug-in already provides type checking and type inference capabilities that

are needed to cope well with OWL-Eu's data type expressions. Zhi#'s OWL compiler

plug-in would have to be extended in order to track local range restrictions that can be

inferred for properties of individuals that are of a particular type. Given complex concept

descriptions the OWL type checking component could augment the type information of

ontological roles accordingly.

6.4 Integration of the CHIL OWL API

The OWL plug-in for the Zhi# compiler framework provides a number of properties

and methods that can be accessed on ontological individuals, roles, and static concept

references (see Subsection 6.1.3). These auxiliary properties and methods complement

inherent language features to create concept instances and assign property values with

functionality to, for example, delete statements from a knowledge base. In addition,

conventional ontology management systems such as the CHIL Knowledge Base Server

may be utilized in Zhi# programs. In the following code snippet an ontological individual

a is created in the managed knowledge base. Thereafter, the CHIL OWL API1 is used

to connect to the CHIL Knowledge Base Server, create an individual b, and query the

RDF representation of the ontological knowledge base. Note that the IOWLAPI object

1The C# interface to the CHIL Knowledge Base Server is de�ned in the Zhimantic.OWL.API
namespace.

209

must be con�gured identically to the OWL plug-in of the Zhi# runtime library in order

to connect to the same instance of the CHIL Knowledge Base Server.

1 us ing System . IO ;

2 us ing Zhimantic .OWL.API ;

3 import OWL ont = http ://www. zhimant ic . com/ eva l ;

4 namespace ProgramNamespace {

5 c l a s s Program {

6 s t a t i c void Main () {

7 // Using language inherent support for OWL

8 #ont#A a = new #ont#A("#a ") ;

9 // Using the CHIL OWL API

10 IOWLAPI api = new OWLAPI(" l o c a l h o s t " , 2342) ;

11 api . AddIndividual (" http ://www. zhimant ic . com/ eva l#b" , ↪→

12 "http ://www. zhimantic . com/ eva l#B") ;

13 us ing (TextWriter tw = new StreamWriter (@"KB. rd f ")) {

14 tw . WriteLine (api .GetRDFXML(true)) ;

15 }}}}

One may argue that the concurrent use of Zhi#'s language features and API-based

access to the managed knowledge base undermines the static type checking of Zhi# pro-

grams. This is, however, only true for those portions of the Zhi# programs that are

actually API-based (e.g., a typo in line 12 may cause an UndeclaredConceptDescription

at runtime). The type checking of Zhi#-speci�c code to manipulate ontological knowledge

bases always has to take into account concurrent knowledge base access, where it does not

matter if the API-based modi�cations originate from the same program or third parties.

In any case, it would be desirable to have most parts of an OWL API being provided

as auxiliary �elds and methods of ontological individuals, roles, and concept references

in Zhi# programs as this would allow for type checking on the ontology level. On the

other hand, it does of course not appear reasonable to use an auxiliary method to query

210

the RDF serialization of a knowledge based since this kind of functionality can hardly be

related to one particular ontology element.

Appendix H presents a mapping of the CHIL OWL API to auxiliary properties and

methods of ontology elements in Zhi# programs (only the most indispensable methods

were implemented in the current version of the OWL plug-in for the Zhi# compiler frame-

work). For each API method, eliminated exceptions, which are stipulated by the given

method preconditions, are given that may occur at runtime with API-based access but

could be statically checked for auxiliary properties and methods. In total, the functional-

ity of 50 CHIL OWL API methods may reasonably be provided by the Zhi# programming

language, which would facilitate static checking of 91 de�ned method preconditions.

6.5 Related Work

To the best of the author's knowledge there have been no substantial approaches to

devise programming language inherent support for the Web Ontology Language. Still,

the problem to provide a framework for compile-time support and dynamic type checking

for OWL DL ontologies stems from practice.

In the CHIL research project [Inf04], which aims to introduce computers into a loop of

humans interacting with humans, rather than condemning a human to operate in a loop of

computers, a semantic middleware has been developed that fusions information provided

by so called perceptual components in meaningful ways. Each perceptual component (e.g.,

image and speech recognizers, body trackers, etc.) contributes to the common domain of

discourse. The Web Ontology Language OWL DL was decidedly used to replace previous

domain models that had been based on particular programming languages. A major dis-

advantage of using an OWL API compared to previously used Java-based domain models

had been the lack of type checking for ontological individuals. This lack of compile-time

support has lead to the development of code generation tools such as the Ontology Bean

Generator [Pro07] for the Java Agent Development Framework [Tel07], which generates

211

proxy classes in order to represent elements of an ontology. Similarly, Kalyanpur et al.

[KPB04] devised an automatic mapping of particular elements of an OWL ontology to

Java code. Although carefully engineered the main shortcomings of this implementation

are the blown up Java class hierarchy and the lack of a concurrently accessible ontological

knowledge base at runtime (i.e. the �knowledge base� is only available in one particular

Java virtual machine in the form of instances of automatically generated Java classes).

This separation of the ontology de�nition from the reasoning engine results in a lack of

available ABox reasoning (e.g., type inference based on nominals).

The two latter problems were circumvented by the RDFReactor approach [V06] where

a Java API for processing RDF data is automatically generated from an RDF schema.

While this may still result in a signi�cant number of automatically generated Java classes,

the generated API operates on one single external RDF model, which may be handled by

existing ontology management systems. Still, since RDFReactor operates on RDF triples,

obsolete generated code may result in meaningless or invalid modi�cations of the triple

store. Also, RDFReactor only provides a frame-like view of OWL ontologies.

In stark contrast to these systems, the Zhi# programming language syntactically

integrates OWL concepts and properties with the C# programming language using con-

ventional object-oriented notation. Also, Zhi# provides static type checking for atomic

XML data types, which may be the range of OWL datatype properties, while many ontol-

ogy management systems � not to mention the above approaches � simply discard range

restrictions of OWL datatype properties. A combination of static typing and dynamic

checking is used for ontological concept descriptions. In contrast to static type checking

that is based on generated proxy classes, Zhi#'s OWL compiler plug-in considers disjoint

concept descriptions and copes well with multiple inheritance.

In the above systems, which introduce proxy classes of OWL concepts, instances of

these proxy classes are simply instantiated in the context of the runtime environment of

the programming language. In Zhi#, ontological individuals are actually created in the

212

ontological knowledge base and are thus subject to ontological ABox reasoning. Moreover,

the number of introduced proxy classes is constant and does not depend on the number

of imported XML data types and OWL concept descriptions.

Koide and Takeda [KT06] implemented an OWL reasoner for the FL0 Description

Logic on top of the Common Lisp Object System [DG87] by means of the Meta-Object

Protocol [KRB91]. Their implementation of the used structural subsumption algorithm

[BCM03] is described, however, to yield only incomplete results.

The Zhi# compiler framework does not impose particular type checking strategies

on its compiler plug-ins. C# is a statically typed programming language. Zhi#'s com-

piler plug-in for XML Schema De�nition implements static type checking for constrained

atomic types, too. The non-contextual property-centric modeling features of OWL, how-

ever, render static type checking only a partial test on Zhi# program text that includes

ontological concepts and properties.

The representation and the type checking of ontological individuals in Zhi# is similar

to the type Dynamic, which was introduced by Abadi et al. [ACP89, ACP91]. Values of

type Dynamic are pairs of a value v and a type tag T, where v has the type denoted by T.

The result of evaluating the expression dynamic e:T is a pair of a value v and a type tag

T, where v is the result of evaluating e. The expression dynamic e:T has type Dynamic if

e has type T. Zhi#'s dynamic type checking of ontological individuals corresponds to the

typecase construct as proposed by Abadi et al. in order to inspect the type tag of a given

Dynamic. An object (i.e. ontological individual) x can be checked to be a SmallMeeting

using the typecase construct as follows.

λx : Dynamic.

typecase x of

(sm : SmallMeeting) use(sm)

else throw type checking exception

end

213

In Zhi# source programs, the use of OWL concept names corresponds to explicit

dynamic constructs. In compiled Zhi# code, invocations of the AssertKindOf method of

the Zhi# runtime correspond to explicit typecase constructs.

Abadi et al. obtained a soundness theorem for a λ-calculus based language that in-

cludes the proposed dynamic and typecase constructs. In contrast to the OWL type

checking in Zhi# their dynamic expressions can even cause the creation of new tags at

runtime (e.g., a function may take a dynamic value and return a Dynamic whose value

part is a pair, both of whose components are equal to the value part of the original

dynamic value).

Thatte described a �quasi-static� type system [Tha90], where explicit dynamic and

typecase constructs are replaced by implicit coercions and runtime checks. A static type

checking phase is followed by a plausibility checking phase, where dynamic type errors are

statically detected. Though there is no extra plausibility checking phase in Zhi#, a typing

error of this kind that is also detected in Zhi# is the use of an ontological individual as a

property value, where the range description of the property and the type of the individual

are disjoint (i.e. the dynamic type error can be statically detected). A runtime check

in Thatte's work is unplausible if the known type of the expression being checked and

the type required by the check do not have a common subtype (which does not apply

to OWL concept descriptions). As in Thatte's work, Zhi#'s dynamic typing for OWL

detects errors as early as possible to make it easy to �nd the programming error that led

to the type error. Abadi et al. and Thatte's dynamic types were only embedded with a

simple λ-calculus. The same is true for recent gradual typing proposals [ST06]. Tobin-

Hochstadt and Felleisen developed the notion of occurrence typing and implemented a

Typed Scheme [TF08]. Occurrence typing assigns distinct subtypes of a parameter to

distinct occurrences, depending on the control �ow of the program. Such distinctions are

not made by Zhi#'s OWL compiler plug-in since it is hard to imagine that appropriate

subtypes can be computed considering complex OWL concept descriptions.

214

6.6 Summary

The author devised an OWL DL plug-in for the Zhi# compiler framework to provide a

combination of static typing and dynamic checking for ontological concept descriptions.

Used concept descriptions and role names are checked at compile time to exist in the

referenced ontology. Static type checks include disjoint concepts, and cardinalities and

disjoint property domain and range restrictions of ontological roles. Property domain and

range restrictions can be used for ontological reasoning or the checked -operator can be

used to enforce frame-like semantics of OWL concepts and roles. The declared RDF types

of ontological individuals in Zhi# programs are dynamically checked at runtime.

Auxiliary properties were implemented for ontological individuals, roles, and static

concept references in Zhi# programs in order to make it particularly easy to, for example,

get all individuals in the extension of a speci�ed concept description or to get all RDF

types of a speci�ed individual.

Ontological reasoning was embedded with C# programming language features such as

the is-operator, which can be used for dynamic RDF type checks of ontological individuals.

OWL concept descriptions can be used for formal parameters of methods, user de�ned

operators, and indexers.

The compiler plug-in for the Web Ontology Language can be used cooperatively with

the plug-in for XML Schema De�nition (see Chapter 5) in order to support OWL datatype

properties. Zhi# code that uses elements of an ontology is compiled into conventional

C#. In the current implementation, the OWL component of the Zhi# runtime library

utilizes the CHIL OWL API (see Chapter 4) in order to manage the ontological knowledge

base. Eventually, the OWL DL plug-in reduces the dependency on particular OWL APIs.

Assuming an identical behavior to the required fragment of the CHIL OWL API both

the used ontology management system and the used OWL API can be substituted in the

Zhi# runtime library without recompilation of Zhi# programs.

215

216

CHAPTER 7

Validation and Evaluation

In common usage, validation is the process of checking a thesis, a plan, or a solution

approach with regard to a particular problem. As such, validation con�rms that the needs

of a user of a product are met. Similarly, evaluation is the systematic determination of a

solution's merits, worth, and signi�cance based on a set of criteria. In this chapter, the

suitability and usefulness of the Zhi# approach will be shown on a technical level and on

an application level.

The next section provides basic software metrics of the Zhi# compiler framework,

its XSD and OWL compiler plug-ins, the Zhi# Eclipse-based frontend, and the CHIL

Knowledge Base Server in order to summarize the technical foundation of the presented

solution approach and to indicate its adequacy, dependability, and extensibility.

The following evaluation section will show the usefulness of the Zhi# approach for

the so-far considered XSD and OWL application domains on a microscopic level. For

particular XSD constraining facets, OWL concept constructors, and OWL role restrictions

Zhi# code will be presented that is inherently less error-prone and more intuitive than

conventional C# code implementing the same modeling features.

Finally, the prospective applicability of the Zhi# compiler framework to additional

technologies and its usefulness for the development of full-�edged knowledge-based ap-

plications will be shown. In particular, it will be demonstrated how Object Constraint

Language (OCL) expressions could be translated into Zhi# code in order to facilitate

static checking of OCL invariants. It will also brie�y be indicated how the Zhi# approach

could be further evaluated by means of case studies.

217

7.1 Technical Validation

The complete Zhi# tool suite including the compiler framework, the compiler plug-ins for

XML Schema De�nition and the Web Ontology Language, the Eclipse-based frontend, and

the λC-calculus and ontology management back ends totals 142,039 lines of code (LOC).

As shown in Fig. 7.1 the Zhi# compiler amounts to 93,683 LOC, the CHIL Knowledge

Base Server to 25,496 LOC, the implementation of the λC-calculus to 17,295 LOC, and

the Eclipse-based frontend to 9,019 LOC.

Figure 7.1: Code base size

Figure 7.2: Zhi# compiler code base size

The Zhi# compiler comprises the extensible framework plus two compiler plug-ins for

XML Schema De�nition and Web Ontology Language speci�c language extensions. As

shown in Fig. 7.2 the framework amounts to 87,435 LOC. The XSD and OWL plug-ins

218

total 3,227 and 3,021 LOC, respectively. It is conceivable that the code size of compiler

plug-ins would be larger and the code be more dispersed if the compiler framework would

not expose two well de�ned extension points (see Section 2.3).

Fig. 7.3 shows the number of C#/Java classes and a code complexity value for each

component of the Zhi# tool suite. The given code complexity was computed using Cam-

pwood Software's SourceMonitor tool [Cam09]. LOC numbers were con�rmed using JL-

Soft's SourceCode Counter [JLS09]. The complexity metric is counted approximately as

de�ned by Steve McConnell in his seminal book Code Complete [McC04]. The complexity

metric measures the number of execution paths through a method where each method

has an initial complexity value of one. This value increases by one for each control �ow

statement (e.g., if, for, ?: operator) and for each && and || operator in these statements.

Switch-statements add complexity for each exit from a case (due to a break, goto, return,

throw, etc.). One count is added for the default case even if it is not present. Each catch-

statement (but not the try and �nally-statement) in a try-block adds one count to the

complexity as well.

Figure 7.3: Code base complexity

The small number of plug-in classes and their higher complexity indicates that the

developed compiler framework fosters the implementation of strongly cohesive plug-ins

219

whose functionality is then automatically available everywhere in the complete Zhi#

programming language. Note that the higher complexity of the compiler plug-ins may

as well be attributed to the 19 di�erent primitive XML data types and the ubiquitous

distinction between OWL object and datatype properties, which leads to a higher number

of if and switch-case-statements in the XSD and OWL plug-in program codes.

The usual validation technique for each compiler software to compile itself has not been

possible for the Zhi# compiler since its Zhi# input language is a proper superset of C# 1.0

while the compiler is written in C# 2008, which adds � among other language features

� heavily used generics, partial classes and methods, and Language Integrated Query

(LINQ). Instead, the author devised 60 categorized test cases amounting to 12,212 lines

of Zhi# test code that was inductively constructed based on the Zhi# language grammar.

External XSD and OWL type de�nitions were used wherever applicable. Additionally,

8,997 lines of typing information are used to regression test the results of the semantic

analysis phase of the Zhi# compiler.

Using the current implementation of the Zhi# compiler framework (and a�liated

components such as the XSD and OWL plug-ins) the compilation of the 12,212 lines of

Zhi# test code to plain C# takes about 40 minutes on a Pentium M computer with

1.8 GHz and 2 GB of RAM. Fig. 7.4 depicts how the total time spreads over di�erent

compilation phases. Note that each phase is repeatedly executed for each of the 60

test cases. The �Type systems setup phase� includes the initialization of the type table,

loading referenced .NET assemblies (e.g., mscorlib.dll), initializing external type systems,

and loading external type de�nitions (e.g., .xsd and .owl-�les). What makes the type

table and type systems setups computationally expensive is the fact that Zhi# type

names are represented by an LL(3) language1. Hence, even simple type table lookups may

require several passes of the type names parser. Admittedly, in the current implementation

only some optimizations were applied to the type table implementation (e.g., applicable

1Recall that Zhi# type names may comprise constraint notations, which may be made up of regular
expressions. Also remember that in Zhi# external type names can be ubiquitous in .NET type de�nitions.

220

operators of a type are lazily added to its type table entry upon operator identi�cation).

Most computation time is spent on the semantic analysis phase, which is based on the

results of external subsumption mechanisms and deduction engines such as the λC-calculus

for XML data types and an ontological reasoning engine for OWL concept descriptions.

Accordingly, the performance of the semantic analysis phase is highly contingent on the

used external type systems (i.e. compiler plug-ins).

Figure 7.4: Compilation time

The same goes for the program transformation phase since program transformations

(i.e. implementations of the IExternalCompiler framework extension point) may as well

use typing information. In fact, neither the program transformation of references of XSD

nor of OWL type de�nitions is purely syntactical. Necessary distinctions based on typing

information is re�ected in a comparatively higher code complexity of the XSD and OWL

compiler plug-ins compared to the compiler framework.

Performance of the Zhi# compiler framework may certainly be improved by a more

optimized type table implementation. A (mechanical) rewriting of the Zhi# type names

grammar to LL(1) may yield only minor performance gains because each type name's

parse requires a full-�edged AST construction instead of a simple application of a (pre-

compiled) regular expression as it would su�ce for conventional C# type names.

221

7.2 Microscopic Evaluation

The purpose of the Zhi# compiler framework is to facilitate the use of external type

de�nitions in otherwise conventional C# programs. Thesis 2 (see Section 1.1) claimed

that the proposed framework-based type system integration is preferable to purely C#-

based approaches to accommodate XSD and OWL processing by means of proxy classes

and libraries. Hence, the evaluation of the presented approach will start with microscopic

evaluations on the source code level.

The di�culty of the OO paradigm to accommodate XML processing by means of

plain object-oriented types has been widely acknowledged. The next subsection alludes

to manual mapping options from restricted XSD types to C# type de�nitions that were

proposed by Lämmel and Meijer [LM07]. The xsd.exe tool of the .NET platform will

be exercised to automatically generate C# classes from an XSD schema �le. The usage

of both manually as well as automatically devised C# proxy classes will be compared to

Zhi#'s native XML data types.

The following subsection scrutinizes to what extent the System.XML set of .NET APIs

supports restricted value spaces of atomic XML data types. This discussion will for the

most part be universally valid for all available o�-the-shelf XML APIs since System.XML

supports the widely implemented W3C DOM standards [The98], which de�ne platform

and language-neutral interfaces to access and update the content of XML documents.

Next, the C#-based realization of OWL concept and role constructors will be com-

pared with Zhi#'s programming language inherent support for ontological concept and

role descriptions, which particularly facilitates equality and runtime type checks, the dec-

laration of ad hoc relationships, and method prototyping based on ontological concepts.

Eventually, client code for the Protégé knowledge base framework and the Jena Se-

mantic Web Framework will be compared with equivalent Zhi# programs to accomplish

a set of seven common knowledge base programming tasks such as making an ontology

available in a computer program and checking individual inclusion.

222

7.2.1 XML data types

The di�culties of devising XML-to-OO mappings, which take into account the plethora of

XML and XSD idiosyncracies while at the same time providing a general and convenient

programming model, where mapped object types reasonably compare to native object

types, have been widely acknowledged and extensively studied [MS03, Tho03, LM07,

CCD08]. Lämmel and Meijer [LM07] propose four mapping options for atomic XML

data types when type derivation by restriction is involved. Ponder the de�nition of the

restricted type age, which may be used to declare elements in complex XML type de�ni-

tions, in the upper part of the following schema.

1 <xsd : schema xmlns : xsd="..." >

2 <xsd : simpleType name="age">

3 <xsd : r e s t r i c t i o n base="xsd : uns ignedInt">

4 <xsd : maxExclusive va lue="110"/>

5 </xsd : r e s t r i c t i o n >

6 </xsd : simpleType>

7 <xsd : element name="person">

8 <xsd : complexType>

9 <xsd : sequence>

10 <xsd : element name="hasAge" type="age"/>

11 </xsd : sequence>

12 </xsd : complexType>

13 </xsd : element>

14 </xsd : schema>

The �rst mapping option assumes that XML complex types are directly represented by

OO class types and maps all simple XML types (including the derived ones) to primitive

types of the used OO programming language. Accordingly, the complex XSD content

model person in the lower part of the schema above would be mapped to the C# class

Person as shown below.

223

1 c l a s s Person {

2 pub l i c u int HasAge ;

3 }

Clearly, there is no guarantee at all that Person objects will have valid age properties.

As a �rst enhancement, the second mapping option transports restrictions as dynamic

type checks into the OO class de�nition as follows. While data type restrictions are now

enforced at runtime by schema derived setter implementations there is obviously still no

schema-aware static type checking.

1 us ing System . Diagnos t i c s ;

2 i n t e r n a l c l a s s Person {

3 p r i va t e u int _HasAge ;

4 pub l i c u int HasAge {

5 get { re turn _HasAge ; }

6 s e t { Trace . Assert (va lue < 110) ;

7 _HasAge = value ; }

8 }

9 }

A second enhancement as shown below is proposed in order to enable static type

checking to guarantee that values of restricted types do meet the de�ned restrictions.

Each derived XSD type would be represented by a .NET struct type, which provides

implicit conversion operators to and from the best-matching .NET intrinsic data type.

Hence, repeated dynamic checks of the value of the restricted type can be omitted. Still,

in contrast to XML data types in Zhi#, assignments to the .NET struct objects can only

be checked at runtime. The use of value types minimizes storage overhead for wrapping

the actual data values. However, because there is no subtyping for struct types in C#,

there would be no proper substitution for derived simple types (e.g., XSD's xsi:type feature

can be used to change the type elements in XML instance documents, where the new type

must be validly derived from the overridden type).

224

1 us ing System . Diagnos t i c s ;

2 i n t e r n a l s t r u c t uint110 {

3 p r i va t e u int va lue ;

4 pub l i c s t a t i c imp l i c i t operator u int110 (u int va lue) {

5 Trace . Assert (va lue < 100) ;

6 re turn new uint110 { value = value } ;

7 }

8 pub l i c s t a t i c imp l i c i t operator u int (u int110 value) {

9 re turn value . va lue ;

10 }

11 }

Eventually, Lämmel and Meijer suggest the use of wrapper classes as indicated below

(wrapper classes for other simple types are designated likewise). In a similar way to Zhi#'s

XSD plug-in there are prede�ned classes for XSD's built-in simple types. However, the

approach shown below is quite costly because of required boxing and unboxing2.

1 abs t r a c t c l a s s XsdAnySimpleType {

2 protec ted ob j e c t va lue ;

3 }

4 c l a s s XsdUnsignedInt : XsdAnySimpleType {

5 pub l i c s t a t i c imp l i c i t operator XsdUnsignedInt (u int va lue) {

6 re turn new XsdUnsignedInt { value = value } ;

7 }

8 pub l i c s t a t i c imp l i c i t operator u int (XsdUnsignedInt va lue) {

9 re turn (u int) va lue . va lue ;

10 }

11 }

2Boxing is the process of converting a value type to the type object or to any interface type implemented
by the given value type. When the CLR boxes a value type, it wraps the value inside an object and stores
it on the managed heap. Unboxing extracts the value type from the object, which will eventually be
garbage collected.

225

There are no such value type/reference type conversions (and no related performance

issues in both speed of execution and code size) in the implementation of the λC-type

system for XSD, which is used to process XML values in Zhi# (see Subsection 5.1.4).

Lämmel and Meijer note that �OO programmers may prefer object models that lever-

age the familiar primitive types of their OO language�. The latter mapping option is found

to impair programming convenience even if implicit casts are de�ned such that wrapper

classes can be used interchangeably with associated primitive types. Still, �the resulting

hybrid may be di�cult to comprehend by the programmer�. Lämmel and Meijer conclude

that �there is no fully satisfactory simple-type mapping�.

In contrast, the framework-based Zhi# approach provides for the realization of object

models that contain restricted XML data types whose usage is statically checked and

conforms to the familiar usage of .NET primitive types. For the considered XML data

types age and person a Zhi#-based object model can be straightforwardly devised as

follows.

c l a s s Person { pub l i c #age HasAge ; }

Given the substantial research e�orts that have been devoted to work out practical

XML-to-OO mapping options one may assume that available o�-the-shelf code genera-

tion tools will regard recent insights. The XML Schema De�nition (xsd.exe) tool, which

ships with the .NET framework, can be used to automatically generate Common Lan-

guage Runtime classes from XML schema de�nitions. Unfortunately, xsd.exe implements

the sloppiest mapping option discussed here where derived XML data types are simply

represented by plain .NET intrinsic data types. If the XML complex type person was aug-

mented to include a child element birthday of type gMonthDay the xsd.exe tool would

generate the following C# class de�nition (generated comments and class attributes are

omitted for brevity). The XML child element hasAge of type age is simply represented by

a uint type property of the .NET wrapper class (the xsd.exe tool can also be con�gured

to generate publicly visible �elds instead). User de�ned restrictions of derived XML data

226

types are discarded, which results in a lack of static typing and dynamic checking and

a lack of support for round-tripping since the .NET hasAge property does not report its

value to be of the restricted XML data type age.

1 pub l i c p a r t i a l c l a s s person {

2 p r i va t e u int hasAgeField ;

3 p r i va t e s t r i n g b i r thdayF i e ld ;

4 pub l i c u int hasAge {

5 get { re turn t h i s . hasAgeField ; }

6 s e t { t h i s . hasAgeField = value ; }

7 }

8 [System .Xml . S e r i a l i z a t i o n . XmlElementAttribute (DataType="gMonthDay ")]

9 pub l i c s t r i n g birthday {

10 get { re turn t h i s . b i r thdayF i e ld ; }

11 s e t { t h i s . b i r thdayF i e ld = value ; }

12 }

13 }

Characteristics of XML elements can be declared by using the .NET XmlElement

attribute. In line 8, the birthday type property is designated the XML data type gMonth-

Day. However, these annotations are only made for built-in XML data types (note there

is no such metadata for the hasAge �eld, which would have to be annotated with the

user de�ned type name age). Also, only a plain (i.e. unchecked) .NET string property

is designated to represent the gMonthDay birthday element. Hence, dynamic checking

of serialized XML documents is facilitated but made completely optional and left to the

programmer. In contrast, both static and dynamic schema-aware checking is inherently

provided for Zhi#-based object models. Also, there is no need for attribute-based pro-

gramming to annotate .NET type properties with XSD type information. In Zhi#, XML

data type values provide an auxiliary Type property to query the represented XML data

type, which may be used to control the serialization of object models.

227

7.2.2 XML APIs vs. XML data types

Any Unicode character stream that transports syntactically valid text data according to

the W3C syntax rules of XML can be considered an XML instance document. While

this is the most general de�nition of valid XML data, it is in no way conceivable to

compel programmers to process XML instance documents on the character stream level.

Instead, programmatic access and manipulation of XML data should be facilitated by

an application programming interface that abstracts from the concrete syntax of XML

documents. In fact, the need for a higher level representation of XML data arose from

technical di�erences between the ways early versions of the Internet Explorer (IE) [Mic95]

and Netscape Navigator [Net94] Web browsers supported Dynamic HTML (DHTML). IE

and Navigator named particular parts of DHTML documents di�erently, which impeded

cross-browser scripting. The need to facilitate cross-browser scripting triggered the de-

velopment of the Document Object Model (DOM) [The98]. The W3C DOM is a language

neutral object-oriented data model to represent XML documents. Implementations of the

W3C DOM exist for all widely used programming languages. The .NET framework base

class library contains the System.XML set of APIs to support several W3C standards for

processing XML � among others the W3C-recommended schema language XML Schema

De�nition. The XmlSchemaSimpleType class provides an in-memory representation of re-

stricted XML data types. The following C# program demonstrates how the user-de�ned

age data type from the previous subsection could be made available in C# programs by

using XmlSchemaSimpleType objects.

A TypePool hides an XmlSchema object, which can be initialized with type de�nitions

from XML schema �les using the LoadSchema() method (invalid schema �les are handled

by the VCHandler validation callback handler). XmlSchemaSimpleType wrapper objects

for particular XML data types, which are identi�ed by their fully quali�ed type name, are

returned by the GetSimpleType() method. The static XmlSchemaSimpleTypeExtension

class de�nes a Validate() extension method for XmlSchemaSimpleType objects.

228

1 us ing System ;

2 us ing System .Xml ;

3 us ing System .Xml . Schema ;

4 namespace XMLDemo {

5 pub l i c c l a s s TypePool {

6 p r i va t e XmlSchema schema ;

7 p r i va t e s t a t i c void VCHandler (ob j e c t sender , Val idat ionEventArgs e) {

8 // Handle schema errors...

9 }

10 pub l i c void LoadSchema (s t r i n g Fi lePath) {

11 var xtr = new XmlTextReader (Fi lePath) ;

12 schema = XmlSchema . Read (xtr , Va l idat ionCal lbackHandler) ;

13 var schemaSet = new XmlSchemaSet () ;

14 schemaSet . Val idat ionEventHandler += VCHandler ;

15 schemaSet .Add(schema) ;

16 schemaSet . Compile () ;

17 }

18 pub l i c XmlSchemaSimpleType GetSimpleType (s t r i n g N, s t r i n g NS) {

19 fo r each (XmlSchemaObject v in schema . Items) {

20 i f (v i s XmlSchemaSimpleType &&

21 ((XmlSchemaSimpleType) v) . Qualif iedName .Name == N &&

22 ((XmlSchemaSimpleType) v) . Qualif iedName . Namespace == NS) {

23 return (XmlSchemaSimpleType) v ;

24 }}

25 throw new Appl i cat ionExcept ion ("Type not a v a i l a b l e ") ;

26 }}

27 pub l i c s t a t i c c l a s s XmlSchemaSimpleTypeExtension {

28 pub l i c s t a t i c void Val idate (t h i s XmlSchemaSimpleType T, ob j e c t V) {

29 i f (V != nu l l) {

30 T. Datatype . ParseValue (V. ToString () , nu l l , nu l l) ;

31 } e l s e {

32 throw new ArgumentNullException ("Data type value must not be ' nu l l ' ") ;

33 }}}}

229

Note that Validate() takes as input arbitrary objects. The string representation of

non-null input arguments is attempted to be parsed as a valid value for the XML data

type that is represented by the XmlSchemaSimpleType host object. On the client side,

the given code may be used as follows.

1 var pool = new TypePool () ;

2 pool . LoadSchema (@"Person . xsd ") ;

3 var age = pool . GetSimpleType (" age " , " http ://www. zhimantic . com/ eva l ") ;

4 age . Va l idate (2 0 0) ;

In line 2, a TypePool object is initialized with the type de�nitions of a given schema

�le. Hence, the XmlSchemaSimpleType object age can be set up as an in-memory rep-

resentation of the XML data type age de�ned in the given namespace. The Validate()

invocation in line 4 will throw an XmlSchemaException at runtime. Again, there is no

means to implement static type checks for XML data types using the System.XML APIs.

The same goes for LINQ to XML [Mic07a], which depends on the same schema validation

classes that are de�ned in System.Xml.Schema.

Zhi#'s static type checking of XML data types can be assumed to be particularly

bene�cial when used in conjunction with XML literals, which are � up to now � only sup-

ported in the VB.NET programming language [Mic02]. If such XML declarations allowed

for namespace-related �xmlns� attributes, occurrences of Zhi#'s XML data types within

XML literals could be statically checked as indicated in the following pseudo VB.NET

code (i.e. VB.NET + �xmlns� attributes + Zhi#-like XML data types).

1 Sub Main ()

2 Dim age as #age ;

3 Dim d = <?xml ve r s i on ="1.0" xmlns="http ://www. zhimantic . com/ eva l "?>

4 <Person>

5 <hasAge>age</hasAge> ' Validity of age data type in this

6 </Person> ' position could be statically checked!

7 End Sub

230

7.2.3 OWL concept constructors

The introductory Section 1.3 described the applicability of the Web Ontology Language to

represent knowledge. In particular, the rich set of OWL DL concept constructors allows for

intuitive modeling of complex concept descriptions. OWL DL's TBox and ABox reasoning

can be used to automatically classify a class hierarchy and to infer the types (i.e. the class

memberships) of ontological individuals. Section 6.5 indicated the superiority of the Zhi#

approach over related work to improve the programmability of OWL DL knowledge bases.

In this section, the integration of OWL DL concept and role descriptions with the C#

programming language will be compared to a naïve but straightforward mocking up of

OWL concept and role descriptions by means of the modeling features of conventional

statically typed programming languages such as ECMA standard C# 3.0 and Java 6.

In C# and Java, entities in the described world can be directly represented by pro-

gramming language class types. While both C# and Java classes are limited to single

inheritance, interfaces can be used to allow for multiple inheritance. The OWL DL concept

description C ≡ AuB can, in a �rst step, be represented by C# interfaces as follows (later

it will be shown that both de�nitions behave di�erently under certain circumstances).

1 i n t e r f a c e IThing {}

2 i n t e r f a c e IA : IThing {}

3 i n t e r f a c e IB : IThing {}

4 i n t e r f a c e IC : IA , IB {}

Mapping real world entities to programming language types is tempting but falls short

of support for ontological ABox reasoning where the types of instances can change at

runtime. Dynamic type changes can be implemented by separating programming language

types from conceptual types. The following C# class de�nition Individual can be used

to represent ontological individuals of di�erent RDF types, which are listed in the Types

property. The default constructor of the derived convenience class A initializes the Types

set with the type name �A�. In program text, only references of class Individual would

231

be used, though. Type changes at runtime due to ontological reasoning can now be

implemented by modifying the Types property.

1 pub l i c c l a s s I nd i v i dua l {

2 pub l i c HashSet<s t r i ng> Types = new HashSet<s t r i ng> {"Thing "} ;

3 pub l i c I nd i v i dua l (IEnumerable<s t r i ng> Types) {

4 t h i s . Types . UnionWith (Types) ;

5 }

6 }

7 pub l i c c l a s s A : Ind i v i dua l {

8 pub l i c A() : base (new [] {"A"}) {}

9 }

Each of the two approaches has its advantages and drawbacks in practice. In the fol-

lowing discussion of OWL DL's modeling features it will eventually become apparent that

both approaches are inapt to implement even basic OWL concept and role constructors in

their entirety in C# or Java. Zhi#'s superior programmability of ontological knowledge

bases will be described for OWL DL's concept and role constructors along the following

dimensions, where both the ease of modeling as well as programmability are considered.

• Ease of modeling �ontological� .NET objects (i.e. how could OWL concept construc-

tors and role restrictions be mimicked with plain C#?).

• Ease of equality and runtime type checks (i.e. implementation and use of the ==

and is-operator in respect of ontological ABox reasoning and individual inclusion).

• Ease of declaration of (ad hoc) relationships between ontological individuals.

The following concept and role constructors are partly introduced by very inexpressive

Description Logics such as AL. Consequently, mimicking even basic Description Logic

modeling features in C# and Java may be non-trivial. For the following concept and role

constructors, symbols of the Description Logic naming scheme such as AL and C indicate

the least expressive Description Logic that comprises the constructor under discussion.

232

The top level concept > (AL). The Web Ontology Language provides the top level

concept constructor > (Thing). The universal concept > subsumes all concept descrip-

tions in an ontology (i.e. every class has > as a superclass). As such, it is similar to the

top level C# and Java programming language classes System.Object and java.lang.Object,

respectively (in Java, the built-in primitive data types such as int and boolean are not

inherited from java.lang.Object). In OWL knowledge bases, the interpretation of the top

level concept > includes all ontological individuals that are declared in that knowledge

base (i.e. >I = 4I). Similarly, all instances of C# and Java classes are of type Sys-

tem.Object and java.lang.Object, respectively. It is also very easy both in C# as well as

in Java to query the most speci�c (i.e. most-derived) type of a particular object via the

ubiquitous GetType() and getClass() methods, respectively. It is, however, not possible in

Java to query all types of a particular object. The C# Type class provides the GetInter-

faces() method, which yields all implemented or inherited interfaces by the current Type

of an object; it remains silent about the class type of the object and its inherited base

classes. Both C# and Java lack support for the most common query on OWL knowledge

bases, which is to answer all individuals that are in the extension of a given concept de-

scription. In C# and Java, this would, for example, require to override the constructors

of the classes under consideration or to augment the class loader or garbage collector

with logging functionality. Overriding the (default) constructors of C# and Java classes

and holding references to the instances of interest may hamper the garbage collection of

these objects. In C#, weak references may be used by the bookkeeping object. Still,

the garbage collection would be a�ected. Modifying the class loader or garbage collector

with logging functionality may be transparent to programs but would require a modi�ed

runtime environment being deployed with the actual program.

In OWL, a role hierarchy can be devised independently from a concept hierarchy. Also,

it is possible to relate two individuals that are not in the extensions of a property's domain

and range restriction. Given a role description R, where ≥ 1R v A and > v ∀R.B (i.e.

R relates elements from the domain A with elements from the range B), the ontological

233

individuals Thing(x) and Thing(y) can be related in Zhi# by R as follows. As a result,

individuals x and y are inferred to be an A and a B, respectively.

1 #Thing x = [. . .] ;

2 #Thing y = [. . .] ;

3 x .R = y ; // x and y are inferred to be an A and a B, respectively

In C# and Java there is no support for such kinds of ad hoc relationships. Instead,

programmers are forced to make premature commitments about inter-entity relationships

[Rum87]. Two C# objects cannot be related by an a priori unanticipated role R as shown

below. Support for adding and overriding members on a per instance basis in object-

oriented programming languages is � independently from the Web Ontology Language �

demanded by Erik Meijer and Peter Drayton [MD04].

1 Object x = [. . .] ;

2 Object y = [. . .] ;

3 x .R = y ; // Rejected by C# compiler

In order to allow for ad hoc relationships in statically typed programming languages,

one could use hash tables that hold property values as key/value pairs.

1 c l a s s I nd i v i dua l {

2 [. . .]

3 Dict ionary<s t r i n g /∗Property name∗/ , ↪→

4 HashSet<Ind iv idua l >/∗Property va lue s∗/> PropertyValues ;

5 }

This approach does, however, not allow for normal member access to declare property

values. More severely, the link between two objects would be navigable only into one

direction while in OWL (and in Zhi#) it is possible to use inverse roles to navigate in

both directions (using normal member access). Being restricted to C# and Java code,

one may eventually end up implementing a full-�edged relational model as shown below

in order to provide for navigable relationships for declared subject-property-object triples.

234

For the following discussions, the Individual class will be used for simplicity while it will

only be indicated how a relational model could help out whenever navigable links are

necessary. Eventually, a full-�edged relational model to represent ontological information

will most likely be least convenient in programming.

t ab l e A{ s t r i n g AID} tab l e B{ s t r i n g BID} tab l e R{ s t r i n g AID ; s t r i n g BID}

Universal negation ¬C (C). Except for the basic Description Logic AL (= attribu-

tive language), where negation can only be applied to atomic concepts, all Description

Logics provide a concept constructor for universal negation (¬C). This complement of

constructor selects all individuals from the domain of discourse that do not belong to a

given class. Implementing this constructor in C# and Java is even more di�cult than

providing support for the top level concept. Not only knowledge about the instances of

one particular class but about all instances of all classes is required to query the extension

of a complement concept description. On the other hand, a runtime type check of one

particular object can be easily performed in C# and Java, too, as follows for a concept

description ¬C. Shown below is a runtime type check of an ontological individual repre-

sented by an Individual object. Note that in order for the purely syntactical latter type

check to work the names of all types of the individual must be contained in the Types

collection of the Individual object and not only the most-derived ones.

1 IThing x = [. . .] ;

2 i f (! (x i s IC)) { [. . .] }

1 Ind i v i dua l x = [. . .] ;

2 i f (! x . Types . Contains ("C")) { [. . .] }

In Zhi#, complement classes can be used natively to declare formal method parame-

ters. For an OWL concept description NotC ≡ ¬C the following Zhi# method accepts

individuals that are not in the extension of concept C.

void f (#NotC p) { [. . .] }

235

In C#, the complement of constructor is unknown. For given interfaces IA, IB, and

IC one could introduce an interface INotC that subsumes IA and IB. Accordingly, the

resulting C# code will look similar to the Zhi# code for the ontological concept NotC .

void f (INotC p) { [. . .] }

The C# solution will, however, not work in the presence of an interface ID that

extends both IA or IB and IC. The method argument might then be both an INotC and

an IC object and will erroneously be accepted. If later (i.e. after the de�nition of interface

INotC) an additional interface IE is introduced, instances of IE will erroneously not be

accepted since IE is not subsumed by interface INotC.

If Individual objects were used to represent ontological individuals the now dynamic

type check of argument p would have to be devised manually within the method body as

follows.

1 void f (I nd i v i dua l p) {

2 i f (! p . Types . Contains ("C")) {

3 [. . .] // Runtime type error

4 } e l s e {

5 [. . .] // Method implementation

6 }

7 }

Conjunction A u B (AL). The conjunction constructor C ≡ A u B states that the

concept description C is exactly the intersection of the concepts A and B. This means

that if something is an A and a B, then it is an instance of C. This de�nition seemingly

corresponds with the derivation of the C# interface IC from interfaces IA and IB. On

closer consideration one will, however, notice that a runtime type check based on C#

programming language types will yield di�erent results. Assume an interface ID, which

extends both IA and IB. An instance of ID is both an IA and an IB. Still, the nominal

C# type system will not draw the conclusion that an object that is an IA and an IB

236

automatically is an IC. Accordingly, it is not possible to facilitate a runtime type check

in C# by simply taking the type IC as the intersection of IA and IB. Instead, one has to

devise an explicit dynamic check for each conjoined concept description as shown below.

This type check must always be provided extra to a given object since instances of ID do

not know by themselves that they represent entities of class C ≡ A uB.

1 i f ((x i s IA) && (x i s IB)) {

2 [. . .] // x is a C according to the concept description C ≡ A uB

3 }

In the class Individual the Types property could be augmented as follows to take into

account the ontological reasoning that every object that is an A and a B is also a C.

1 pub l i c c l a s s I nd i v i dua l {

2 p r i va t e readonly HashSet<s t r i ng> _Types = new HashSet<s t r i ng> {"Thing "} ;

3 pub l i c HashSet<s t r i ng> Types {

4 get {

5 var types = new HashSet<s t r i ng >(_Types) ;

6 i f (_Types . Contains ("A") && _Types . Contains ("B")) {

7 types . UnionWith (new [] {"C"}) ;

8 }

9 re turn types ;

10 } }

11 pub l i c I nd i v i dua l (IEnumerable<s t r i ng> Types) {

12 _Types . UnionWith (Types) ;

13 }

14 }

In the Zhi# programming language, the OWL concept description C ≡ AuB can be

used natively along with the is-operator and as the type of a formal method parameter

as shown below. Static type checks based on the TBox of the current ontology are

automatically facilitated by the Zhi# compiler. At runtime, dynamic checking based on

the TBox and the ABox of the current ontology is accomplished by the Zhi# runtime

library and the used OWL reasoner.

237

1 #Thing x = [. . .] ;

2 i f (x i s #C) { [. . .] }

void f (#C p) { [. . .] }

Note that the described usages of the complex concept description C ≡ AuB in Zhi#

programs are aware of modi�cations of the TBox of the ontology after the compilation

of the Zhi# program. Runtime type checks will still function properly and method f()

in the above code snippet will be executed exactly for those ontological individuals that

are in the intersection of the extensions of concept descriptions A and B (no matter if an

individual was explicitly declared as a C or as a D, where D ≡ A uB).

Disjunction A t B (U). The union constructor is available in all Description Logics

that contain negation and conjunction. A union of ontological concepts corresponds to

extending a common base interface in C#. Thus, a concept description C ≡ A t B can

be represented by C# interfaces IA and IB extending interface IC. This representation is

appropriate for declaring method signatures with a formal parameter of type IC where

both IAs and IBs are valid input objects. Also, a runtime type check using C#'s is-

operator will yield that IA and IB objects are compatible with interface IC. Still, C#'s

modeling features are not su�cient to relate two Cs by a role R with domain A and

range B because interface IC will not contain a slot R. Also, reasoning based on property

domain and range restrictions is not supported in C#.

1 IC x = [. . .] ;

2 IC y = [. . .] ;

3 x .R = y ; // Error in C# because there is no slot R in IC

If individuals of RDF types A, B, and C were represented by Individual objects, the

Types property would have to be modi�ed such that C is added to the set of RDF types if

an individual is an A or a B (cf. the modi�ed Types property for the conjunction concept

constructor).

238

1 [. . .]

2 pub l i c HashSet<s t r i ng> Types {

3 get {

4 var types = new HashSet<s t r i ng >(_Types) ;

5 i f (_Types . Contains ("A") | | _Types . Contains ("B")) {

6 types . UnionWith (new [] {"C"}) ;

7 }

8 re turn types ;

9 }

10 }

11 [. . .]

Enumeration {o1, . . . ,on} (O). The OWL DL one of constructor can be used to

de�ne a class by explicitly enumerating the individuals that make up the class. The

members of the class are exactly the set of enumerated individuals; no more, no less.

Both in C# and Java the enum keyword can be used to declare enumerations, too.

Unfortunately, C# and Java enumerations simply consist of a set of named constants and

their integral values. There is no built-in standard way to trace back from a value to

the name of the constant without already knowing the enumeration type. Also, the same

integral values may be used for di�erent constant names in di�erent enumerations. In

contrast, runtime type checks in Zhi# programs work properly for ontological individuals

that are members of enumerated classes. Let variable o refer to the ontological individual

o that was used to make up the de�nition of the enumerated concept E ≡ {o, . . . }.

1 #Thing o = [. . .] ;

2 i f (o i s #E) { [. . .] } // Individual o is compatible with concept description E

In the same way, individual o is a valid input object for the method f() declared below

(only the enumerated members of concept description E are valid input objects).

void f (#E p) { [. . .] }

239

By using the auxiliary property Individuals that is de�ned for static concept refer-

ences in Zhi# programs it is possible to yield the enumerated individuals of a concept

description. For an enumerated concept WineColor ≡ {Red ,Rose,White} the output of

the program shown below is

Red

Rose

White.

1 fo r each (#Thing x in #E. I nd i v i dua l s) {

2 Console . WriteLine (x) ;

3 }

Exists restriction ∃R.C (E). The OWL DL someValuesFrom restriction is stated on

a property with respect to a class. For a given class a property can have a restriction that

at least one value for that property is of a certain type. Individuals where some (i.e. at

least one) values of the given property are of that certain type will inferred to be in the

extension of the given class. Recall that because of OWL's open world assumption an

OWL reasoner will not infer from the absence of such a property value that an individual

is not of a certain type. Also, a reasoner cannot deduce that all related property values

are of a certain type.

Accordingly, the concept description C ≡ ∃R.D could be implemented by an Individual

object in C# as shown below. Publicly visible class members to modify the PropertValues

property are omitted for brevity (recall from the discussion of the top level concept (>)

that the implementation of bidirectionally navigable subject-property-object triples is

itself a burden in a conventional object-oriented programming language).

The given C# code is only to demonstrate the semantics of the someValuesFrom

restriction and is by no means su�cient to cope with, for example, mutually dependent

class de�nitions. For concept descriptions C ≡ ∃R.D and D ≡ ∃R.E the inference results

would otherwise vary depending on the evaluation order of the Types property.

240

1 pub l i c c l a s s I nd i v i dua l {

2 p r i va t e readonly HashSet<s t r i ng> _Types = new HashSet<s t r i ng> {"Thing "} ;

3 p r i va t e Dict ionary<s t r i ng , HashSet<Ind iv idua l>> PropertyValues = ↪→

4 new Dict ionary<s t r i ng , HashSet<Ind iv idua l >>();

5 pub l i c HashSet<s t r i ng> Types {

6 get {

7 var types = new HashSet<s t r i ng >(_Types) ;

8 i f (PropertyValues . ContainsKey ("R")) {

9 fo r each (var v in PropertyValues ["R"]) {

10 i f (v . Types . Contains ("D")) {

11 types . UnionWith (new [] {"C"}) ;

12 }

13 }

14 }

15 return types ;

16 }

17 }

18 }

Also, the someValuesFrom restriction can as well be used along with OWL datatype

properties. For example, a class Teenager may be de�ned as ∃hasAge.teenAge, where

hasAge shall be a functional OWL datatype property and the XML data type teenAge

be de�ned as an integer between 13 and 19. This would require implementing full-�edged

type inference for data types, too.

In contrast, the results of ontological reasoning and XML data type subsumption are

immediately available for ontological individuals and data type values in Zhi#. Ponder

the following Zhi# code, which uses the considered class and data type de�nitions. Note

that the order of the assignment statements in line 2 and 3 is irrelevant for the ontological

reasoning that is triggered in line 4. Also, as shown in line 8 and 9, the availability

of XML data types in the Zhi# programming language makes it possible to obey the

someValuesFrom restriction for OWL datatype properties, too.

241

1 #Thing c = [. . .] , d = [. . .] ;

2 c .#R = d ;

3 d.#R = new #E ([. . .]) ;

4 i f (c i s #C) {

5 // Individual c is a C

6 }

7 #Thing p = [. . .] ;

8 p.#hasAge = 15 ;

9 i f (p i s #Teenager) {

10 // Teenage rampage will happen here

11 }

Value restriction ∀R.C (AL). The OWL DL allValuesFrom restriction is stated on

a property with respect to a class. It associates a local range restriction with the given

property for the given class. If an instance of the class is related by the property to a second

individual, then the second individual will be inferred to be an instance of the local range

restriction class. Note that due to the monotonic nature of the Web Ontology Language,

an OWL reasoner cannot infer a subject to be of a particular type only because all related

objects are in the extension of the local range restriction. Moreover, an individual may

as well have no property values at all.

Implementing the allValuesFrom restriction in conventional object-oriented program-

ming languages would be particularly tedious and problematic because concept descrip-

tions of the form C ≡ ∀R.D base the type inference of objects on their use as property

values (of other objects)! This directly renders �eld-based representations of object prop-

erties insu�cient. Bidirectionally navigable links between objects are required to consider

for type inference all objects that have the object under consideration as a property value.

Such an implementation would most likely lead to devising a full-�edged relational model

(cf. the discussion of the top level concept). It can be understood that such a model is

242

indispensable for all Description Logic applications since the allValuesFrom restriction is

already introduced in the very basic description language AL, which has been introduced

by Schmidt-Schauss and Smolka [SS91] as a minimal language that is of practical use.

In the Zhi# programming language, type inference of individuals that are used as

objects of locally range restricted properties is delegated to the OWL DL reasoner. As a

consequence, there is no need to implement an auxiliary relational model on the applica-

tion level. In the following Zhi# code snippet, individual d will automatically inferred to

be a D based on the concept description C ≡ ∀R.D.

1 #C c = [. . .] ;

2 #Thing d = [. . .] ;

3 c .#R = d ; // This makes d a D

Nominals ∃R.o (O). Sometimes, it is useful to allow individual names (also called

nominals) not only in the ABox but also in the description language. The Web Ontology

Language provides the hasValue local range restriction to express the notion that for

a given class a property is required to have a certain individual as a value. That is,

classes are speci�ed based on the existence of particular property values. An individual

is a member of such a class whenever at least one of its property values is equal to the

hasValue resource. This leads directly to the issue of object equality in object-oriented

languages (cf. the equality discussion in Subsection 6.1.2).

Ponder the OWL concept description C ≡ R.o. An ontological individual c is a C if

it is related to individual o by property R (i.e. 〈c,o〉 ∈ RI). Note that in OWL, which

does not make the unique name assumption, the equality of individuals is based on the

represented entities in the described world. Individuals are identical if they refer to the

same entity in the described world. The OWL feature sameAs can be used to state that

two individuals do refer to the same entity (similarly, the di�erentFrom and AllDi�erent

features can be used to declare individuals mutually di�erent).

243

Object-oriented programming languages do neither support OWL's entity-based equal-

ity de�nition, nor is there a sameAs predicate that could be used to declare identity. The

ubiquitous CompareTo<T>() method of the .NET BCL interface IComparable<T> can in

fact be implemented arbitrarily (there is a common understanding, though, of the mean-

ing of its return value). The BCL interface ICloneable stipulates the implementation of

its Clone() method, which can most likely be related with OWL's sameAs feature. How-

ever, the usefulness of the ICloneable interface is currently under debate within the .NET

community since the o�cial speci�cation does not explicitly say that objects implement-

ing this interface must return a deep copy of the object. Thus, it is technically possible

that objects implementing ICloneable actually return only a shallow copy, which clearly

generates a good deal of confusion. Consequently, it is particularly tedious and error-

prone to implement nominals-based concept descriptions in object-oriented programming

languages. The C# code shown below is an attempt to mimic OWL nominals.

A dedicated class HasValueRestriction is introduced to represent a property value

restriction (the provided Type shall be the equivalent concept name). E�ective value re-

strictions are considered for type inference in the implementation of the Types property

of class Individual. Note that the common Contains() method of the ICollection<T>

interface uses reference equality for object comparison, which is not applicable here be-

cause several Individual objects may be used to represent the same entity. Value-based

equality (based on, for example, an extra Name �eld in the Individual class) would be

inadequate, too, since OWL does not make the unique name assumption. As a result,

extra housekeeping code (e.g., a relational model) is required to identify conceptually

identical Individual objects. This assumed housekeeping code is used in line 16 by the

ContainsIndividual() method, which could be made available for .NET ICollection<T>

objects as a C# extension method3.

3Extension methods were introduced in C# 3.0 and make it possible to �add� methods to existing types
without creating a new derived type, recompiling, or otherwise modifying the original type. Extension
methods are a special kind of static method, but they can be called as if they were instance methods on
the extended type.

244

1 pub l i c s t r u c t HasValueRestr i c t ion {

2 pub l i c s t r i n g Property ;

3 pub l i c I nd i v i dua l I nd i v i dua l ;

4 pub l i c s t r i n g Type ;

5 }

6 pub l i c c l a s s I nd i v i dua l {

7 p r i va t e readonly HashSet<s t r i ng> _Types = new HashSet<s t r i ng> {"Thing "} ;

8 p r i va t e readonly HashSet<HasValueRestr ict ion> HasVa lueRest r i c t ions ;

9 p r i va t e Dict ionary<s t r i ng , HashSet<Ind iv idua l>> PropertyValues = ↪→

10 new Dict ionary<s t r i ng , HashSet<Ind iv idua l >>();

11 pub l i c HashSet<s t r i ng> Types {

12 get {

13 var types = new HashSet<s t r i ng >(_Types) ;

14 f o r each (var r in HasVa lueRest r i c t i ons) {

15 i f (PropertyValues . ContainsKey (r . Property)) {

16 i f (PropertyValues [r . Property] . Conta in s Ind iv idua l (r . I nd i v i dua l)) {

17 types . UnionWith (new [] { r . Type }) ;

18 }

19 }

20 }

21 return types ;

22 }

23 }

24 }

The described di�culties do not apply to ontological individuals in Zhi# programs.

First, no user de�ned housekeeping code is required for object equality. For ontological

individuals the equality (==) and inequality (!=) operators are overridden to consider con-

ceptual identity based on the ontological model. Second, no user de�ned deduction rules

are required to implement type inference. Property value restrictions are automatically

used for reasoning by Zhi#'s OWL runtime library (i.e. the ontology management system).

The Zhi# program shown below is backed by an ontology where persons can be consid-

245

ered as friends of Bill Gates (i.e. FriendOfBillGats ≡ Person u ∃hasFriend .BillGates).

Also, the individuals BillGates and WilliamHenryGates refer to the same entity

Bill Gates in the real world. The following program will correctly output the information

that Paul Allan is a friend of Bill Gates (see Subsection 6.1.3 for an explanation of the

Individuals property of static concept references in Zhi# programs).

1 // WilliamHenryGates and BillGates are identical

2 #Person p = new #Person("#PaulAllan ") ;

3 p.#hasFriend = new #Person("#WilliamHenryGates ") ;

4 f o r each (#Person person in #Fr iendOfBi l lGates . I nd i v i dua l s) {

5 Console . WriteLine (person + " i s a f r i e nd o f B i l l Gates ! ") ;

6 }

(Un)quali�ed number restrictions [≥ | = | ≤]R[.C] (N /Q). The basic description

language AL contains the limited existential quanti�cation (∃R.>) concept constructor.

As one might guess there are several ways in which the expressive power of the notion of

number restrictions can be enhanced.

The SHIF(D) Description Logic, which constitutes the formal foundation of OWL

Lite, introduces unquali�ed number restrictions (F) limited to statements concerning car-

dinalities of value 0 or 1. In the SHOIN (D) Description Logic, arbitrary non-negative

integer cardinalities can be used with unquali�ed number restrictions (N). Number re-

strictions can be quali�ed (Q) in SHIQ(D), which had initially been intended to be

the formal foundation of OWL DL. In fact, OWL DL has been developed to implement

SHOIN (D) with subtle limitations imposed on the usage of role axioms (e.g., inverse

roles cannot declared to be transitive). Still, in OWL DL, arbitrary non-negative inte-

ger cardinalities can be stated on properties with respect to a certain class using OWL's

minCardinality and maxCardinality features. As a convenience, the cardinality feature

can be used when a property on a class has identical values for its minCardinality and

maxCardinality facets.

246

It is important to understand that number restrictions (despite their name) do not

restrict the number of OWL object property values. Instead, number restrictions are used

for ontological reasoning such that, individuals are considered identical if their number

exceeds the maximum cardinality of a property on a certain class (i.e. number restrictions

operate on the conceptual entities and not on the surrogate individuals). In contrast, in

object-oriented programming languages instances of a class cannot be inferred to be identi-

cal. If there are fewer OWL property values than required by a minCardinality restriction

these values are assumed to exist but are considered unknown (i.e. open world assump-

tion). Again, there is no such assumption in object-oriented programming languages.

The described reasoning for maxCardinality restrictions does, of course, not happen for

OWL datatype property values because data type values are not subject to ontological

reasoning.

In view of these observations the semantics of OWL number restrictions must not

be confused with multiplicities of associations in object-oriented designs such as UML

class diagrams. In UML, multiplicities de�ne de�nitive bounds for the number of linked

objects4. These conceptual di�erences between the semantics and the interpretation of

number restrictions in OWL and object-oriented programming languages make it again

particularly di�cult to implement OWL's cardinality features in conventional C#.

Ponder a concept description C ≡ ≤1R.> (i.e. role R is functional or unique on class

C). All individuals that are related to a C by role R will be inferred to be identical (i.e.

{〈o, i1〉, . . . , 〈o, in〉} ∈ RI ⇒ i1 = · · · = in). The other way around it will be a consistency

error if a C is related to several di�erent individuals. Recall that due to the monotonic

nature of OWL an individual o will not be inferred to be a C only because it (currently)

has at most one value for property R since later on further values may be added, which

would require to revoke a previous conclusion. The following C# code is an attempt to

implement these behaviors.

4A note on multiplicities in UML class diagrams: Akehurst et al. [AHM07] observed that seven out
of ten investigated UML design tools support modeling multiplicities while only one actually facilitates
bounds checks.

247

1 pub l i c s t r u c t MaxCard ina l i tyRest r i c t i on {

2 pub l i c s t r i n g Property ;

3 pub l i c u int MaxCardinality ;

4 pub l i c s t r i n g Type ;

5 }

6 pub l i c c l a s s I nd i v i dua l {

7 readonly HashSet<s t r i ng> _Types = new HashSet<s t r i ng> {"Thing "} ;

8 readonly HashSet<MaxCard ina l i tyRestr i c t ion> MaxCard ina l i tyRes t r i c t i ons ;

9 pub l i c Dict ionary<s t r i ng , HashSet<Ind iv idua l>> PropertyValues = ↪→

10 new Dict ionary<s t r i ng , HashSet<Ind iv idua l >>();

11 pub l i c HashSet<s t r i ng> Types {

12 get {

13 // No type inference for the current individual

14 // based on maximum cardinality restrictions!

15 re turn _Types ;

16 }

17 }

18 pub l i c void AddObjectPropertyValue (s t r i n g p , I nd i v i dua l i) {

19 i f (PropertyValues . ContainsKey (p)) {

20 PropertyValues [p] . Add(i) ;

21 } e l s e {

22 PropertyValues .Add(p , new HashSet<Ind iv idua l> { i }) ;

23 }

24 fo r each (var r in MaxCard ina l i tyRes t r i c t i ons) {

25 i f (Types . Contains (r . Type) && r . Property == p &&

26 PropertyValues . ContainsKey (p) &&

27 (from v in PropertyValues [p]

28 where v . GetHashCode () == i . GetHashCode ()

29 s e l e c t v) . Count () > r . MaxCardinality) {

30 throw new Incons i s t entOnto logyExcept ion () ;

31 }

32 }

33 }

34 }

248

How does this implementation cope with the given scenario of adding values for prop-

erty R of an ontological individual of type C, where C ≡ ≤1R.>?

First, note that maximum cardinality restrictions do not contribute to the type in-

ference for the current Individual object (i.e. the Types property is not modi�ed in the

presence of aggregated MaxCardinalityRestriction objects).

Second, the implementation of the AddObjectPropertyValue() method to modify the

PropertyValues �eld includes a consistency check in order to obey each aggregated Max-

CardinalityRestriction. The implemented check simply throws for inconsistent objects but

does not roll back the operation that lead to the incongruity with the TBox (i.e. the cur-

rent Individual object will remain in an inconsistent state). This behavior is identical to

current ontology management systems, where inconsistencies of the ontology are merely

reported to the user. Still, the given code is incomplete for two reasons.

First, it does not take into account the possibility of transitive and inverse properties

and role hierarchies (see below).

Second, the given code assumes that the Equals() method for Individual objects was

overridden or an extra IEqualityComparer<Individual> is provided in order to account

for the required ontological equality between Individual objects (operations on .NET

BCL HashSet objects can be con�gured in order to not use the standard comparer for

equality). For semantic reasons, overriding the Equals() method also requires overriding

the ubiquitous GetHashCode() function. Accordingly, equal Individual objects will be

stored in the same slots in the HashSet values of the PropertyValues �eld.

Do understand that for the given scenario a user de�ned comparer for Individual

objects would have to take into account 1) the RDF type of the current Individual object

(i.e. the subject of the RDF statement), 2) the imposed maximum cardinality restriction

on property R on class C, and 3) the fact that the Individual i that has to be compared

for equality with existing property values is also being added as a value for property R

of the current Individual. In particular, the hash code that is computed for Individual

249

objects would have to vary based on their (tentative) usage as property values! If such a

hash function would have been implemented for Individual objects the MaxCardinality-

Restriction checks could be facilitated as shown in lines 24 to 32. A MaxCardinality-

Restriction is enforced if the current Individual represents the same RDF type as given by

the Type property of the restriction (note that the given code is incomplete with respect

to subsumption!). If there are values for the property to which the MaxCardinality-

Restriction applies then the LINQ expression5 in line 27 is used to query and count all

Individual objects with the same hash value. An exception is thrown if there are more

di�erent property values than allowed by the current MaxCardinalityRestriction.

If one wanted to allow for quali�ed number restrictions, the same complexity as for

the implementation of the hash function would apply plus the handling of the typing

information of the property values (recall that the implementation of the Types property

of an Individual object has to take into account the usage of this object as a property

value of di�erent objects).

On a related note it should be clear that each OWL concept constructor discussed

above is not an island unto itself. In fact, the basic Description Logic AL is widely con-

sidered to be the minimal combination of a set of concept constructors that is of practical

use. For the sake of conciseness, the presented C# code snippets do little in the way

of combination. For settings that include several OWL concept constructors plus OWL

concept axioms (e.g., equivalentClass, disjointWith, subClassOf) structural subsumption

algorithms, which simply compare the syntactic structure of concept descriptions, are

known to be incomplete (i.e. negation and disjunction cannot be handled). Instead,

tableau-based algorithms have turned out to be very successful [SS91]. Eventually, the

Individual objects as introduced above would be subject to such full-�edged reasoning al-

gorithms. In contrast, ontological reasoning is inherently available for ontological concepts

and individuals in Zhi#.

5A note on LINQ syntax: The expression form �from x in l select y� denotes the computation of a
new list l' from the given list l such that, each element x of l is mapped to an element y of l'. One can
add where clauses so as to �lter the list l.

250

7.2.4 OWL role constructors and restrictions

In the Web Ontology Language, properties can be used to state relationships between

individuals (i.e. object properties) or from individuals to data type values (i.e. datatype

properties). The distinction between object and datatype properties is made because 1)

not every Description Logic includes a concrete domain comprising data types and 2) data

types are not subject to ontological reasoning.

The OWL vocabulary includes a number of identi�ers to provide information concern-

ing properties and their values. The rdfs:domain feature can be used to describe the type

of individuals to which the property can be applied. If a property relates an individual to

another individual, and the property has a class as one of its domains, then the individual

is inferred to belong to the class6. Similarly, the rdfs:range feature describes the type of

individuals and data values that the property may have as its value. Range restrictions

of OWL object properties are used for ontological reasoning, too. If an object property

relates an individual to another individual, and the object property has a class as its

range, then the other individual can be inferred to belong to the range class.

In contrast to OWL, object-oriented programming languages do not allow for self-

su�cient property de�nitions that are not part of class types. Accordingly, the declaration

of ad hoc relationships is not supported either. Finally, statically typed object-oriented

programming languages do not facilitate type inference based on property domain and

range restrictions. The programming e�ort that is required to mimic those fundamental

OWL modeling features in object-oriented programming languages was already indicated

in the previous subsection as part of the discussion of the top level concept. This sub-

section will carry on scrutinizing how additional OWL property features could be imple-

mented in plain C#. As in the previous subsection, the conventional solutions will be

compared to Zhi#'s inherent support for OWL properties and ontological reasoning.

6A note on OWL domain and range descriptions: In OWL, a sequence of elements without an explicit
operator represents an implicit conjunction. Accordingly, the domain and range of an OWL property is
the conjunction of the given concept descriptions.

251

Equivalent properties Ri v Rj, 1 ≤ i, j ≤ n (H). In OWL, equivalent (i.e. syn-

onymous) properties can be declared using the equivalentProperty feature. Equivalent

properties relate one individual to the same set of other individuals. From this a reasoner

can deduce that if an individual is related to another individual by a property, then the

individual is also related to the other individual by all declared equivalent properties and

vice versa. Accordingly, a reasoner will also deduce that equivalent properties subsume

each other. The following C# code implements the observable behavior of equivalent

property declarations for the well-tried Individual type introduced in the previous sub-

section (unused members are omitted for brevity, only object properties are considered).

Read access to the Individual object's property values is implemented as a C# indexer7.

The value for a property of an Individual object is not only the set of explicitly de-

clared values but the union of all values for all equivalent properties, which the auxiliary

GetEquivalentProperties() function yields.

1 pub l i c c l a s s I nd i v i dua l {

2 p r i va t e s t a t i c HashSet<s t r i ng> GetEquiva l entProper t i e s (s t r i n g p) {

3 [. . .] // Note: equivalence relation is re�exive!

4 }

5 p r i va t e readonly Dict ionary<s t r i ng , HashSet<Ind iv idua l>> PropertyValues =

6 new Dict ionary<s t r i ng , HashSet<Ind iv idua l >>();

7 pub l i c HashSet<Ind iv idua l> t h i s [s t r i n g p] {

8 get {

9 var va lue s = new HashSet<Ind iv idua l >() ;

10 f o r each (var ep in GetEquiva l entProper t i e s (p)) {

11 va lue s . UnionWith (PropertyValues [ep]) ;

12 }

13 re turn va lues ;

14 }

15 }

16 }

7A note on C#: Indexers allow you to index a class or a struct in the same way as an array. The get
and set accessor bodies of an indexer are similar to a method body.

252

Recall that the implementation of the union operation on the used hash sets would

require the implementation of ontological equality for Individual objects if one wants to

consider only one single representative for a set of equivalent individuals.

Also note how the deductions facilitated by equivalentProperty declarations are used

to make implicit knowledge (in a knowledge base) explicit. Ponder the e�ect of ontological

reasoning in this place on the implementation of OWL concept descriptions in the previous

subsection. For example, the implementation of the someValuesFrom concept constructor

would have to be modi�ed to take into account equivalent properties.

As of today, in computer science, the term �intelligent� mainly refers to the ability

to automatically infer implicit consequences from explicitly represented knowledge. This

described simple form of arti�cial intelligence is readily available in Zhi# as shown below.

Subject s will have object o as a value for the equivalent property ep despite the fact

that this statement has never been explicitly added to the knowledge base.

1 #Thing s = [. . .] , o = [. . .] ;

2 s .#p = o ;

3 #Thing [] va lue s = s .#ep ; // Individual o is also a value for property ep

Subproperties R1 v R2 (H). Equivalent properties subsume each other. Property

hierarchies can be created by making nonsymmetric rdfs:subPropertyOf statements that

a property is a subproperty of one or more other properties. A reasoner can deduce that

if an individual is related to another by a subproperty, then it is also related to the other

by the respective super-property. The C# code for an isolated implementation of OWL

subproperties is almost identical to the previous C# code snippet for equivalent properties.

The only di�erence is that the GetEquivalentProperties() method must be replaced by a

function that yields the subproperties for a given property. Again, the also isolated

implementations of OWL concept constructors described in the previous subsection would

have to be extended for settings that include property hierarchies. This would analogously

be the case for all remaining role constructors described below. Recall that OWL DL

253

comprises all concept constructors mentioned above and all role constructors discussed

in this subsection, which would eventually require the (re-)implementation of full-�edged

reasoning algorithms.

In Zhi#, no additional user de�ned code is required to use role hierarchies program-

matically. In the following code snippet, object o is a value for properties sp and p of

subject s, where sp is a subproperty of p.

1 #Thing s = [. . .] , o = [. . .] ;

2 s .#sp = o ;

3 #Thing [] va lue s = s .#p ; // Individual o is also a value for property p

Symmetric properties R v R− (HI). OWL object properties can be declared sym-

metric. If a property R is symmetric, then if 〈x,y〉 ∈ RI , then 〈y,x〉 ∈ RI (i.e. a reasoner

will deduce that role R is subsumed by its inverse).

Implementing inverse roles requires bidirectionally navigable links between related

objects. For the Individual type shown below the AddPropertyValue() method is imple-

mented such that the given individual is added as a value for the given property of the

current subject and the current subject is itself added as a value for the given property

of the given individual. The read only indexer yields for a given property the union of

explicitly added values and the set of individuals that are related to the current individual

by symmetric properties. The auxiliary function IsSymmetric() determines if a property

is symmetric. In the given implementation two separate property value dictionaries are

used in order to facilitate the removal of inferred values of symmetric properties. If a

statement of the form R(s,o), where R shall be a symmetric property, is removed, then a

previously inferred triple R(o, s) has to be removed, too. Still, possible explicitly added

statements R(o, s) must be preserved (i.e. an inferred statement R(s,o) would still be

present, too). In the same vein, ontology management systems typically use two stores

for explicitly added and inferred statements. Here, the code for removing property values

is omitted for the sake of brevity.

254

1 pub l i c c l a s s I nd i v i dua l {

2 p r i va t e s t a t i c bool IsSymmetric (s t r i n g p) {

3 [. . .] // Determines if property p is symmetric

4 }

5 p r i va t e readonly Dict ionary<s t r i ng , HashSet<Ind iv idua l>> PropertyValues =

6 new Dict ionary<s t r i ng , HashSet<Ind iv idua l >>();

7 p r i va t e readonly Dict ionary<s t r i ng , HashSet<Ind iv idua l>>

8 SymmetricPropertyValues = new Dict ionary<s t r i ng , HashSet<Ind iv idua l >>();

9 p r i va t e void AddSymmetricPropertyValue (s t r i n g p , I nd i v i dua l i) {

10 i f (SymmetricPropertyValues . ContainsKey (p)) {

11 SymmetricPropertyValues [p] . Add(i) ;

12 }

13 e l s e {

14 SymmetricPropertyValues .Add(p , new HashSet<Ind iv idua l> { i }) ;

15 }

16 }

17 pub l i c void AddPropertyValue (s t r i n g p , I nd i v i dua l i) {

18 i f (PropertyValues . ContainsKey (p)) {

19 PropertyValues [p] . Add(i) ;

20 }

21 e l s e {

22 PropertyValues .Add(p , new HashSet<Ind iv idua l> { i }) ;

23 }

24 i f (IsSymmetric (p)) {

25 i . AddSymmetricPropertyValue (p , t h i s) ;

26 }

27 }

28 pub l i c HashSet<Ind iv idua l> th i s [s t r i n g p] {

29 get {

30 var va lue s = new HashSet<Ind iv idua l >() ;

31 va lue s . UnionWith (PropertyValues [p]) ;

32 va lue s . UnionWith (SymmetricPropertyValues [p]) ;

33 re turn va lues ;

34 } } }

255

In Zhi# programs, symmetry traits of ontological roles are automatically obeyed as

shown below. For a symmetric property p the values array will be initialized in line 3

with value s for property p of individual o. The inferred triple p(o, s) is automatically

removed as soon as o is removed as a value for property p of individual s in line 4.

1 #Thing s = [. . .] , o = [. . .] ;

2 s .#p = o ;

3 #Thing [] va lue s = o.#p ; // Individual s is a value for property p

4 s .#p . Remove(o) ;

5 va lue s = o.#p ; // Individual s is no longer a value for property p

Inverse properties R v R−0 (HI). If an OWL object property is declared symmetric

it is subsumed by its inverse. In OWL, it is also possible to explicitly declare a property

as the inverse of another. If property R is stated to be the inverse of property R0, then

if individual x is related to y by R0, then y is related to x by role R. Accordingly, a

reasoner will infer that role R is subsumed by the inverse of R0.

In the code snippet shown below the AddPropertyValue() method of the Individual

type is implemented such that, the given individual is added as a value for the given

property of the current subject and the current subject is itself added as a value of

the given individual for the inverse properties of the given property (i.e. bidirectionally

navigable links). The read only indexer yields for a given property the union of explicitly

added values and the set of individuals that are related to the current individual by inverse

properties. The auxiliary function GetInverseProperties() yields for a given property the

inverses. In the given implementation two separate property value dictionaries are used

to facilitate the removal of inferred values of inverse properties. If a statement of the form

R0(s,o), where R is the inverse of R0, is removed, then a previously inferred triple R(o, s)

has to be removed, too. Still, possible explicitly added statements R(o, s) will have to be

preserved (i.e. an inferred statement R0(s,o) would still be present, too). Here, the code

for removing property values is omitted for the sake of brevity.

256

1 pub l i c c l a s s I nd i v i dua l {

2 p r i va t e s t a t i c HashSet<s t r i ng> Get Inve r s ePrope r t i e s (s t r i n g p) {

3 [. . .] // Returns the inverses of p

4 }

5 p r i va t e readonly Dict ionary<s t r i ng , HashSet<Ind iv idua l>> PropertyValues =

6 new Dict ionary<s t r i ng , HashSet<Ind iv idua l >>();

7 p r i va t e readonly Dict ionary<s t r i ng , HashSet<Ind iv idua l>>

8 InversePropertyValues = new Dict ionary<s t r i ng , HashSet<Ind iv idua l >>();

9 p r i va t e void AddInversePropertyValue (s t r i n g p , I nd i v i dua l i) {

10 i f (InversePropertyValues . ContainsKey (p)) {

11 InversePropertyValues [p] . Add(i) ;

12 }

13 e l s e {

14 InversePropertyValues .Add(p , new HashSet<Ind iv idua l> { i }) ;

15 }

16 }

17 pub l i c void AddPropertyValue (s t r i n g p , I nd i v i dua l i) {

18 i f (PropertyValues . ContainsKey (p)) {

19 PropertyValues [p] . Add(i) ;

20 }

21 e l s e {

22 PropertyValues .Add(p , new HashSet<Ind iv idua l> { i }) ;

23 }

24 fo r each (s t r i n g ip in Get Inve r s ePrope r t i e s (p)) {

25 i . AddInversePropertyValue (ip , t h i s) ;

26 }

27 }

28 pub l i c HashSet<Ind iv idua l> th i s [s t r i n g p] {

29 get {

30 var va lue s = new HashSet<Ind iv idua l >() ;

31 va lue s . UnionWith (PropertyValues [p]) ;

32 va lue s . UnionWith (InversePropertyValues [p]) ;

33 re turn va lues ;

34 } } }

257

In Zhi# programs, values of inverse roles are automatically considered as shown below.

For an inverse ip of property p the values array will be initialized in line 3 with value s

for property ip of individual o. The inferred triple p(o, s) is automatically removed as

soon as o is removed as a value for property p of individual s in line 4.

1 #Thing s = [. . .] , o = [. . .] ;

2 s .#p = o ;

3 #Thing [] va lue s = o.# ip ; // Individual s is a value for property ip

4 s .#p . Remove(o) ;

5 va lue s = o.#p ; // Individual s is no longer a value for property ip

Transitive properties Trans(R) (S). OWL object properties may be stated to be

transitive. If a property R is transitive, then if 〈x,y〉 ∈ RI and 〈y, z〉 ∈ RI , then

〈x, z〉 ∈ RI (both OWL Lite and OWL DL impose the side condition that transitive

properties and their super-properties cannot have a maxCardinality 1 restriction, which

would make OWL Lite and OWL DL undecidable languages).

The C# code snippet shown below implements transitive properties for the Individual

type. The auxiliary function IsTransitive() determines if a property is transitive. The

read only indexer is implemented such that, the result set is recursively populated for all

transitive properties.

The attempted solution to implement transitive properties in plain C# may appear

su�cient at a �rst glance. However, as for all mimicked concept and role constructors

the suggested code would have to be provided (i.e. duplicated) for all objects under con-

sideration assuming that one does not want to devise a rooted class hierarchy with a top

level Individual type. Also, ponder how the suggested Individual observables would have

to be used by client code. Method invocations and indexer accesses would be required in

C# instead of intuitive member access as provided for ontological individuals in Zhi#.

Moreover, ontological roles are addressed by their names as System.String objects, which

is not type-safe on the ontology level.

258

1 pub l i c c l a s s I nd i v i dua l {

2 p r i va t e s t a t i c bool I sT r an s i t i v e (s t r i n g p) {

3 [. . .] // Determines if property p is transitive

4 }

5 p r i va t e readonly Dict ionary<s t r i ng , HashSet<Ind iv idua l>> PropertyValues =

6 new Dict ionary<s t r i ng , HashSet<Ind iv idua l >>();

7 p r i va t e void GetPropertyValues (s t r i n g p , HashSet<Ind iv idua l> va lues) {

8 va lue s . UnionWith (t h i s [p]) ;

9 f o r each (var i in va lue s) {

10 i . GetPropertyValues (p , va lue s) ;

11 }

12 }

13 pub l i c HashSet<Ind iv idua l> th i s [s t r i n g p] {

14 get {

15 var va lue s = new HashSet<Ind iv idua l >() ;

16 va lue s . UnionWith (PropertyValues [p]) ;

17 i f (I sT r an s i t i v e (p)) {

18 fo r each (var i in va lue s) {

19 i . GetPropertyValues (p , va lue s) ;

20 }

21 }

22 return va lues ;

23 } } }

In Zhi#, transitivity is a native feature of ontological roles as shown below. In contrast

to isolated implementations of transitive properties in plain C#, genuine ontological roles

in Zhi# can accumulate a number of traits (e.g., transitivity and symmetry). These traits

can be encoded in original OWL syntax and imported into Zhi# programs.

1 #Thing x = [. . .] , y = [. . .] , z = [. . .] ;

2 x.#p = y ;

3 y.#p = z ;

4 #Thing [] va lue s = x.#p ; // Individual z is a value for property p, too

259

Functional properties > v ≤ 1R (F). The Web Ontology Language supports the

notion of functional (i.e. unique) properties. If a property is functional, then it has no

more than one value for each individual. Recall that ontological equality is based on the

represented entities. Accordingly, there can be a number of objects being related to a

subject by a functional property. As a consequence, all related objects will be inferred

to be identical. The described kind of functionality cannot be easily implemented as

a local extension of .NET objects such as the Individual type. In particular, central

housekeeping code would be required to merge sets of individuals that are each inferred

to be identical based on relations with di�erent subjects (e.g., two individuals s1 and s2

may be related by a functional property p to objects {o1,o2} and {o2,o3}, respectively).

A global disjoint-set data structure and a union-�nd implementation would be necessary

to manage partitions of identical individuals. As a result, implementations of the Equals()

method or the == operator of such �ontological� .NET objects would be required to refer

to the central housekeeping code. In addition to the acquired code complexity, the garbage

collection of such objects would most likely be compromised due to perpetual references

in the disjoint-set data structure.

Functional properties along with their e�ects on ontological reasoning and object iden-

tity are provided natively in Zhi#. In the following code snippet the comparison expres-

sion x==z will evaluate to true since individuals x, y, and z will be inferred to be identical

based on the assignment statements in lines 3 to 6 for a functional property p.

1 #Thing s = [. . .] , t = [. . .] ;

2 #Thing x = [. . .] , y = [. . .] , z = [. . .] ;

3 s .#p = x ;

4 s .#p = y ;

5 t .#p = y ;

6 t .#p = z ;

7 bool b = x == z ; // Individuals x, y, and z are identical

260

Inverse functional properties > v ≤ 1R− (IF). OWL object properties can be

stated to be inverse functional (i.e. unambiguous). If a property is inverse functional then

the inverse of the property is functional. Thus, the inverse of the property has at most

one value for each individual. Accordingly, a reasoner will deduce that if two individuals

have the same value for an inverse functional property, then those two individuals refer

to the same entity in the described world.

As for functional properties, the implementation of unambiguous properties for .NET

objects could barely be facilitated as a local extension of the Individual type. Also, the

implementation of object equality as a result of the use of objects with inverse functional

properties would certainly require housekeeping code similar to the one necessary for

inverse properties. In contrast, unambiguous properties can easily be de�ned using the

Web Ontology Language as in the following OWL snippet. The inverse functional property

de�nition can then be imported into Zhi# programs as shown below.

The same goes for all OWL DL concept and role constructors: Instead of mimicking

ontological behavior with .NET objects, OWL description languages can be (visually)

modeled using tailored knowledge acquisition tools and right away be leveraged in Zhi#

programs.

1 <rd f :RDF xmlns : owl="http ://www.w3 . org /2002/07/ owl#" [. . .] >

2 <owl : ObjectProperty rd f : ID="p">

3 <rd f : type rd f : r e s ou r c e="http ://www.w3 . org /2002/07/ ↪→

4 owl#Inver seFunct iona lProper ty"/>

5 </owl : ObjectProperty>

6 </rd f :RDF>

1 #Thing s = [. . .] , t = [. . .] , o = [. . .] ;

2 s .#p = o ;

3 t .#p = o ;

4 bool b = s == t ; // Individuals s and t are identical

261

Domain and range restrictions ≥1R v C, > v ∀R.C. Previous paragraphs already

alluded to the fact that in the Web Ontology Language individual inclusion is inferred

from the use of individuals as subjects and objects of ontological roles. Such dynamic

type changes necessitate the introduction of user de�ned proxy types (e.g., Individual)

for ontological individuals. The following code snippet is an attempt to mimic property

domain and range restriction based type inference for Individual objects.

1 pub l i c c l a s s I nd i v i dua l {

2 s t a t i c HashSet<s t r i ng> GetDomainOfProperty (s t r i n g p) {

3 [. . .] // Gets the domain classes of the given property

4 }

5 s t a t i c HashSet<s t r i ng> GetRangeOfProperty (s t r i n g p) {

6 [. . .] // Gets the range classes of the given property

7 }

8 readonly Dict ionary<s t r i ng , HashSet<Ind iv idua l>> PropertyValues = ↪→

9 new Dict ionary<s t r i ng , HashSet<Ind iv idua l >>();

10 readonly HashSet<s t r i ng> Re f e r r i n gPrope r t i e s = new HashSet<s t r i ng >() ;

11 readonly HashSet<s t r i ng> _Types = new HashSet<s t r i ng> {"Thing "} ;

12 pub l i c HashSet<s t r i ng> Types {

13 get {

14 var types = new HashSet<s t r i ng >(_Types) ;

15 f o r each (var p in PropertyValues . Keys) {

16 types . UnionWith (GetDomainOfProperty (p)) ;

17 }

18 fo r each (var p in Re f e r r i n gPrope r t i e s) {

19 types . UnionWith (GetRangeOfProperty (p)) ;

20 }

21 re turn types ;

22 }

23 }

24 pub l i c bool I s (s t r i n g T) {

25 return Types . Contains (T) ;

26 } }

262

The set of type names that is yielded by the Types property is complemented to in-

clude the domain and range classes of those properties that relate the given individual as a

subject and as an object, respectively. Note that for the sake of conciseness subsumption

is not considered. In order to be complete in the presence of subsumption, the GetDo-

mainOfProperty() and GetRangeOfProperty() functions would have to yield all named

classes that are subsumed by the domain and range restriction of the input property.

Also, the given code does only provide for object properties.

Runtime type checks for Individual objects could be facilitated in C# programs as

follows. The use of the Is()-function in line 3 requires that the infrastructure described

above is available for object s in order to provide ontological type inference. Still, the use

of string literals to denote property and class names is error-prone and all but type-safe.

1 Ind i v i dua l s = [. . .] , o = [. . .] ;

2 s . AddPropertyValue ("p" , o) ; // if the domain of role p includes concept A. . .

3 i f (s . I s ("A")) { [. . .] } // . . . then individual s will be an A

Note that all described implementations of �ontological� behaviors for .NET objects

are isolated and do only consider selected OWL modeling features. For example, the

Individual object above does not take into account transitive roles or role hierarchies.

Also, none of the presented solution attempts implements error handling for ontological

inconsistencies (e.g., the Types property yields both a class as well as its negation).

In Zhi# programs, the required ontology management infrastructure is readily avail-

able for imported concept and role descriptions. There is no need to (re-)implement

ontological behavior for .NET objects. Moreover, Zhi# facilitates type-checking and au-

tocompletion for ontological concepts and roles. The next subsection will compare Zhi#

programs with conventional Java code that takes advantage of available o�-the-shelf on-

tology management systems. It will be shown that the presented Java code will still be

more error-prone than corresponding Zhi# programs due to the di�erent conceptual bases

of the Web Ontology Language and object-oriented programming languages.

263

7.2.5 OWL APIs vs. OWL types

In the previous two subsections solution attempts were presented to implement ontolog-

ical behavior for .NET objects and to use those conventional .NET objects in place of

ontological knowledge bases. The author trusts that the presented C# implementations

dispel the view that it was easy to combine the e�ects of reasoning algorithms for expres-

sive Description Logics with programming language type de�nitions. Also, it should have

become clear that for fundamental programming tasks such as equality tests and runtime

type checks the programmability of the exemplary user-de�ned Individual proxy type is

inferior compared to Zhi#'s native support for ontological concepts and roles.

In this subsection, the programmatic use of the Protégé knowledge base framework

[Sta06] and the Jena Semantic Web Framework [HP 04] will be compared to Zhi# pro-

grams. Protégé and Jena will be used for comparison because both frameworks are widely

used in practice and are tailored to the Web Ontology Language. Unfortunately, both

APIs are only available in Java. This is why Java client code will be presented for the

conventional solutions.

The author will leave it to the reader to assess hybrid approaches that propose method-

ological means of integrating OWL models, which are managed by frameworks such as

Protégé and Jena, with computer programs (see Puleston et al. [PPC08] for an OWL-Java

combination). The author knows from experience that integration shortcomings of hybrid

approaches can barely be compensated by methodologies, which usually put the burden

to behave compliantly to the ontology on the programmer.

The Protégé knowledge base framework comprises the Protégé OWL API, which is an

open-source Java library for the Web Ontology Language and RDF(S). It provides classes

and methods to load and save OWL �les, to query and manipulate OWL data models,

and to perform reasoning based on Description Logic inference engines (in contrast, the

Protégé ontology editor is more general in that it supports a variety of di�erent formalisms

such as frames).

264

The Jena Ontology API particularly supports the Web Ontology Language, too. In

contrast to Protégé, the Jena Semantic Web framework includes a number of own reasoner

components for OWL Lite and OWL DL. However, for the following tasks Protégé, Jena,

and Zhi#'s OWL plug-in were con�gured to use the Pellet OWL DL reasoner [Pel06],

which, at the time of this writing, is probably the most widely used software providing

standard reasoning services for OWL.

The ontology that will be used for the remainder of this subsection speci�es the de-

scription language shown in Table 7.1. Concepts named A, B and C, and the top level

concept > will be used. Concepts B and C are declared to be disjoint. The functional

object role R relates subjects of type A to objects of type B. The datatype role U relates

individuals to values of type xsd#positiveInteger.

Table 7.1: TBox used for comparison

Concepts A, B v ¬C

Object role ≥1R v A, > v ∀R.B, > v ≤1R

Datatype role > v ∀U.xsd#positiveInteger

The Zhi# approach will be compared to Protégé and Jena based on the following

programming tasks, which are all imminent for ontology-based applications.

Task 1 Make an ontology available in a computer program.

Task 2 Create named individual instances a, b, c, and o of concepts A, B, C, and >.

Task 3 Add individual o as a value for property R of individual a.

Task 4a) List the RDF types of individual o.

Task 4b) Check whether individual o is included by concept description B.

Task 4c) List all individuals that are in the extension of concept description B.

265

Task 5 Add individual c as a value for property R of individual a, which causes an

inconsistent ABox since concept descriptions B (range of role R) and C (which

includes c) are disjoint.

Task 6 Add individual b as a value for property R of individual a and test if individuals

o and b are equal (i.e. is there an inferred sameAs(o,b) statement in the ontology?).

Task 7 Add integer literals 23, −23, and string literal �NaN� as values for property U of

individual o, where −23 and �NaN� are invalid values for the given TBox.

In the following paragraphs it will be described how each of the above tasks can be

accomplished using Protégé, Jena, and the Zhi# programming language. The presented

code snippets will indicate the improved programmability of ontologies using Zhi# and

the shortcomings of the conventional solutions in practice.

Task 1. Ontological description languages and assertional knowledge reside in ontolo-

gies that can exist in di�erent forms such as .owl-�les and RDF triples in a relational

database. Protégé and Jena facilitate programmatic access to ontologies by providing an

in-memory ontology model. The following code snippets show how these ontology models

are initialized in Java programs. The referenced Evaluation.owl �le contains the TBox

speci�ed in Table 7.1. The de�ned base URI is http://www.zhimantic.com/eval.

Both the Protégé as well as the Jena solution require extra set-up of the external Pellet

OWL reasoner. As will be seen later, Protégé can use Pellet only through its DIG interface,

which results in a limited number of available tell and ask operations. In Zhi# programs,

ontology models do not need to be set up manually. Instead, required .owl-�les are passed

into the Zhi# compiler as arguments exactly like referenced .NET assemblies. The same

goes for XML data type de�nitions contained in .xsd-�les. The Zhi# import statement

abstracts from the storage location of the ontology (just like C# using statements abstract

from the referenced .NET assemblies). In addition, in Zhi# programs, imports of external

namespaces are checked such that, a compile-time error occurs if no type de�nitions exist

266

in the given namespace for the given type system. In contrast, the set-ups of the Protégé

and Jena ontology models do not give an indication about available external namespaces

nor do they constrain the use of the ontology models to concepts and roles that are de�ned

within a particular namespace, which is less documentary.

Listing 7.1: Importing the ontology (Protégé)

1 OWLModel m = ProtegeOWL . createJenaOWLModelFromInputStream (↪→

2 new Fi leInputStream (" Evaluat ion . owl ")) ;

3 ProtegeOWLReasoner r ea sone r = ReasonerManager . g e t In s tance () . getReasoner (m) ;

4 r ea sone r . setURL(" http :// l o c a l h o s t : 8 0 8 1 ") ;

Listing 7.2: Importing the ontology (Jena)

1 OntModel m = ↪→

2 ModelFactory . createOntologyModel (Pe l l e tReasonerFactory .THE_SPEC) ;

3 m. read (new Fi leInputStream (" Evaluat ion . owl ") , " ") ;

Listing 7.3: Importing the ontology (Zhi#)

import OWL ont = http ://www. zhimantic . com/ eva l ;

Task 2. In the following listings, individual instances a, b, c, and o of the named

concept descriptions A, B, C, and the top level concept > are created. The Protégé

OWL API features a namespace manager that allows for the use of unquali�ed concept

and individual names. In the Jena-based program concept names must be fully quali�ed.

Both with Protégé as well as Jena the creation of individuals in a knowledge base is

facilitated as an operation on a surrogate ontology model, where concept and individual

names are provided as untyped string arguments. Consequently, there is no way to stati-

cally check that 1) the given strings denote valid concept and individual names according

to OWL's naming scheme and 2) concept descriptions with the given names exist in the

TBox of the referenced ontology. In fact, automatic debugging techniques such as delta

debugging [Zel05] regularly �nd exactly those kinds of errors where external resources that

267

are not subject to built-in static type checking are incorrectly referenced by string literals

(e.g., SQL query strings). Moreover, programmers may accidentally reference elements of

an ontology that are de�ned in inappropriate namespaces for the given application.

In contrast, concept names in Zhi# programs are strongly typed. A compile-time

error occurs if no such concept descriptions exist in the imported TBoxes. Namespace

pre�xes that are bound to imported namespaces are used to abbreviate concept names

in Zhi# program code. Individual names can be given in a fully quali�ed form (lines 1

and 2) or their containing namespaces are inferred from the names of the used concept

descriptions (lines 3 and 4). Also, the Zhi# editor of the Eclipse-based frontend auto-

completes the namespaces of individual names within new -statements. Constant string

expressions such as string literals are checked to comply with OWL's URI-based naming

scheme for individual names.

Listing 7.4: Creating individuals (Protégé)

1 OWLIndividual o = m. getOWLThingClass () . createOWLIndividual ("o ") ;

2 OWLIndividual a = m. getOWLNamedClass ("A") . createOWLIndividual ("a ") ;

3 [. . .] // analogous for individuals b and c

Listing 7.5: Creating individuals (Jena)

1 Ind i v i dua l o = m. getOntClass (" http ://www.w3 . org /2002/07/ owl#Thing ") . ↪→

2 c r e a t e I nd i v i dua l (" http ://www. zhimantic . com/ eva l#o ") ;

3 Ind i v i dua l a = m. getOntClass (" http ://www. zhimantic . com/ eva l#A") . ↪→

4 c r e a t e I nd i v i dua l (" http ://www. zhimantic . com/ eva l#a ") ;

5 [. . .] // analogous for individuals b and c

Listing 7.6: Creating individuals (Zhi#)

1 #owl#Thing o = new #owl#Thing (" http ://www.w3 . org /2002/07/ owl#o ") ;

2 #ont#A a = new #ont#A(" http ://www. zhimantic . com/ eva l#a ") ;

3 #ont#B b = new #ont#B("b ") ; // Fully quali�ed individual names are

4 #ont#C c = new #ont#C("c ") ; // inferred from the used concept names

268

A note on the use of Protégé and Jena's ontology models: Despite the fact that Java's

interface polymorphism can be used to refer with OWLModel and OntModel variables

to di�erently con�gured knowledge base access points, the client code will always be

bound to the Protégé and Jena framework, respectively. In contrast, even for compiled

Zhi# programs the entire ontology management infrastructure may be replaced because

in Zhi# program code no commitments are made on the use of a particular ontology

management system. Zhi#'s OWL runtime library can be implemented and substituted

to use arbitrary knowledge base frameworks that provide support for OWL DL.

On a related note, the con�guration information for Zhi#'s OWL runtime library

(e.g., the access point to a remote ontology management system) is provided in a Zhi#

application's App.con�g �le. Hence, Zhi# program code only contains logical instructions

on the ontology level but no information about 1) the .owl-�les that contain the ontology

(see above), 2) the ontology management API, and 3) the con�guration of the ontology

management system.

Task 3. The following code snippets show how in the managed knowledge base indi-

vidual o can be added as a value for property R of individual a. Note that Protégé and

Jena's ontology models do, of course, not provide dedicated methods for adding values for

property R (e.g., addR()). Instead, a reference to the role object is passed in as a second

argument to the general addPropertyValue() and addProperty() methods (this subsection

will wrap up with a brief allusion to Protégé's OWL-to-Java code generator plug-in that

generates Java classes and named getter and setter-methods for ontological concepts and

roles, respectively). The Zhi# programming language facilitates the declaration of RDF

triples in a knowledge base via usual member access (see Subsection 6.1.2 for the se-

mantics of such assignment statements). Again, role names are statically checked to be

de�ned in the referenced TBoxes and autocompletion for roles names is provided by the

Eclipse-based Zhi# editor. Task 5 will show how the Zhi# compiler is also able to detect

inconsistent triple declarations because of disjoint concept descriptions.

269

Listing 7.7: Adding object property values (Protégé)

a . addPropertyValue (m. getOWLObjectProperty ("R") , o) ;

Listing 7.8: Adding object property values (Jena)

a . addProperty (m. getObjectProperty (" http ://www. zhimantic . com/ eva l#R") , o) ;

Listing 7.9: Adding object property values (Zhi#)

a.#ont#R = o ;

Task 4a). One of the most common tasks in ontology-based applications is to query

the concept descriptions that include a given individual. In object-oriented programming

languages, this corresponds to dynamic type checks. The code snippets shown below list

the RDF types of individual o that was just used in Task 3 as a value for property R.

Individual o would therefore, because of the range restriction of role R, be inferred to be

not only a Thing but also a B.

Listing 7.10: Listing RDF types (Protégé)

1 f o r (Object T : r ea sone r . ge t Ind iv idua lTypes (o , nu l l)) {

2 System . out . p r i n t l n (((OWLClass) T) . getURI ()) ;

3 }

Listing 7.11: Listing RDF types (Jena)

1 f o r (I t e r a t o r i t = o . listRDFTypes (f a l s e) ; i t . hasNext () ;) {

2 System . out . p r i n t l n (((Resource) i t . next ()) . getURI ()) ;

3 }

Listing 7.12: Listing RDF types (Zhi#)

1 fo r each (s t r i n g T in o . Types) {

2 Console . WriteLine (T) ;

3 }

270

The Protégé-based code requires the explicit use of a reference to a ProtegeOWL-

Reasoner object, which should preferably be transparent to users of the ontology. As in

Jena-based code, the yielded type objects must be manually downcasted to OWLClass

and Resource objects, respectively. It is conceivable, however, that future versions of

Protégé and Jena will make use of generic container and iterator classes, which can be

parameterized appropriately. It can be also be considered to be a �aw in the API design

that the listRDFTypes() method of Jena's Individual objects returns a (raw) Iterator

instead of an iterable container object that could better be used with a for -each-loop.

The Types property that is provided for individual objects in Zhi# programs returns an

enumerable array of strings, which can conveniently be used with a for -each-loop and

whose elements do not need to be downcasted.

Task 4b). In many applications, the basic reasoning service to compute the inferred

types of ontological individuals, which is available for OWL knowledge bases, will be used

to query the knowledge base whether an individual is in the extension of one particular

concept description. This corresponds to the use of the instanceof and is-operator in

Java and C#, respectively. In the following code snippets, individual o is dynamically

checked to be subsumed by concept description B. Unfortunately, there is no support

neither in Protégé nor in Jena to determine whether an ontological individual is in the

extension of one particular concept description. Instead, such a test must be handcrafted

similarly as shown below. Again, the use of the getIndividualTypes() and listRDFTypes()

methods su�ers from a lack of type safety due to the required use of downcasts. More

severely, the concept names under consideration are denoted by string literals, which are

untyped on the ontology level. Thus, it is not only tedious for programmers to cope with

raw iterator and container objects but also error-prone to base a type check on purely

syntactical string comparisons. Note that the getIndividualTypes() and listRDFTypes()

methods return all concepts that include the individual and not only the most speci�c

one. Hence, it is su�cient to consider only the single concept name one is interested in.

271

Listing 7.13: Individual inclusion (Protégé)

1 boolean bIsB = f a l s e ;

2 f o r (Object c l s : r ea sone r . ge t Ind iv idua lTypes (o , nu l l)) {

3 bIsB = "http ://www. zhimantic . com/ eva l#B" . equa l s (↪→

4 ((OWLClass) c l s) . getURI ()) ? t rue : bIsB ;

5 }

6 System . out . p r i n t l n (o . getURI () + " i s " + (bIsB ? "" : " not ") + " a 'B ' ! ") ;

Listing 7.14: Individual inclusion (Jena)

1 boolean bIsB = f a l s e ;

2 f o r (I t e r a t o r i t = o . listRDFTypes (f a l s e) ; i t . hasNext () ;) {

3 bIsB = "http ://www. zhimantic . com/ eva l#B" . equa l s (↪→

4 ((Resource) i t . next ()) . getURI ()) ? t rue : bIsB ;

5 }

6 System . out . p r i n t l n (o + " i s " + (bIsB ? "" : " not ") + " a 'B ' ! ") ;

Listing 7.15: Individual inclusion (Zhi#)

1 Console . WriteLine (o + " i s " + (o i s #ont#B ? "" : " not ") + " a 'B ' ! ") ;

In Zhi# programs, it is particularly easy to use the is-operator to determine whether

an individual is in the extension of a particular concept description. The given Zhi# code

is completely statically type-checked both on the programming language and the ontology

level. Moreover, the Zhi# compiler will detect if an individual will never be included by

a concept description that is disjoint with or complementary to its asserted type.

Task 4c). Finally, one may be interested in all individuals that are in the extension of a

given concept description. The two Java code snippets shown below depend on typo-prone

string literals to denote the name of concept description B. Again, the Protégé-based

program uses an explicit reference to the Pellet OWL reasoner and requires downcasting

the objects that are yielded by the iterator expression. The Jena API requires the explicit

use of a raw iterator object including unsafe downcasts.

272

Listing 7.16: Concept extension (Protégé)

1 f o r (Object i : r ea sone r . ge t Ind iv idua l sBe long ingToClas s (↪→

2 m. getOWLNamedClass ("B") , nu l l)) {

3 System . out . p r i n t l n (((OWLIndividual) i) . getURI ()) ;

4 }

Listing 7.17: Concept extension (Jena)

1 f o r (I t e r a t o r i t = ↪→

2 m. getOntClass (" http ://www. zhimant ic . com/ eva l#B") . l i s t I n s t a n c e s () ; ↪→

3 i t . hasNext () ;) {

4 System . out . p r i n t l n (((I nd i v i dua l) i t . next ()) . getURI ()) ;

5 }

Listing 7.18: Concept extension (Zhi#)

1 fo r each(#ont#B v in #ont#B. I nd i v i dua l s) {

2 Console . WriteLine (v) ;

3 }

Both the Protégé as well as the Jena-based solution do neither provide type safety on

the programming language level nor on the ontology level. In contrast, the Zhi# program

is entirely statically type-checked. The read-only Individuals property is provided for

static concept references and yields the extension of the given concept. The Individuals

property is generic in regards to the used concept description. In the given program,

the enumerated objects are individual instances of concept B. Accordingly, variable v

in the for -each-statement can be declared to be a B (instead of a bleak java.lang.Object

as in the above Java programs). The Zhi# compiler would raise an error if the name

of a too speci�c or a disjoint or complementary concept was used to declare variable v.

As for the previous Zhi# code snippets, referenced concept names are statically checked

to be de�ned within the imported namespaces and referenced ontologies. An implicit

conversion operator is de�ned for individuals. It yields the fully quali�ed individual name

as a System.String object, which is a valid argument for the Console.WriteLine() function.

273

Task 5. In OWL, property domain and range restrictions are used to infer the concept

inclusions for ontological individuals that are related by ontological roles. In general,

static type inference based on property domain and range restrictions will always be

incomplete since it cannot be fully known at compile time which ontological roles will

be used during program execution to relate the individual under consideration. It is,

however, possible to statically identify ABoxes for which no models exists (i.e. that will

always be inconsistent) for a given (immutable) TBox. One such indication is the use of an

individual with an ontological role, where the individual is declared to be in the extension

of a concept description that is disjoint with the role's domain or range restriction (every

ABox A∪{C(a)}∪{¬C(a)} is inconsistent). In order to treat the described inconsistency

at compile time it is required to use in program text objects whose types re�ect the RDF

types of the represented ontological individuals. Typed role objects are necessary to

represent ontological roles. Also, the programming language compiler must be aware of

OWL's consistency rules for ontological ABoxes. Unfortunately, the Protégé and Jena

OWL APIs do only provide raw proxy types OWLIndividual and Individual, respectively,

and only bleak string objects are used to represent ontological role names as shown in

the code snippets below. In contrast, in Zhi# programs, the declared RDF types of

ontological individuals and the domain and range restrictions of used ontological roles are

known at compile time. Also, the OWL compiler plug-in enforces ontological consistency

rules on RDF triple declarations as shown in the following Zhi# code snippet.

Listing 7.19: Adding invalid object property values (Protégé)

a . addPropertyValue (m. getOWLObjectProperty ("R") , c) ;

Listing 7.20: Adding invalid object property values (Jena)

a . addProperty (m. getObjectProperty (" http ://www. zhimantic . com/ eva l#R") , c) ;

Listing 7.21: Adding invalid object property values (Zhi#)

a.#ont#R = c ; // Zhi# compile-time error: �Disjoint concept descriptions!�

274

Task 6. In OWL, ontological individuals can be explicitly stated to be identical and

they can be inferred to be the same. In both cases, an OWL knowledge base will contain

a sameAs statement. Accordingly, equality tests of ontological individuals cannot be

founded on the (reference) equality of Protégé and Jena's OWLIndividual and Individual

objects (see Subsection 6.1.2). Unfortunately, the DIG interface that is implemented by

Protégé OWL reasoner objects does not provide a function to test two individuals for

equality. Instead, handcrafted code would be necessary to check the presence of sameAs

statements in a knowledge base. The Jena Individual interface contains the isSameAs()

method to test whether the ontological individual represented by the argument is identical

to the individual represented by the host object. Strangely, isSameAs() always returns

true for null arguments, which one may consider counterintuitive. More severely, the

symmetry of the sameAs relation is broken because a NullPointerException is thrown

if the host object of the isSameAs method invocation is null. In Zhi#, the equality

(==) and inequality (!=) operators implement OWL's equality semantics for ontological

individuals including the symmetry of the sameAs relation. In particular, == returns

true if both operands are null ; false if only one operand is null.

Listing 7.22: Testing individuals for equality (Protégé)

1 a . addPropertyValue (m. getOWLObjectProperty ("R") , b) ;

2 // Testing two individuals for equality is not supported by the Protégé OWL API

Listing 7.23: Testing individuals for equality (Jena)

1 a . addProperty (m. getObjectProperty (" http ://www. zhimantic . com/ eva l#R") , b) ;

2 System . out . p r i n t l n (" I nd i v i dua l s ' o ' and 'b ' are " + ↪→

3 (o . isSameAs (b) ? "" : " not ") + " i d e n t i c a l ! ") ;

Listing 7.24: Testing individuals for equality (Zhi#)

1 a.#ont#R = b ;

2 Console . WriteLine (" I nd i v i dua l s ' o ' and 'b ' are " + ↪→

3 (o == b ? "" : " not ") + " i d e n t i c a l ! ") ;

275

Task 7. In recent years, there have been ongoing plans to include a concrete domain of

XML data types with the speci�cation of prospective versions of the Web Ontology Lan-

guage. However, currently available ontology management systems such as Protégé and

Jena provide only very limited support for coercing range restrictions of OWL datatype

properties. In the TBox given at the beginning of this subsection, the range of the OWL

datatype property U is limited to positive integers. Because XML data types are not

subject to ontological reasoning in the current version of the Web Ontology Language one

might assume that only data values that can be considered positive integers are allowed

as property values for U (i.e. an exception is raised at runtime at the latest).

Unfortunately, the Protégé OWL API is completely negligent in respect of datatype

property range restrictions. The following program will execute without any error. Not

only are values -23 and �NaN� accepted as positive integer values (which they are cer-

tainly not). Even an explicitly typed RDFSLiteral object, which in the given program is

con�gured to take XSD date values, does not implement any dynamic checking to ensure

that the provided literal value is in the lexical and value space of the given XML data

type. As a result, the knowledge base will contain obviously invalid statements, which

may subsequently lead to application failure.

Listing 7.25: Adding datatype property values (Protégé)

1 o . addPropertyValue (m. getOWLDatatypeProperty ("U") , 2 3) ;

2 o . addPropertyValue (m. getOWLDatatypeProperty ("U") , −23);

3 o . addPropertyValue (m. getOWLDatatypeProperty ("U") , "NaN") ;

4

5 RDFSDatatype xsdDate = m. getRDFSDatatypeByName(" xsd : date ") ;

6 OWLDatatypeProperty dateProperty = ↪→

7 m. createOWLDatatypeProperty (" dateProperty " , xsdDate) ;

8 RDFSLiteral d a t eL i t e r a l = m. createRDFSLiteral ("23" , xsdDate) ;

9 // literal value 23 is typed as an xsd:date!

10 o . setPropertyValue (dateProperty , d a t eL i t e r a l) ;

11 RDFSLiteral myDate = (RDFSLiteral) o . getPropertyValue (dateProperty) ;

276

The Jena framework does not provide any static typing either nor are invalid datatype

property values rejected upon declaration. However, in contrast to Protégé, subsequent

queries fail if a knowledge base contains invalid statements. Hence, the acceptance of

invalid datatype property values can hardly be considered a feature but rather a short-

coming of o�-the-shelf ontology management systems.

Listing 7.26: Adding datatype property values (Jena)

1 o . addProperty (m. getDatatypeProperty (" http ://www. zhimant ic . com/ eva l#U") , ↪→

2 m. c rea teTypedL i t e ra l ("23" , ↪→

3 "http ://www.w3 . org /2001/XMLSchema#po s i t i v e I n t e g e r ")) ;

4 // Values "-23" and "NaN" could be added as positive integers, too. . .

5 // . . . but the following query would fail if invalid statements were added

6 f o r (I t e r a t o r i t = o . l i s tP rope r tyVa lu e s (↪→

7 m. getDatatypeProperty (" http ://www. zhimant ic . com/ eva l#U")) ; ↪→

8 i t . hasNext () ;) {

9 L i t e r a l v = (L i t e r a l) i t . next () ;

10 System . out . p r i n t l n (v . getValue () + " o f type " + v . getDatatypeURI ()) ;

11 }

The Zhi# programming language boasts extensive compile-time support for XML data

types. Assignments to XML data types are statically checked by the Zhi# compiler and

so are assignments to OWL datatype properties. In Zhi# programs, OWL datatype prop-

erties can only be assigned values that are provable valid. The commented assignments

in line 5 and 6 in the following Zhi# program would cause compile-time errors.

Listing 7.27: Adding datatype property values (Zhi#)

1 #xsd#po s i t i v e I n t e g e r xpi = 23 ;

2 #xsd#in t e g e r x i = −23;

3 #xsd#s t r i n g xs = "NaN" ;

4 o.#ont#U = xpi ;

5 //o.#ont#U = xi ; // Compile-time error in Zhi#!

6 //o.#ont#U = xs ; // Compile-time error in Zhi#!

277

Protégé-OWL Java code. The Protégé knowledge-base framework ships with an

OWL-to-Java code generator, which produces a Java type hierarchy for a given OWL

ontology. For each named concept description in the ontology an interface with the same

name extending OWLIndividual is created. These interfaces are each implemented by

class types inheriting from DefaultRDFIndividual. The purpose of the generated appli-

cation speci�c Java code is to provide convenience classes and methods for easy use of

the Protégé OWL API. The following Java interface de�nition is generated for the named

concept description A of the description language given in Table 7.1.

1 import edu . s t an fo rd . smi . protegex . owl . model . ∗ ;

2 pub l i c i n t e r f a c e A extends OWLIndividual {

3 B getR () ;

4 void setR (B newR) ;

5 boolean hasR () ;

6 RDFProperty getRProperty () ;

7 }

Note that the application speci�c interfaces do not fully abstract from the Protégé

OWL API since type de�nitions such as RDFProperty still occur in generated method

signatures. Also note that the generated proxy types do only provide for frame-like

semantics of OWL property domain and range restrictions (cf. Subsection 6.1.2). The

argument and return type of the setR() and getR() method, respectively, restricts property

values to instances of the proxy type B (i.e. property values must be of the given type

already before the property value declaration and cannot subsequently be inferred to be of

that type). Furthermore, only the Java proxy type A de�nes methods to set and get values

for property R (i.e. only As can have values for property R). The use of Java interface

types in the generated code allows for multiple inheritance, which in turn facilitates the

translation of the conjunction concept constructor. In fact, for a concept description

I ≡ D u E a Java interface will be created as follows. This corresponds to the suggested

use of Java types at the beginning of Subsection 7.2.3.

pub l i c i n t e r f a c e I extends D, E { }

278

Unfortunately, the generated Java proxy code falls short of supporting the disjunction

concept constructor. For a concept description F ≡ D t E the following unrelated Java

interfaces will be generated. In particular, the Java code does not express the fact that

based on the ontological concept descriptions I ≡ D uE and F ≡ D tE every D and E

is also an F and consequently every I is an F , too.

1 pub l i c i n t e r f a c e D extends OWLIndividual { }

2 pub l i c i n t e r f a c e E extends OWLIndividual { }

3 pub l i c i n t e r f a c e F extends OWLIndividual { }

Each generated Java type hierarchy is accompanied by a factory class as shown below.

The singleton factory object can be used to create and answer instances of the represented

OWL concepts in Protégé's OWLModel. The use of this interface is advantageous since

the use of concept names can now be statically type checked using Java's built-in type

system. Moreover, the factory class is the central book-keeping instance that can be used

to query all instances of a given concept (cf. Subsection 7.2.3). No such auxiliary code

is required to answer the extension of a static concept reference in Zhi# programs. Note

that both the getAllAInstances() methods in the generated Java factory class as well as

the Individuals property of static concept references in Zhi# programs are generic with

respect to the considered concept.

1 import edu . s t an fo rd . smi . protegex . owl . model . ∗ ;

2 import java . u t i l . ∗ ;

3 pub l i c c l a s s MyFactory {

4 p r i va t e OWLModel owlModel ;

5 pub l i c MyFactory (OWLModel owlModel) { [. . .] }

6 pub l i c A createA (St r ing name) { [. . .] }

7 pub l i c A getA (St r ing name) { [. . .] }

8 pub l i c RDFSNamedClass getAClass () { [. . .] }

9 pub l i c Co l l e c t i on<A> getAl lAIns tances () { [. . .] }

10 pub l i c Co l l e c t i on<A> getAl lAIns tances (boolean t r a n s i t i v e) { [. . .] }

11 [. . .]

12 }

279

7.3 Macroscopic Evaluation

The Zhi# compiler framework was designed for easy extensibility and to foster the devel-

opment of further compiler plug-ins to provide for additional external type systems. The

following subsection will describe how existing techniques such as aspect-oriented pro-

gramming and similar means to implement OCL invariants could be replaced by native

OCL data types in Zhi# programs.

Furthermore, the complete Zhi# solution including the compiler framework and the

XSD and OWL compiler plug-ins could be empirically evaluated by means of case studies

and experiments that examine the impact of the use of the Zhi# tool suite on the de-

velopment of knowledge-based and Semantic Web applications. In particular, hypotheses

2.1 and 2.2 (see Section 1.1) could be tested.

The directional hypothesis 2.1, stating that the use of native XML data types in Zhi#

programs reduces the number of XSD-related runtime validation errors compared to the

use of schema-agnostic types in di�erent programming languages, may be tested by a

controlled experiment with the number of possible runtime errors in written program

code being the dependent variable. Independent variables � in a setting where XML

data types are to be considered and used in a computer program � may be the number

and complexity of XML data type de�nitions, the intended frequency of their use in

the computer program, and the familiarity of developers with XML Schema De�nition.

Certainly, training on the proper use of XSD-related Zhi# programming language features

will be required in order to avoid, for example, excessive usage of cast expressions, which

would counteract static type checking and type inference.

In order to test hypothesis 2.2, several di�erent paradigmatic cases concerning the use

of ontological description languages might be considered. First, there are applications

that almost solely depend on TBox reasoning such as classifying concept descriptions in

a hierarchy. A well-known example of such kinds of applications is University of Manch-

ester's exemplary PizzaFinder application [Hor04]. The Zhi# programming language will

280

support such scenarios mainly by facilitating the syntactical import of concept and role

names into program code while there is almost no use of ontological individuals.

Particularly problematic may be use cases where the TBox is not assumed immutable

as in, for example, the OWL2XMI software [OWL09], which generates XMI �les from

OWL ontologies. Even dynamic checking in Zhi# programs may be rendered useless if

concept descriptions are entirely contingent.

The biggest bene�t may be provided for the development of knowledge-based appli-

cations that are grounded on an immutable TBox with a continuously changing ABox.

This is exactly the case for, for example, the prototypical computer services that were

showcased at the Second CHIL Technology Transfer Day [Inf04]. The Zhi# solution is

likely to be particularly useful for terminologies that include a concrete domain, which is

the case for CHIL demo applications that make heavy use of OWL datatype properties

to relate ontological individuals with XML data type values. In fact, the then insu�cient

integration of ontological concept descriptions and XML data types with widely used

programming languages triggered the development of the Zhi# solution in course of the

CHIL research project.

Hypothesis 2.2 may also be tested in scenarios where OWL concept constructors and

role restrictions need to be (re-)implemented in di�erent languages such as C#. Based

on the microscopic evaluations in Subsections 7.2.3 and 7.2.4 it is conceivable that � as-

suming adequate training on the use of ontologies in Zhi# programs � the combined use

of OWL and the Zhi# programming language to denote descriptions languages and write

computer programs, respectively, is superior to the mere use of ontology-agnostic pro-

gramming languages. The same is likely to hold for the use of OWL concepts and roles in

Zhi# programs compared to the explicit use of OWL APIs as outlined in Subsection 7.2.5.

After all, the Zhi# approach coheres with a fundamental and well-proven design princi-

ple of programming languages; the Zhi# approach only adds levels of abstraction while

programmers may still use conventional means such as OWL APIs wherever appropriate.

281

7.3.1 OCL invariants in Zhi#

The Object Constraint Language (OCL) [Obj06] has been included with the speci�cation

of the Uni�ed Modeling Language (UML) [Obj09a, Obj09b] since UML version 1.1. OCL

provides means for textually specifying constraints, which apply to model elements, that

cannot otherwise be expressed by UML's diagrammatic notations. On the other hand,

OCL constraints always refer to a UML diagram. For example, class de�nitions of a UML

class diagram complement the set of built-in OCL types. In fact, OCL is most frequently

used to adorn UML class diagrams. OCL constraints can be attached to every UML

model element. The OCL constraint set is subdivided into six broad categories, where

each category of constraints is expressed using a similar syntax.

Invariants state that a condition must always be met by, for example, all instances

of a class. Pre- and postconditions are restrictions that must be true before an operation

is executed and after an operation has ended, respectively. Note that the OCL speci�-

cation remains silent about what should happen if the precondition did not hold of the

state before the execution of an operation (i.e. the caller is obliged to ensure that given

preconditions hold). Initial and derived values specify the initial values of, for example,

attributes and derivation rules for, for example, attributes, respectively. De�nitions pro-

vide for the declaration of supplemental attributes and operations that are not part of

the underlying UML model. Body de�nitions specify the bodies of query operations (i.e.

operations that are assumed to terminate on every input). Guards are constraints that

must be true before a state transition happens.

A very frequent constraint/model element combination is the use of OCL invariants

to tag UML class attributes. Invariants are described using an expression that evaluates

to true if the invariant is met. OCL constraints are always de�ned in a particular context

that speci�es the model element for which the OCL expression is de�ned. Invariants must

be de�ned in a classi�er context, where the augmented model element usually is a class

or interface type. Invariants in a classi�er context are denoted in the following form.

282

context [c:] Type

inv [e:] expression

OCL keywords are set in boldface. Type is the name of the contextual type of the

given OCL expression, which has to be of type Boolean. OCL expressions are evaluated for

instances of the contextual type. The optional parameters c and e can be used to de�ne

a variable of the given type and the given OCL expression, respectively. Alternatively to

type variable c, the keyword self can be used to refer to the contextual instance (i.e. the

instance for which the given expression is evaluated).

OCL is a typed language and allows for the use of �ve categories of types. Model types

and enumeration types stem from user-de�ned type de�nitions in the underlying UML

diagram. Basic types are OCL's built-in atomic types Integer, Real, String, and Boolean.

The only generalization relation stipulated for basic types is Integer <: Real. Model and

basic types can be aggregated in OCL collection types (e.g., Set(T)). Note that there are

no collections of collection types. The special types category comprises, among others,

the supertype of all non-collection types OclAny.

All types are simply denoted by their names. The OCL speci�cation de�nes a number

of arithmetic and logical operations both on basic as well as collection types. For example,

numerical types can be added and compared for equality (see [Obj06] for the operations

and well-formedness rules of OCL types). OCL expressions can be built-up from typed

model elements and operations on them. OCL constraints apply OCL expressions in

particular contexts for di�erent purposes. Again, as indicated by the syntax description

above, OCL language statements comprise 1) a context, which de�nes the scope to which a

statement pertains, 2) a property that represents some characteristics of the context (e.g.,

a class attribute), 3) a well-formed OCL expression, and 4) possibly additional keywords

such as if, then, else to denote conditional expressions.

In this work, only the frequently occurring case of unconditional constraints on class

and instance attributes will be considered (i.e. invariant de�nitions in a classi�er context).

283

7.3.1.1 Exemplary OCL invariants

Ponder the following UML class Person with attributes name, age, and eMail. The value

space of the OCL Integer type comprises the set of integer numbers; the OCL String type

represents character chains of arbitrary length (i.e. both value spaces are unbounded).

In practice, programming techniques such as lazy evaluation and thunks are required to

construct in�nite data structures. For the given Person class it is, however, a good idea

anyhow to further constrain the set of admissible attribute values. Hence, the following

UML model may be implemented in Java as shown below.

Figure 7.5: Context class for attribute invariants

1 c l a s s Person {

2 St r ing name ;

3 i n t age ;

4 S t r ing eMail ;

5 }

The Java String API supports up to 231 − 1 (i.e. Integer.MAX_VALUE) characters.

The Java Integer type implements signed 32-bit integer numbers. While the use of both

Java data types does not impose any implementation issues anymore, it makes sense to

even further restrict possible name, age, and eMail values of a Person. OCL constraints

come to the rescue. The following invariant de�nitions restrict the age of a person to

values greater than or equal to zero and less than 110; also, persons can have only names

that are not longer than 40 characters.

context Person context Person

inv age >= 0 && age < 110 inv name.size() <= 40

284

At this point, it is important to understand that UML and OCL-based models only

constitute a speci�cation of the system that one wants to build. Especially, there are no

prescriptions how to implement model elements and OCL expressions. In fact, the are a

number of approaches how, for example, given OCL invariants can be enforced.

Stirewalt and Rugaber [SR05] employ C++ metaprogramming features. Speci�ed

OCL invariants are dynamically enforced by component wrappers, which are implemented

as nested C++ template class instantiations. An alternative approach is provided by the

Open C++ project [Chi98]. The Open C++ meta-object protocol might be used to

reprogram the compiler to guard modi�cations of class attributes. The GenVoca [BST94]

tool, which is at a fundamental level similar to aspect-oriented programming, provides

for the de�nition of higher level code constructs that can be used to mix program code

with high-level design features such as invariants. Eventually, at the time of this writing,

one of the most complete OCL compilers is the Dresden OCL Toolkit [LO04], where OCL

constraints are translated into AspectJ-based constraint code.

7.3.1.2 Implementation of OCL invariants with the Dresden OCL Toolkit

and AspectJ

AspectJ [Asp08] is an aspect-oriented extension of the Java programming language. It

uses Java-like syntax (i.e. every valid Java program is a valid AspectJ program) to de�ne

special classes called aspects. In aspect-oriented programming (AOP) [KLM97] aspects

describe additional features or behaviors that are orthogonal to a number of core-level

concerns of a program. Aspects support the encapsulation of concerns into separate,

independent entities. Thus, AOP attempts to facilitate the composition of systems along

a number of dimensions (in OOP, there is only one single such dimension). Additional

behavior (called advice) that one wants to add to an existing program may, for example,

be the checking of the values of instance variables in order to implement speci�ed OCL

invariants. Such checking may occur at certain points in the execution of a program.

285

In AOP, a point in the control �ow where the main program and an aspect meet is

called join point (i.e. a join point exists there where Hoare logic places an assertion).

A pointcut is an expression that determines whether a given join point matches. While

an updated runtime environment could be conceived that understands additional AOP

features, most AOP implementations such as AspectJ produce combination programs that

are indistinguishable from non-AOP programs through a process called weaving. Early

AspectJ implementations used source code-level weaving while nowadays class �les can be

combined, which frees developers from providing source code for all AOP-a�ected entities.

The modi�cation of relevant program code that is described in pointcuts is accom-

plished automatically by AspectJ. It would, however, still be particularly tedious to man-

ually devise join points and advices in order to implement given OCL constraints. Again,

tool support is available in form of, for example, the Dresden OCL Toolkit [LO04]. The

Dresden OCL Toolkit is a modular toolset comprising libraries and stand alone tools that

can be used to parse and type-check OCL constraints and to facilitate the instrumenta-

tion of Java programs for runtime veri�cation of input OCL constraints. In particular,

the Dresden OCL Toolkit can be used to automatically translate OCL constraints into

AspectJ pointcuts and advices.

In order to do so, MOF models (i.e. UML class de�nitions) can be imported from XMI

�les8. The Dresden OCL2 Toolkit for Eclipse features special tree views for browsing the

class de�nitions of a UML diagram. UML class diagrams can then be complemented

by constraint de�nitions from separate OCL �les. The combined set of UML classes

and OCL constraints is taken to generate AspectJ code that implements the speci�ed

OCL constraints for the given UML-derived Java classes. The Dresden OCL2 Toolkit

will reports errors if constraints are not applicable in the given context (e.g., because of

unavailable type names). Eventually, a combined Java program can be compiled from

user-de�ned Java source code and automatically generated AspectJ aspects.

8Meta Object Facility (MOF) is a metadata architecture standardized by the Object Management
Group (OMG). XML Metadata Interchange (XMI) is a supporting standard of MOF for exchanging
metadata information in an XML-based format.

286

The Dresden OCL Toolkit translates the OCL invariant introduced above, which re-

stricts age values of Person objects, into the following AspectJ code (generated comments

are omitted and fully quali�ed type names are abbreviated for the sake of conciseness).

The invariant pertaining to name values of Persons would be translated likewise.

1 @Generated pub l i c p r i v i l e g e d aspect InvAspect1 {

2 protec ted po intcut a l lPe r sonCons t ruc to r s (Person p) :

3 execut ion (Person . new (. .)) && th i s (p) ;

4 protec ted po intcut ageSe t t e r (Person p) :

5 s e t (∗ Person . age) && th i s (p) ;

6 protec ted po intcut a l l S e t t e r s (Person p) :

7 ageSe t t e r (p) ;

8 a f t e r (Person p) : a l lPe r sonCons t ruc to r s (p) a l l S e t t e r s (p) {

9 i f (! ((p . age >= new In t eg e r (0)) && (p . age < new In t eg e r (1 1 0)))) {

10 throw new RuntimeException (" Error : Constra int was v i o l a t e d . ") ;

11 } } }

The Generated annotation marks Java source code that has been generated. The

privileged AspectJ aspect InvAspect1 is granted access to private class members. At the

execution join points de�ned by the �rst pointcut a program is executing constructor

calls of type Person. In the second pointcut, the set designator is used to describe all join

points based on assignments to the age attribute in class Person in the primary code. The

third pointcut collects the age attribute setters. The de�ned after advice executes after

the execution of the given join points has completed (either with or without throwing an

exception). The (con�gurable) advice implementation facilitates a runtime check that set

values of the age attribute are within the borders de�ned by the initial OCL invariant.

Note that the second pointcut in the above listing covers all assignments to the age

attribute (and not only the execution of dedicated setter methods). The de�ned advice

is, however, only e�ective for instrumented class �les that were available at compile time.

Assignments made in additional client code are not (i.e. cannot) be checked.

287

7.3.1.3 Implementation of OCL-like invariants in Zhi#

The Dresden OCL Toolkit and AspectJ-based implementation of OCL constraints accom-

plishes a completely automatic and type-checked translation of given OCL constraints into

a combined Java program. The obvious shortcomings of the presented approach are, how-

ever, that 1) four kinds of di�erent input data are necessary (i.e. XMI, OCL, AspectJ,

and Java �les), 2) a considerable tool suite and explicit user interaction are required, 3)

only runtime type checks are facilitated, and 4) certain pointcuts are woven into client

code, which must be available at compile time. Also, constraints can only be formulated

using OCL's limited type system. There is no means to state, for example, that a Person

object can only have values for its eMail attribute that match a given regular expression.

The value space-based subtyping rules of the λC-calculus type system will certainly not

su�ce to implement the complete AspectJ join point model. They may, however, be a

valid alternative for implementing OCL-like invariants.

Assume there was an OCL plug-in for the Zhi# compiler framework (similarly to

the XSD plug-in) that derives type de�nitions from OCL invariants on C#'s intrinsic

data types. For example, a type int{>= 0}{< 110} (cf. Subsection 5.1.1) could be

made available to declare the age attribute of type Person. Hence, the initial OCL

invariant speci�cations could be substituted by context-free type de�nitions; the weaving

of primary code and constraint de�nitions would be replaced by Zhi#'s source-to-source

compilation (i.e. several AspectJ dimensions would be coalesced into the core program

code). In contrast to the Dresden OCL Toolkit, programmers would no longer be obliged

to provide MOF models and separate OCL constraint de�nitions, which entail the use of

a considerable tool suite. Also, in contrast to aspect-oriented approaches to implement

OCL-like invariants, Zhi#'s one single dimension of program code can be fully statically

type-checked. The initial Person class and OCL invariant de�nitions could be rewritten

as shown below to make use of XSD-like constrained data types. The OCL type system

evidence in the import directive indicates the use of OCL derived type de�nitions.

288

1 import OCL inv = namespace name ;

2 c l a s s Person {

3 #inv#Name name ; // Name ≡ String{?< 40}

4 #inv#Age age ; // Age ≡ int{>= 0}{< 110}

5 #inv#EMail eMail ; // EMail ≡ String{?? `regular expression for eMail addresses'}

6 }

Static type checks in a Zhi#program would occur at all places in a program that

match AspectJ pointcut de�nitions (i.e. the weaving of primary code and OCL-derived

assertions is replaced by compile-time program analysis). Accordingly, constraint viola-

tions at runtime may be completely avoided. Also, the Zhi# approach would remove

an irritating shortcoming of AspectJ when pointcuts are directly de�ned for assignments

to class attributes. AspectJ advices that pertain to assignments to class attributes are

interwoven with the client code and not with the restricted object. Consequently, OCL

invariants can only be enforced for client code that is readily available at compile time

while nothing can be done about conventional Java client code that is contributed later

on. In Zhi#, runtime type checks are facilitated by the invariant object itself. Hence,

Zhi# components can be used by arbitrary .NET assemblies, which lack Zhi#'s static

type checking of constrained types, with invariant declarations still being e�ective.

Implementing an OCL plug-in for the Zhi# compiler framework appears feasible due

to the similarity of OCL invariant de�nitions to the XSD type system. OCL's four basic

types correspond to XSD's built-in xs#integer, xs#decimal, xs#boolean, and xs#string

types. The OCL subtyping relationship Integer <: Real is matched in the existing XSD

compiler plug-in by, for example, implemented covariant coercions of xs#integer data

types to �oating point numbers. Furthermore, an OCL plug-in for the Zhi# compiler

framework may o�er supplemental operators on basic OCL types. For example, plain

OCL lacks means to restrict eMail values of the exemplary Person class to strings that

match a given regular expression.

289

290

CHAPTER 8

Conclusion and Outlook

8.1 Conclusion

The author embedded the constraint-based subtyping of XML Schema De�nition (XSD)

and ontological reasoning of the Web Ontology Language (OWL DL) with the C# pro-

gramming language. In the resulting programming language Zhi#, XML data types and

ontological concept descriptions are �rst class citizens and can be used along with common

features of an object-oriented programming language such as user-de�ned operators and

method overriding. The Zhi# language de�nition is a proper superset of ECMA standard

C# 1.0 with minor syntactical modi�cations to allow for the import of external name-

spaces and external type references. Evaluation results indicate the usefulness to have in a

program the same convenient and compact notations used to describe data in an ontology.

The Zhi# compiler framework facilitates the integration of external typing and subtyp-

ing mechanisms such as, for example, type inference, subsumption and type derivation

with the C# programming language. In particular, the compiler framework supports the

notion of constrained atomic data types and type inference based on control and data

�ow analysis. The compiler framework provides the core functionality to type check and

transform conventional C# programs. Compiler plug-ins provide support for external

type systems. External type de�nitions can be used in Zhi# programs in all places where

.NET types are admissible except for type declarations. The Zhi# compiler facilitates the

cooperative usage of type de�nitions from di�erent type systems. For example, XML data

291

types can be used along with OWL datatype properties. Types of di�erent type systems

can cooperatively be used in one single statement. The compiler framework allows for

the accumulation of type inference results from several di�erent compiler plug-ins. Coop-

eration between external type systems and between external type systems and the .NET

type system is achieved by delegating type checking and program transformation tasks

to the external compiler plug-ins that are responsible for the particular external parts

of an expression. The compiler framework selects the compiler plug-ins based on the

classi�cation of types into type systems. The architectural model of the Zhi# compiler

framework was designed for easy extensibility. Most of the program analysis tasks that

require knowledge about the possibly complex code structure of C# programs were fac-

tored out of the framework extension points. Compiler plug-ins must implement extension

points for (sub-)typing and program transformation. Both extension points are for the

most part context free (i.e. the analysis and transformation of external expressions does

not depend on the position of those expressions in the program text). Thus, it is possible

to implement plug-ins for the Zhi# compiler framework without exhaustive knowledge

about the C# programming language itself. At the same time, no a priori knowledge

about the supported external type systems of prospective compiler plug-ins is required in

the compiler framework. Zhi# programs are compiled into conventional C# code, which

is correct by generation. All external type system functionality is used in a �pay as you go

manner�. There is no performance or code size overhead for Zhi#programs that do not

use external type de�nitions. In contrast to naïve approaches that are based on wrapper

classes or additional code generation, the program overhead of compiled Zhi# programs

is constant and does not grow with, for example, the number of imported external types.

Up to now, two compiler plug-ins were implemented for XML Schema De�nition and the

Web Ontology Language. The presented approach is not limited to the C# programming

language but can equally be applied to any statically typed object-oriented programming

language (e.g., Java). External type systems are not limited to XML Schema De�nition's

value space-based subtyping or ontological reasoning with the Web Ontology Language.

292

In contrast to radical Curry-style language speci�cations, the Zhi# programming lan-

guage is given in the Church-style where typing is prior to semantics. Accordingly, the use

of external types requires the availability of corresponding compiler plug-ins. Hence, in

contrast to, for example, Gilad Bracca's interpretation of pluggable type systems, Zhi#

provides for widely used programming techniques such as static type-based overloading

and class-based encapsulation. With completely optional type systems class-based encap-

sulation would require prohibitively expensive dynamic checks (this is why in program-

ming languages such as Self and Smalltalk, object-based encapsulation is used instead).

The Zhi# compiler framework is complementary to two broad categories of approaches

to facilitate the augmentation of programming language type systems and to add syntac-

tic extensibility to programming languages. Frameworks for augmenting programming

language type systems require a complete understanding of the language grammar (i.e.

the evaluation rules) while only limited knowledge of the Zhi# grammar is needed to

develop type system plug-ins for the Zhi# compiler framework. Most systems that facili-

tate syntactic programming language extensions only support syntactic safety, leaving out

full-�edged type checking of devised language extensions. In contrast, compiler plug-ins

for the Zhi# compiler framework can be implemented to provide for type system-speci�c

static typing, dynamic checking, and control and data�ow-based type inference.

XML Schema De�nition � the W3C Recommendation for XML data types � introduces

atomic data types that can only have atomic values, which are not allowed to be further

fractionalized. A primitive atomic data type is a three-tuple consisting of a set of distinct

values called its value space, a set of lexical representations called its lexical space, and a

set of fundamental facets. The value space is the set of values for a given data type. Each

value in a value space is denoted by at least one literal of its lexical space. Fundamental

facets semantically characterize abstract properties of the value space such as, for exam-

ple, order, cardinality, and boundedness. Constraining facets are optional properties that

can be applied to a data type to restrict its value space (i.e. value space-based subtyping).

293

The author devised an extension of the simply typed lambda calculus with subtyping

(λ<:) for constrained atomic data types. The λC-calculus de�nes three subsumption rules

for constraints based on their application on atomic data types. A constraint is a sub-

constraint of another constraint if the value space that results from the application of

the former constraint on a data type is a subset of the value space that results from

the application of the latter constraint on the same data type. Constraints can be more

restrictive based on the widths and depths of their de�nitions. In the type system of

the λC-calculus data types are inductively de�ned by their value spaces. Starting from a

set of built-in primitive types with axiomatically de�ned value spaces, atomic types are

derived through the application of value space constraints. Constraint applications on

atomic types can be reduced to set operations on the types' value spaces. An atomic

type is a subtype of another type if the value space of the former is a subset of the value

space of the latter. The type safety of the developed λC-type system was proved based on

the soundness proof of the simply typed lambda calculus with subtyping (λ<:). The λC-

calculus allows for the inference of transient constraints that may hold for the instances

of constrained types within only a limited scope of a program. Type inference rules were

de�ned that capture the two intuitions of adding constraints to the type of a variable for

a limited scope and eventually removing them upon modi�cations of the variable.

The form of type construction in the λC-calculus can be used to mimic type con-

struction and derivation as in XML Schema De�nition. The λC-type system was fully

implemented in Java and C# for the XML Schema De�nition type system. These imple-

mentations can be used to load type de�nitions from XSD �les and classify these types in

a hierarchy. Binary expression types that involve constrained types can be inferred using

an extensive interval arithmetic-based constraint arithmetic. The object-oriented archi-

tectural model of the λC-implementation makes is possible to join an arbitrary number

of particular type system implementations in one single type pool. It is conceivable to

implement further type systems that are similar to XML Schema De�nition such as the

Structured Query Language (SQL) or Object Constraint Language (OCL) type systems.

294

The XSD implementation of the λC-type system stipulates formal subtyping rules,

which are left out in tools such as Cqual, which can be used to extend standard pro-

gramming language types with �ow-sensitive type quali�ers. Explicit subtype relations

are unsupported, too, in the set of �semantic type quali�er� approaches, which can, sim-

ilarly to constrained data types in the λC-type system, be used to express constraints of

interest. Also, type quali�ers are usually de�ned for particular code patterns, while no

knowledge of the evaluation rules is necessary for de�ning constrained data types in the

λC-type system.

The implementation of the λC-type system lays out the foundation of the Zhi# compiler

plug-in for XML Schema De�nition. The XSD compiler plug-in facilitates loading of XML

schema de�nitions, static typing of constrained atomic data types in Zhi# programs, and

the transformation of XSD type references in Zhi# programs into C# code. At compile

time, the use of XML data types is checked according to the constraint-based typing rules

of the λC-calculus. The Zhi# compiler is able to detect exactly which constraints are vi-

olated by an assignment instead of merely reporting generic type incompatibilities. XML

data types can be used in any context of Zhi# programs that is valid for built-in .NET

value types. In particular, XML Schema De�nition type system rules were integrated

with programming language features such as method overriding, user de�ned operators,

and runtime type checks (i.e. XSD aware compilation). The XSD compiler plug-in takes

into account both nominal and structural aspects of the XML Schema De�nition type

system. Implicit conversions are provided between primitive .NET value types and XML

data types for which a value space-based subtype relation exists. The XSD compiler

plug-in enforces invariant subtyping for XSD array types, which is a deviation from the

covariant subtyping of .NET array types, and allows covariant subtyping for non-array

types. The Zhi# compiler plug-in for XML Schema De�nition infers types of variables

based on control and data �ow analysis. The type inference rule for if -statements in the

λC-calculus was complemented with type inference rules for for and while-statements.

295

Types of literals are inferred based on the literal expressions' particular values. Types of

binary arithmetic expressions are inferred based on the constraint arithmetic of the λC-

type system. The generated C# output code contains dynamic type checks in order to

allow for schema modi�cations after the compilation of a Zhi# program and a safe usage

of Zhi# assemblies from conventional .NET programs. In this way, Zhi# programs are

fully interoperable with standard .NET assemblies with full consideration of the stipulated

XML Schema De�nition value space constraints.

The Zhi# approach is unique in making constrained XML data types �rst class cit-

izens of a general-purpose object-oriented programming language. Existing approaches

focus either on content models of complex types, or on embedding programming language

code in XML documents or inserting XML literals into programming language source code.

Ontological data reside in knowledge bases that are subject to ontological reasoning.

The author devised a pluggable architectural model of an ontological knowledge base

server. The CHIL Knowledge Base Server can be used to adapt o�-the-shelf ontology

management systems for the Web Ontology Language (OWL DL). In the current Java-

based implementation, the Jena Semantic Web Framework is adapted and con�gured to

use the Pellet OWL DL reasoner with in-memory and database backed ontology models.

The CHIL Knowledge Base Server implements the formally speci�ed CHIL OWL API,

which was de�ned based on a combination of Floyd-Hoare logic and formal Description

Logics terminology. Using Floyd-Hoare logic rules, the formal API speci�cation can be

used to reason on the meta-level about the e�ects of sequences of operations on OWL

DL knowledge bases. Regression test code was automatically generated from the formal

speci�cation. Complementary to the formal speci�cation, the CHIL OWL API de�nition

is given as an XML instance document based on a twofold XML Schema De�nition that

was used to automatically generate client components for programming languages such as

Java and C#. The CHIL OWL API comprises 91 formally speci�ed methods for telling

and asking the TBox and ABox of OWL DL knowledge bases plus 32 auxiliary methods.

296

Its formal speci�cation sets the CHIL OWL API apart from existing DL knowledge

base interface speci�cations. Moreover, in contrast to existing ontology management

systems, the CHIL Knowledge Base Server reveals excellent connectivity capabilities by

supporting the concurrent use of a number of di�erent remoting protocols.

The CHIL OWL API is used by the OWL DL plug-in for the Zhi# compiler frame-

work. Zhi#'s OWL DL compiler plug-in makes the property centric modeling features of

the Web Ontology Language available via C#'s object-oriented notation and integrates

ontological reasoning with features of the programming language (i.e. OWL aware compi-

lation). Ontological concept and role descriptions are subject to a combination of static

typing and dynamic checking. Referenced ontological concepts and roles are checked at

compile time to exist in the imported ontology. Static type checks include disjoint con-

cepts, and cardinalities and disjoint property domain and range restrictions of ontological

roles. OWL concept descriptions are permitted in Zhi# programs in all places where .NET

types are admissible except for type declarations. In particular, OWL concepts can be

used for formal parameters of methods, user de�ned operators, and indexers. The power

of the �.� can be used to declare ad hoc relationships between ontological individuals and

to declare members on a per instance basis. Property domain and range restrictions can

be used for ontological reasoning. The checked -operator enforces frame-like semantics of

OWL concepts and roles in Zhi# programs. Auxiliary properties were implemented for

ontological individuals, roles, and static concept references in Zhi# programs in order to

make it particularly easy to, for example, get all individuals in the extension of a speci�ed

concept description or to get all RDF types of a speci�ed individual. A mapping of CHIL

OWL API methods to auxiliary properties of ontology elements in Zhi# programs was

presented that makes half of the de�ned preconditions of the CHIL OWL API amenable

to static checking. The RDF types of ontological individuals in Zhi# programs are dy-

namically checked at runtime. The is-operator can be used for dynamic RDF type checks

of ontological individuals. The OWL DL compiler plug-in can be used cooperatively with

297

the XSD compiler plug-in in order to support OWL datatype properties. Zhi# code that

uses elements of an ontology is compiled into conventional C#. In the current implemen-

tation, the OWL DL component of the Zhi# runtime library utilizes the CHIL OWL API

in order to manage the ontological knowledge base. Eventually, the OWL DL plug-in

reduces the dependency on particular OWL APIs since it is possible to substitute the

CHIL OWL API in the Zhi# runtime library without recompilation of Zhi# programs.

The Zhi# solution to provide programming language inherent support for ontologies

is the �rst of its kind. Earlier attempts either lack ABox reasoning, concurrent access to

a shared ontological knowledge base, or fall short in fully supporting OWL DL's mod-

eling features. Previous and current approaches to embed a variety of dynamic typing

schemes in statically typed programming languages include the concept of a Dynamic

type contrived by Abadi et al. [ACP89, ACP91], quasi-static type systems developed by

Thatte [Tha90], gradual typing [ST06], and Tobin-Hochstadt and Felleisen's occurrence

typing [TF08]. These approaches � though well de�ned and carefully evaluated � are not

tailored to an ontology language such as the Web Ontology Language (OWL DL).

The Zhi# tool suite includes the Zhi# compiler, which was integrated with the MSBuild

build system for Microsoft Visual Studio by means of an MSBuild task component. The

Eclipse-based frontend boasts a Zhi# editor with syntax highlighting and autocompletion.

The current state of ontological reasoning technology may not yet be su�cient to manage

very large ontological knowledge bases. However, signi�cant performance gains have been

achieved in recent years. These developments are likely to continue since the advantages

of the convenient and compact OWL notation have been widely acknowledged. As a con-

sequence, it appears to be reasonable to make this important form of ontologies available

in a widely used programming language. Microscopic examinations give evidence for the

usefulness and applicability of the proposed compiler framework. Its extensibility and

universal practicability are indicated by the suggested implementation of OCL invariants.

298

8.2 Outlook

Up to now, the Zhi# language extensions to C# are only visible on the class level. On

the whole, external type information is lost when Zhi# programs are compiled into plain

C# code. It is planned to extend the scope of the Zhi# language extensions to the

component level by adding annotations to the generated C# code, which will make it

possible to reconstruct external type information from compiled Zhi# assemblies. Thus,

it would be possible to not only reference conventional .NET assemblies but also Zhi#

libraries with the original extent of typing information. The C# programming language

provides for user-de�ned declarative information in form of attributes. Attribute classes

may be used to describe Zhi# type information in the output C# code.

Approaches that allow for syntactic extensions of programming languages usually fea-

ture a debugger that is aware of the programming language extensions. Similarly, it is

planned to augment the Zhi# tool suite with an extensible debugger that is aware of

the original Zhi# source code and of the implementation of operations on external ob-

jects (e.g., assignments to ontological roles). In general, modi�cations of, for example,

a shared ontological knowledge base cannot assumed to be atomic since the underlying

infrastructure cannot be completely made transparent. Still, it appears reasonable to fa-

cilitate stepping through a Zhi# program on the Zhi# language level for all cases where

operations do not fail due to, for example, networking or ontology management errors.

The long term technical vision for the Zhi# approach is to become an inherent feature

of an augmented .NET runtime. Instead of piggybacking on conventional C#, constrained

atomic data types and ontological reasoning rules may be integrated with the MSIL

type system. Under the hood, the most recent version 3.0 of the C# programming

language already utilizes features of structural type systems (e.g., internal class de�nitions

are reused for identical structural types of LINQ expressions). It would be a natural

amalgamation to further develop structural typing techniques with value space constraints

and ontological reasoning rules.

299

Future work will include the transformation of OMG Ontology De�nition Metamodels

[Obj05b] into Zhi# programs. Currently, on the meta-level, ontologies and UML class

models can be related to each other in one uni�ed model, which even includes a certain

degree of MOF-based static data type analysis. Still, once the ontological and non-

ontological parts of the uni�ed model are transformed into an ontology markup and a

programming language, respectively, the uni�ed model again falls apart into two distinct

class hierarchies. With ontological class descriptions being �rst-class citizens the complete

MOF [Obj05a] modeling space can be translated into the Zhi# programming language.

The Zhi# compiler infrastructure has shown to be a viable approach to solving the

OWL-OO integration problem. It is conceivable to implement additional plug-ins for dif-

ferent logics such as, for example, default logic. Combined keywords such as, for example,

possibly new and possibly not may provide for elements of modality in modal logics.

In Zhi#, greater dynamicity could be achieved for OWL object properties. The other

way round, dynamically typed programming languages might be extended with external

type systems to enforce frame-like semantics of ontologies to achieve greater rigor.

In the long run, the author plans to investigate the interplay of closed world semantics

in an ontology with autoepistemic features (e.g., the epistemological K-operator) with the

type checking provided in the Zhi# programming language in order to enable a higher

degree of static type checking for ontological concept descriptions. Also, the recent inte-

gration of XML data types with ontological concept descriptions in the draft of OWL 2

may be considered by Zhi#'s compiler plug-ins for XSD and OWL DL. Eventually, safe

ontological reasoning rules may be embedded with Zhi# programs.

The author believes that in the near future, programming language compilers will be-

come increasingly con�gurable and programmable in order to provide for a more and more

dynamic world. This includes support for dynamic checking of objects whose structure is

unknown at compile time and support for content models with di�erent conceptual bases

than the built-in type systems of general-purpose programming languages.

300

In fact, in many cases, the structure of data can only be assumed unknown at compile

time. For example, content models of XML documents such as XHTML Web pages for

which no schema exist can only be discovered at runtime. The same goes for comma sep-

arated �les, spreadsheets, and contingent ABoxes of Description Logic knowledge bases.

Moreover, data may need to be processed that could (at least partially) be statically typed

but whose de�nition languages are conceptually di�erent from the static type system of

the programming language in use. Eventually, combinations of static typing and dynamic

checking may be appropriate in scenarios that are similar to ontological knowledge bases.

As a consequence, the time-honored work�ow to apply a black box compiler to input

source �les in order to get output object �les will be complemented by type system and

application speci�c compiler programming and con�guration tasks. Most notably, the up

to now entirely statically typed C# programming language will include in its next version

the new dynamic keyword, which can be used to declare objects whose member lookups

and method calls will be resolved at runtime (by the Dynamic Language Runtime). For

dynamic variables the C# compiler will generate code that will allow dynamic lookups

and invocations whose actual meanings are deferred until runtime and will depend on the

semantics of the IDynamicObject implementation. The IDynamicObject interface can be

implemented to provide type system speci�c member lookup and method invocation.

This work showed that it is possible to not conceal di�erent type systems behind the

façade of a common dynamic type. Instead, external type systems and their di�erent

typing, subtyping, and type inference facets can be made visible in widely used general-

purpose programming languages. Thus, the rigor of a number of static type systems can

be combined to achieve a higher degree of �exibility (e.g., the .NET type system plus the

XSD type system in Zhi#). Combinations of static typing and dynamic checking may

be used when the structure of data is only partially known (e.g., the OWL type system

in Zhi#). Dynamic typing can be used when content models are completely unknown at

compile time (e.g., the type dynamic in C# 4.0).

301

302

APPENDIX A

The Zhi# Compiler Application

The Zhi# compiler was implemented in C# 3.0 as a .NET Framework 3.5 assembly, which

can be used locally from the command line and be invoked as an MSBuild [Mic07d] task.

Also, the compiler assembly can be hosted by a Windows Forms-based server application

(see Fig. A.1), which exposes the API of the Zhi# compiler via an XML-over-TCP in-

terface. In this way, the Zhi# compiler is available locally and remotely to .NET and

non-.NET clients. The Zhi# server application itself provides various visualizations of

the recent compiler run. For example, the abstract syntax tree of input Zhi# code is

displayed, compiled Zhi# code is displayed in a tree view that shows type information of

source code elements when hovering with the mouse pointer over these elements, one can

browse the tree view presentation of the constructed type table, and XML data types and

generated anonymous OWL concepts are displayed in a list view.

The actual Zhi# developer frontend was implemented as an Eclipse 3.5 plug-in as

shown in Fig. A.2. A Zhi# Eclipse project type was de�ned that supports an MSBuild-

based build process. The Zhi# editor boasts syntax highlighting and autocompletion

of XML data types and OWL concept and role names. An error list view can be used

to navigate to erroneous lines of code. Zhi# source �les (.zs), XML schema �les (.xsd)

and �les that contain OWL ontologies (.rdf, .owl) are managed by the Eclipse project

environment and are passed into the Zhi# server via its XML-over-TCP interface. The

outline view of Zhi# source �les displays XML data type and OWL concept information

in a tree view. Metadata about XML data types, OWL concepts and roles are displayed

as tooltips when hovering with the mouse pointer over these elements in Zhi# programs.

303

Figure A.1: Zhi# server application

304

Figure A.2: Zhi# Eclipse-based frontend

305

APPENDIX B

Zhi# External Program Transformation Functions

This appendix elucidates the implementations of the external program transformation

functions that are provided by the Zhi# compiler plug-ins for XML Schema De�nition

and the Web Ontology Language. The program transformation functions were speci�ed

in the premise-conclusion form as introduced in Section 2.3.

In the following arguments, monospace font indicates generated C# output code (e.g.,

�x = v�). For the sake of conciseness, in the speci�cations of the program transformation

functions the following three operator de�nitions are used to specify di�erent cases. The

binary is-operator performs a type-check of its operands. It yields true if the left operand

is an instance of the right operand; otherwise false. The binary casts-exists operator

v BΓ T determines whether in the typing context Γ the speci�ed object v can be casted

to the speci�ed type T . The binary implicit-casts-exists operator v BimplΓ T determines

whether in the typing context Γ an implicit cast exists from v to the speci�ed type T .

Zhi# source code is processed in the form of code DOM objects. In the following

speci�cations, the function o(t) yields the code DOM object that represents the term t in

the current context. The �dot�-operator can be used to access �elds of code DOM objects.

For example, code DOM objects expose a �eld ZhiSharpType, which corresponds with the

type of the represented Zhi# term (e.g., t : T ⇒ o(t).ZhiSharpType = T).

Field updates of code DOM objects are given in square brackets. For example, given

an object creation expression t = �new byte(3)� the �eld update o(t)[ZhiSharpType =

int] changes the value of the �eld ZhiSharpType of the ObjectCreationExpression, which

then represents the term t = �new int(3)�. Function o(t) is invertible (i.e. o(t) allows

306

roundtrips from Zhi# terms to code DOM objects to Zhi# terms). The inverse function

o−1(o(t)) returns the Zhi# term that is represented by the code DOM object o(t) (e.g.,

o−1(o(new byte(3))[ZhiSharpType = int]) = new int(3)).

The implementing C# source code of the compiler plug-ins for XSD and OWL was

annotated with comments of the form //CF XSD 'Function' 'case no.' and //CF OWL

'Function' 'case no.', respectively. By setting up a user de�ned token �CF� for the Visual

Studio task list [MSD09] one can easily navigate to the implementation of each case of

the speci�ed transformation functions.

B.1 XSD Program Transformation Functions

This section speci�es the implementations of the external program transformation func-

tions that are provided by the Zhi# compiler plug-in for XML Schema De�nition. The ex-

ternal program transformation methods PropertyAccess , PropertyUpdate, IndexerAccess ,

IndexerUpdate, MethodInvocation, and ForEach are not applicable to XML data types.

UseNamespace

∅ ` namespace ∈ NXSD

UseNamespace(namespace) =

using zhisharpSimpleTypes = Zhimantic.LambdaC.Typesystem.Runtime;

GetProxyType

∅ ` T ∈ 4XSD

GetProxyType(T) = RTSimpleType + array ranks of T

Cast

Γ, v : V ` T ∈ 4XSD

Cast(T, v) =

{
(GetProxyType(T)) v ;y 1 : T ∈ 4XSD;

307

CreateObject

Γ, vi : Vi ` (T ∈ 4⊥XSD ∨
∨
Vi ∈ 4⊥XSD)

CreateObject(T, {vi i∈1..n}) =

New(”T”, (GetProxyType(T)) v1) ;y 1 :
n = 1,

v1 B
impl
Γ T ;

New(”T”, o−1(o(v1).Arguments[0])) ;y 2 :

n = 1,

o(v1) is ObjectCreationExpression,

V1 ∈ 4⊥XSD,

T ∈ 4⊥XSD ∪4⊥NET prim.;

New(”T”, v1) ;y 3 :

n = 1,

o(v1) is ObjectCreationExpression,

V1 ∈ 4⊥NET prim.,

T ∈ 4⊥XSD ∪4⊥NET prim.;

CreateObject(V1, v1) ;y 4 :

n = 1,

T = System.Object,

V1 ∈ 4⊥;

v1 ;y 5 :

n = 1,

T = System.Object,

V1 ∈ 4[];

Convert.ToBoolean((v1).ToString()) ;y 6a :

n = 1,

T = System.Boolean,

V1 = xsd#boolean; 1

New(”T”, v1) ;y 7 :
n = 1,

T ∈ 4⊥XSD ∪4⊥NET prim.;

1Cases 6a � 6m are implemented analogously for all 13 .NET primitive types and compatible XML
data types.

308

GetObject

Γ, vi : Vi ` (T ∈ 4⊥XSD ∨
∨
Vi ∈ 4⊥XSD)

GetObject(T, {vi i∈1..n}) = CreateObject(T, {vi i∈1..n})

CreateArray

Γ, vij : Vij ` T ∈ 4[]
XSD

CreateArray(T, {{vi i∈1..n}j j∈1..m}) =
o−1(o(v11)[ZhiSharpType = GetProxyType(T)]) ;y 1 :

n = 1,

m = 1,

v11 is ArrayCreationExpression
2;

Assign

Γ, x : T, v : V ` (T ∈ 4XSD ∨ V ∈ 4XSD)

Assign(T, x, v) =

x = null ;y 1 : T = null;

x = v ;y 2 : T ∈ 4[]
XSD;

SetValue(”T”, out x, (GetProxyType(T)) v) ;y 3 : (T ∈ 4⊥XSD) ∧ (v BimplΓ T);

SetValue(”T”, out x, v) ;y 4 : (T ∈ 4⊥XSD) ∧ (v BimplΓ T);

x = v ;y 5 : T ∈ {4[]\4[]
XSD};

x = v ;y 6 : (T ∈ {4⊥\4⊥XSD}) ∧ (v BimplΓ T);

x = CreateObject(T, v) ;y 7 : (T ∈ {4⊥\4⊥XSD}) ∧ (v BimplΓ T);

2The ArrayCreationExpression must have parameters that are compatible with the base type of array
type T .

309

Compute

Γ, x : X, y : Y ` (X ∈ 4XSD ∨ Y ∈ 4XSD)

Compute(T, x, τ, y) =

AreFractionDigitsOkL(x, o(y).Literal) ;y 1a) :

τ = '%.',

X ∈ 4⊥NET prim. ∪4⊥XSD,

Y ∈ 4⊥NET prim. ∪4⊥XSD,

o(y) is LiteralExpression3; 4

x && y ;y 8 :

τ = �&&�,

X ∈ 4⊥NET prim. ∪4⊥XSD,

Y ∈ 4⊥NET prim. ∪4⊥XSD; 5

x || y ;y 9 :

τ = �||�,

X ∈ 4⊥NET prim. ∪4⊥XSD,

Y ∈ 4⊥NET prim. ∪4⊥XSD; 5

Is(x, ”Y”) ;y 10a) :
τ = �is�,

X ∈ 4⊥XSD;

Is(New(”X”, x), ”Y”) ;y 10b) :
τ = �is�,

X /∈ 4⊥XSD;

3The literal must represent a valid value for the used relational operator (i.e. constraining facet).
4Cases 1a � 6a are implemented analogously for the %., %%, ?>, ?=, ?<, and ?? operator.
5In the current implementation only the xsd#boolean data type implements the .NET true and false

operators.

310

Compute (continued)

Γ, x : X, y : Y ` (X ∈ 4XSD ∨ Y ∈ 4XSD)

Compute(T, x, τ, y) =

Addition(”T”, x, y) ;y 11a) :

τ = ' + ',

X ∈ 4⊥XSD,

Y ∈ 4⊥XSD; 6

Addition(”T”, x, New(Y, y)) ;y 11b) :

τ = ' + ',

X ∈ 4⊥XSD,

Y /∈ 4⊥XSD; 6

Addition(”T”, New(X, x), y) ;y 11c) :

τ = ' + ',

X /∈ 4⊥XSD,

Y ∈ 4⊥XSD; 6

AreFractionDigitsOkT(x, o(y).Type) ;y 1b) :

τ = �%.�,

X ∈ 4⊥NET prim. ∪4⊥XSD,

o(y) is TypeOfExpression; 7

IsEnumValidValueT(x, o(y).Type) ;y 7 :

τ = �$= �,

X ∈ 4⊥NET prim. ∪4⊥XSD,

o(y) is TypeOfExpression8;

6Cases 11a,b,c � 32a,b,c are implemented analogously for Zhi#'s binary arithmetic and comparison
operators. Assignment expressions of the form x τ= y are compiled into an explicit assignment expression
of the form x = x τ y.

7Cases 1b � 6b are implemented analogously for the %., %%, ?>, ?=, ?<, and ?? operator.
8The denoted type must be an enumerated XML data type.

311

B.2 OWL Program Transformation Functions

This section speci�es the implementations of the external program transformation func-

tions that are provided by the Zhi# compiler plug-in for the Web Ontology Language.

The external program transformation methods IndexerAccess and IndexerUpdate are not

applicable to OWL concepts, roles, and individuals. For a Zhi# term t and an OWL con-

cept name T the expression t:T stands for the generated C# code AssertKindOf(t, ”T”),

which dynamically checks that the ontological individual referred to by t is in the extension

of concept T .

GetProxyType

∅ ` T ∈ 4OWL

GetProxyType(T) = OWLIndividual + array ranks of T

Cast

Γ, v : V ` T ∈ 4OWL ∨ V ∈ 4OWL

Cast(T, v) =

CastOWLIndividual(v:V , ”T”) ;y 1a :
T ∈ 4⊥OWL,

V ∈ 4⊥OWL;

CastOWLIndividual(v, ”T”) ;y 1b :
T ∈ 4⊥OWL,

V ∈ 4[]
OWL;

(T) v:V ;y 2a :

T /∈ 4OWL,

V ∈ 4⊥OWL,

v BΓ T ;

(T) v ;y 2b :

T /∈ 4OWL,

V ∈ 4[]
OWL,

v BΓ T ;

312

CreateObject

Γ, vi : Vi ` (T ∈ 4⊥OWL ∨
∨
Vi ∈ 4⊥OWL)

CreateObject(T, {vi i∈1..n}) =

(New(o−1(o(v1).Arguments[0]), ”T”)):T ;y 1a :

n = 1,

o(v1) is ObjectCreationExpression9,

T ∈ 4⊥OWL;

New(o−1(o(v1).Arguments[0]), ”T”) ;y 1b :

n = 1,

o(v1) is ObjectCreationExpression9,

T /∈ 4⊥OWL;

((GetProxyType(T)) v1)
:T ;y 2a :

n = 1,

v1 B
impl
Γ T,

T ∈ 4⊥OWL;

(GetProxyType(T)) v1 ;y 2b :

n = 1,

v1 B
impl
Γ T,

T /∈ 4⊥OWL;

(New(v1, ”T”)):T ;y 3a :

n = 1,

v1 B
impl
Γ T ,

T ∈ 4⊥OWL;

New(v1, ”T”) ;y 3b :

n = 1,

v1 B
impl
Γ T ,

T /∈ 4⊥OWL;

9The ObjectCreationExpression must have one parameter of type System.String and create an object
of type T ∈ 4⊥

OWL.

313

GetObject

Γ, vi : Vi ` (T ∈ 4⊥OWL ∨
∨
Vi ∈ 4⊥OWL)

GetObject(T, {vi i∈1..n}) =

((GetProxyType(T)) v1)
:T ;y 1a :

n = 1,

v1 B
impl
Γ T,

T ∈ 4⊥OWL;

(GetProxyType(T)) v1 ;y 1b :

n = 1,

v1 B
impl
Γ T,

T /∈ 4⊥OWL;

v1
:V1 ;y 2a :

n = 1,

v1 B
impl
Γ T ,

V1 ∈ 4⊥OWL;

v1 ;y 2b :

n = 1,

v1 B
impl
Γ T ,

V1 /∈ 4⊥OWL;

CreateArray

Γ, vij : Vij ` T ∈ 4[]
OWL

CreateArray(T, {{vi i∈1..n}j j∈1..m}) =
o−1(o(v11)[ZhiSharpType = GetProxyType(T)]) ;y 1 :

n = 1,

m = 1,

v11 is ArrayCreationExpression
10;

10The ArrayCreationExpression must have parameters that are compatible with the base type of array
type T .

314

Compute

Γ, x : X, y : Y ` (X ∈ 4OWL ∨ Y ∈ 4OWL)

Compute(T, x, τ, y) =

Is(x, ”Y”) ;y 1 :

τ = �is�,

X ∈ 4⊥OWL,

Y ∈ 4⊥OWL;

x == y ;y 2 :
τ = � == �,

(X = null) ∨ (Y = null);

Identity(x, y) ;y 3a :

τ = � == �,

X ∈ 4⊥OWL,

Y ∈ 4OWL;

Identity(y, x) ;y 3b :

τ = � == �,

X ∈ 4OWL,

Y ∈ 4⊥OWL;

x == y ;y 4 : τ = � == �;

x == y ;y 5 :
τ = �!= �,

(X = null) ∨ (Y = null);

NIdentity(x, y) ;y 6a :

τ = �!= �,

X ∈ 4⊥OWL,

Y ∈ 4OWL;

NIdentity(y, x) ;y 6b :

τ = �!= �,

X ∈ 4OWL,

Y ∈ 4⊥OWL;

x == y ;y 7 : τ = �!= �;

315

Assign

Γ, x : T, v : V ` (T ∈ 4OWL ∨ V ∈ 4OWL)

Assign(T, x, v) =
x = v:V ;y 1 : V ∈ 4⊥OWL;

x = v ;y 2 : V /∈ 4⊥OWL;

PropertyAccess

Γ, h : H ` H ∈ 4⊥OWL

PropertyAccess(T, h, p, q) =

Exists(”H”) ;y 1a :
o(h).IsStaticTypeReference,

p = �Exists�;

Count(”H”) ;y 1b :
o(h).IsStaticTypeReference,

p = �Count�;

Individuals(”H”) ;y 1c :
o(h).IsStaticTypeReference,

p = �Individuals�;

ExistsObjectPropertyValue(h, ”p”) ;y 2a :

o(h).IsStaticTypeReference,

p ∈ 4⊥OWL ×4⊥OWL,

q = �Exists�;

ExistsDatatypePropertyValue(h, ”p”) ;y 2b :

o(h).IsStaticTypeReference,

p ∈ 4⊥OWL ×4⊥XSD,

q = �Exists�;

316

PropertyAccess (continued)

Γ, h : H ` H ∈ 4⊥OWL

PropertyAccess(T, h, p, q) =

CountObjectPropertyValues(h, ”p”) ;y 3a :

o(h).IsStaticTypeReference,

p ∈ 4⊥OWL ×4⊥OWL,

q = �Count�;

CountDatatypePropertyValues(h, ”p”) ;y 3b :

o(h).IsStaticTypeReference,

p ∈ 4⊥OWL ×4⊥XSD,

q = �Count�;

GetTypesOfIndividual(h) ;y 4a :
o(h).IsStaticTypeReference,

p = �Types�;

GetEquivalentIndividuals(h) ;y 4b :
o(h).IsStaticTypeReference,

p = �EquivalentIndividuals�;

GetObjectPropertyValues(h, ”p”) ;y 5 :
o(h).IsStaticTypeReference,

p ∈ 4⊥OWL ×4⊥OWL;

GetDatatypePropertyValue(h, ”p”) ;y 6a :

o(h).IsStaticTypeReference,

p ∈ 4⊥OWL ×4⊥XSD,

> v ≤1p;

GetDatatypePropertyValues(h, ”p”) ;y 6b :
o(h).IsStaticTypeReference,

p ∈ 4⊥OWL ×4⊥XSD;

317

PropertyUpdate

Γ, h : H, v : V ` H ∈ 4⊥OWL

PropertyUpdate(T, h, p, v) =

AddObjectPropertyValuesChecked(h:H , ”p”, v:V) ;y 1a :

V ∈ 4⊥OWL,

p ∈ 4⊥OWL ×4⊥OWL,

v is checked ;

AddObjectPropertyValuesChecked(h:H , ”p”, v) ;y 1b :

V ∈ 4[]
OWL,

p ∈ 4⊥OWL ×4⊥OWL,

v is checked ;

AddObjectPropertyValues(h:H , ”p”, v:V) ;y 2a :

V ∈ 4⊥OWL,

p ∈ 4⊥OWL ×4⊥OWL,

v is not checked ;

AddObjectPropertyValues(h:H , ”p”, v) ;y 2b :

V ∈ 4[]
OWL,

p ∈ 4⊥OWL ×4⊥OWL,

v is not checked ;

SetDatatypePropertyValue(h:H , ”p”, v) ;y 3a :

V ∈ 4⊥XSD,

p ∈ 4⊥OWL ×4⊥XSD,

> v ≤1p;

AddDatatypePropertyValues(h:H , ”p”, v) ;y 3b :
V ∈ 4[]

XSD,

p ∈ 4⊥OWL ×4⊥XSD;

318

MethodInvocation

Γ, h : H, vi : Vi ` H ∈ 4⊥OWL

MethodInvocation(T, h, p,m, {vi i∈1..n}) =

ClearObjectPropertyValues(h, ”p”) ;y 1a :
p ∈ 4⊥OWL ×4⊥OWL,

m = �Clear�;

ClearDatatypePropertyValues(h, ”p”) ;y 1b :
p ∈ 4⊥OWL ×4⊥XSD,

m = �Clear�;

RemoveObjectPropertyValues(h, ”p”, v1) ;y 2a :

p ∈ 4⊥OWL ×4⊥OWL,

n = 1,

V1 ∈ 4[]
OWL,

m = �Remove�;

RemoveObjectPropertyValues(h, ”p”, v1, . . . , vn) ;y 2b :

p ∈ 4⊥OWL ×4⊥OWL,

n ≥ 1,

Vi
i∈1..n ∈ 4⊥OWL,

m = �Remove�;

RemoveDatatypePropertyValues(h, ”p”, v1) ;y 3a :

p ∈ 4⊥OWL ×4⊥XSD,

n = 1,

V1 ∈ 4[]
XSD,

m = �Remove�;

RemoveDatatypePropertyValues(h, ”p”, v1, . . . , vn) ;y 3b :

p ∈ 4⊥OWL ×4⊥XSD,

n ≥ 1,

Vi
i∈1..n ∈ 4⊥XSD,

m = �Remove�;

319

MethodInvocation (continued)

Γ, h : H, vi : Vi ` H ∈ 4⊥OWL

MethodInvocation(T, h, p,m, {vi i∈1..n}) =

SameAs(h, v1) ;y 4a :

n = 1,

V1 ∈ 4[]
OWL,

m = �SameAs�;

SameAs(h, v1, . . . , vn) ;y 4b :

n ≥ 1,

Vi
i∈1..n ∈ 4⊥OWL,

m = �SameAs�;

DifferentFrom(h, v1) ;y 5a :

n = 1,

V1 ∈ 4[]
OWL,

m = �Di�erentFrom�;

DifferentFrom(h, v1, . . . , vn) ;y 5b :

n ≥ 1,

Vi
i∈1..n ∈ 4⊥OWL,

m = �Di�erentFrom�;

ForEach

Γ, v : V ` V ∈ 4OWL

ForEach(T, v) = ForEach(”T”, v)11

UseNamespace

∅ ` namespace ∈ NOWL

UseNamespace(namespace) = null

11The object v must provide a GetEnumerator() method, which returns an IEnumerator object.

320

APPENDIX C

The λC-Calculus

Table C.1 summarizes the syntax of λC-terms and type de�nitions. Tables C.2, C.3, C.4,

and C.5 summarize the evaluation, typing, subtyping, and type derivation rules of the

λC-calculus. Gray backgrounds highlight extensions of the λ<:-calculus.

Table C.1: Constrained types calculus (λC) syntax

Syntax

t ::= terms:

x variable

λx : T.t abstraction

tt application

v ::= values:

λx : T.t abstraction value

true true value

false false value

over, please

321

Table C.1: Constrained types calculus (λC) syntax

Syntax

T ::= types:

T → T type of functions

Top maximum type

Bool type of booleans

Pxsd#boolean, . . . , Pxsd#string primitive base types

T.c constraint application

c ::= constraints:

c = φ(TV){x|x ∈ υ(TV)}
⋂

k∈1..m

{x|x ≺ literalk} constraint

Γ ::= contexts:

∅ empty context

Γ, x : T term variable binding

322

Table C.2: Constrained types calculus (λC) evaluation

Evaluation t→ t′

t1 → t′1
t1t2 → t′1t2

(E-App1)

t2 → t′2
v1t2 → v1t′2

(E-App2)

(λx : T11.t12)v2 → [x 7→ v2]t12 (E-AppAbs)

if true then t2 else t3 → t2 (E-IfTrue)

if false then t2 else t3 → t3 (E-IfTrue)

t1 → t′1
if t1 then t2 else t3 → if t′1 then t2 else t3

(E-If)

323

Table C.3: Constrained types calculus (λC) typing

Typing Γ ` t : T

x : T ∈ Γ

Γ ` x : T
(T-Var)

Γ, x : T1 ` t2 : T2

Γ ` λx : T1.t2 : T1 → T2

(T-Abs)

Γ ` t1 : T11 → T12 Γ ` t2 : T11

Γ ` t1t2 : T12

(T-App)

Γ ` t : S S <: T

Γ ` t : T
(T-Sub)

true : Bool (T-True)

false : Bool (T-False)

t1 : Bool t2 : T t3 : T

if t1 then t2 else t3 : T
(T-If)

324

Table C.4: Constrained types calculus (λC) subtyping

Subtyping S <: T

S <: S (S-Refl)

S <: U U <: T

S <: T
(S-Trans)

S <: Top (S-Top)

T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

(S-Arrow)

υ(S) ⊆ υ(T)

S <: T
(S-VSpace)

S =
T⋂

i∈1..n+k

ci U =
T⋂

i∈1..n

ci

S <: U
(S-Width)

for each i ci <:: di S =
T⋂

i∈1..n

ci U =
T⋂

i∈1..n

di

S <: U
(S-Depth)

S <: T

S.c <: T
(S-App)

over, please

325

Table C.4: Constrained types calculus (λC) subtyping

Subtyping S <: T

υ(c1{{TV ← T}}) ⊆ υ(c2{{TV ← T}})
c1 <:: c2

(S-CstrVSpace)

φ(TV){x|x ∈ υ(TV)}
⋂

i∈1..n+k
{x|x ≺ yi} <:: φ(TV){x|x ∈ υ(TV)}

⋂
i∈1..n

{x|x ≺ yi} (S-CstrWidth)

for each i {x|x ≺ yi} ⊆ {x|x ≺ zi}
φ(TV){x|x ∈ υ(TV)}

⋂
i∈1..n

{x|x ≺ yi} <:: φ(TV){x|x ∈ υ(TV)}
⋂

i∈1..n
{x|x ≺ zi}

(S-CstrDepth)

Table C.5: Constrained types calculus (λC) type deriva-

tion and substitution

Type derivation and substitution T → T ′

T ′ = T.c

υ(T ′) = υ(c{{TV ← T}})
(Td-CstrApp)

T → T ′

T.c→ T ′.c
(Td-Subs)

326

APPENDIX D

XSD Type Inference Rules

Table D.1: Ti-IfAdd

Γ ` a : A if (
∧

i∈1..n

(a ≺i literal i)) then �

Γ� ` a :
A⋂

i∈1..n

ci where ci = {x|x ∈ υ(A)} ∩ {x|x ≺i literal i}i∈1..n

Table D.2: Ti-ForAdd

Γ ` a : A for ([initializers];
∧

i∈1..n

(a ≺i literal i); [iterators]) then �

Γ� ` a :
A⋂

i∈1..n

ci where ci = {x|x ∈ υ(A)} ∩ {x|x ≺i literal i}i∈1..n

Table D.3: Ti-WhileAdd

Γ ` a : A while (
∧

i∈1..n

(a ≺i literal i)) then �

Γ� ` a :
A⋂

i∈1..n

ci where ci = {x|x ∈ υ(A)} ∩ {x|x ≺i literal i}i∈1..n

327

Table D.4: Ti-AssignRem

Γ ` t : T Γ ` a : A Γ� ` a :
A⋂

i∈1..n

ci a := t

Γ�� ` a : A

328

APPENDIX E

XSD Compile-Time Arithmetic

E.1 XSD Type Arithmetic

Table E.1: XSD type arithmetic

Type T1 Operator τ Type T2 T = T1 τ T2

anyURI == anyURI boolean

base64Binary == base64Binary boolean

boolean == boolean boolean

boolean & boolean boolean

boolean | boolean boolean

boolean ˆ boolean boolean

date < date boolean

date == date boolean

date > date boolean

date + duration dateTime

dateTime < dateTime boolean

dateTime == dateTime boolean

dateTime > dateTime boolean

dateTime + duration dateTime

decimal < decimal boolean

decimal == decimal boolean

329

Table E.1: XSD type arithmetic

Type T1 Operator τ Type T2 T = T1 τ T2

decimal > decimal boolean

decimal + decimal decimal

decimal − decimal decimal

decimal ∗ decimal decimal

decimal / decimal decimal

decimal % decimal decimal

double < double boolean

double == double boolean

double > double boolean

double + double double

double − double double

double ∗ double double

double / double double

double % double double

duration < duration boolean

duration == duration boolean

duration > duration boolean

duration + duration duration

duration + date dateTime

duration + dateTime dateTime

�oat < �oat boolean

�oat == �oat boolean

�oat > �oat boolean

�oat + �oat �oat

�oat − �oat �oat

�oat ∗ �oat �oat

330

Table E.1: XSD type arithmetic

Type T1 Operator τ Type T2 T = T1 τ T2

�oat / �oat �oat

�oat % �oat �oat

gDay < gDay boolean

gDay == gDay boolean

gDay > gDay boolean

gMonth < gMonth boolean

gMonth == gMonth boolean

gMonth > gMonth boolean

gMonthDay < gMonthDay boolean

gMonthDay == gMonthDay boolean

gMonthDay > gMonthDay boolean

gYear < gYear boolean

gYear == gYear boolean

gYear > gYear boolean

gYearMonth < gYearMonth boolean

gYearMonth == gYearMonth boolean

gYearMonth > gYearMonth boolean

hexBinary == hexBinary boolean

NOTATION == NOTATION boolean

QName == QName boolean

string == string boolean

string + string string

time < time boolean

time == time boolean

time > time boolean

331

E.2 XSD Constraint Arithmetic

In the following table, constraints are given in the form {operator variable}, where a set of

n constraints is denoted as {{operator 1 variable1}, . . . , {operatorn variablen}}. Given on

the left sides of the following propositions are initially existing constraints and facts about

used variables. A bar over a constraint indicates that this constraint does not exist in the

initial constraint set. Given on the right sides are homogenized (rules Cmr-H-Xsd-X)

and inferred (rules Cmr-I-Xsd-X) sets of XML Schema De�nition constraints.

Table E.2: XSD constraint materialization rules

Rule name Rule

Cmr-H-Xsd-MinEx-MinIn {{> a}, {≥ b}} ∧ a ≥ b =⇒ {{> a}, {≥ a}}

Cmr-H-Xsd-MinEx-MinIn-Fd1 {{> a}, {≥ b}, {%. c}} ∧ a ≥ b =⇒ {{> a}, {≥ a+ 10−c}, {%. c}}

Cmr-H-Xsd-MinEx-MinIn-Fd2 {{> a}, {≥ b}, {%. c}} ∧ a < b =⇒ {{> b− 10−c}, {≥ b}, {%. c}}

Cmr-H-Xsd-MaxEx-MaxIn {{< a}, {≤ b}}, a ≤ b =⇒ {{< a}, {≤ a}}

Cmr-H-Xsd-MaxEx-MaxIn-Fd1 {{< a}, {≤ b}, {%. c}} ∧ a ≤ b =⇒ {{< a}, {<= a− 10−c}, {%. c}}

Cmr-H-Xsd-MaxEx-MaxIn-Fd2 {{< a}, {≤ b}, {%. c)} ∧ a > b =⇒ {{< b+ 10−c}, {≤ b}, {%. c}}

Cmr-H-Xsd-Td-Fd {{%% a}, {%. b}} ∧ a < b =⇒ {{%% a}, {%. a}}

Cmr-I-Xsd-MinEx-MinIn {{> a}, {≥ b}} =⇒ {{> a}, {≥ a}}

Cmr-I-Xsd-MinEx-MinIn-Fd {{> a}, {≥ b}, {%. c}} =⇒ {{> a}, {≥ a+ 10−c}, {%. c}}

Cmr-I-Xsd-MinIn-MinEx-Fd {{>= a}, {> b}, {%. c}} =⇒ {{>= a}, {> a− 10−c}, {%. c}}

Cmr-I-Xsd-MaxEx-MaxIn {{< a}, {≤ b}} =⇒ {{< a}, {≤ a}}

Cmr-I-Xsd-MaxEx-MaxIn-Fd {{< a}, {≤ b}, {%.c}} =⇒ {{< a}, {≤ a− 10−c}, {%. c}}

Cmr-I-Xsd-MaxIn-MaxEx-Fd {{≤ a}, {< b}, {%. c}} =⇒ {{≤ a}, {< a+ 10−c}, {%. c}}

Cmr-I-Xsd-Td-Fd {{%% a}, {%. b}} =⇒ {{%% a}, {%. a}}

332

In the following table, constraints are given in the form {operator variable}, where a

capitalized variable name indicates a set of elements. Operations on two sets (e.g., A+B)

stand for the cross product of the two sets with the used operator. The given rules are to

be interpreted as follows. If instances of two constrained types T.c1 and T.c2 are related

by operator τ in a term T.c1 τ T.c2 then the result is a value of the constrained type

T.(c1 τ c2).

Table E.3: XSD constraint arithmetic rules

Rule name c1 τ c2 c = c1 τ c2

Ca-Xsd-MinLength-Plus-MinLength {?> a} + {?> b} {?> a+ b}

Ca-Xsd-MaxLength-Plus-MaxLength {?< a} + {?< b} {?< a+ b}

Ca-Xsd-Enum-Plus-Enum {$= A} + {$= B} {$= A+B}

Ca-Xsd-Enum-Minus-Enum {$= A} − {$= B} {$= A−B}

Ca-Xsd-Enum-Mult-Enum {$= A} ∗ {$= B} {$= A ∗B}

Ca-Xsd-Enum-Div-Enum {$= A} / {$= B} {$= A/B}

Ca-Xsd-MinIn-Plus-MinIn {≥ a} + {≥ b} {≥ a+ b}

Ca-Xsd-MinIn-Plus-MinEx {≥ a} + {> b} {> a+ b}

Ca-Xsd-MinIn-Minus-MaxIn {≥ a} − {≤ b} {≥ a− b}

Ca-Xsd-MinIn-Minus-MaxEx {≥ a} − {< b} {> a− b}

Ca-Xsd-MinEx-Plus-MinEx {> a} + {> b} {> a+ b}

Ca-Xsd-MinEx-Plus-MinIn {> a} + {≥ b} {> a+ b}

Ca-Xsd-MinEx-Minus-MaxEx {> a} − {< b} {> a− b}

Ca-Xsd-MinEx-Minus-MaxIn {> a} − {≤ b} {> a− b}

Ca-Xsd-MaxEx-Plus-MaxEx {< a} + {< b} {< a+ b}

Ca-Xsd-MaxEx-Plus-MaxIn {< a} + {≤ b} {< a+ b}

333

Table E.3: XSD constraint arithmetic rules

Rule name c1 τ c2 c = c1 τ c2

Ca-Xsd-MaxEx-Minus-MinEx {< a} − {> b} {< a− b}

Ca-Xsd-MaxEx-Minus-MinIn {< a} − {≥ b} {< a− b}

Ca-Xsd-MaxIn-Plus-MaxIn {≤ a} + {≤ b} {≤ a− b}

Ca-Xsd-MaxIn-Plus-MaxEx {≤ a} + {< b} {< a+ b}

Ca-Xsd-MaxIn-Minus-MinIn {≤ a} − {≥ b} {≤ a− b}

Ca-Xsd-MaxIn-Minus-MinEx {≤ a} − {> b} {< a− b}

Ca-Xsd-Td-Plus-Td {%% a} + {%% b} {%% a+ b}

Ca-Xsd-Td-Minus-Td {%% a} − {%% b} {%% a+ b}

Ca-Xsd-Td-Mult-Td {%% a} ∗ {%% b} {%% a+ b}

Ca-Xsd-Fd-Plus-Fd {%. a} + {%. b} {%. a+ b}

Ca-Xsd-Fd-Minus-Fd {%. a} − {%. b} {%. a+ b}

Ca-Xsd-Fd-Mult-Fd {%. a} ∗ {%. b} {%. a+ b}

334

APPENDIX F

CHIL OWL API Preconditions

The CHIL OWL API preconditions are given as conjunctions of Boolean expressions,

which must be true before the execution of particular methods of the CHIL OWL API.

Each clause in the Boolean expressions is a statement about, for example, the ontology

under consideration. Preconditions are parameterized with formal parameters, which can

be used in the Boolean expressions in the Requires �eld of the precondition speci�cation.

In addition, the precondition speci�cations comprise protocols to create elements in the

ontology under consideration and to bind the precondition parameters to these elements

such that, the speci�ed conditions initially evaluate to false and eventually to true. The

speci�ed exceptions are expected if preconditions are violated. Required predecessors are

given to allow for chained up preconditions whose Boolean expressions in the Requires �eld

assume a particular context (e.g., an individual with a particular name in the ontology).

The provided information proved to be su�cient to automatically generate regression

test code for the formally speci�ed methods of the CHIL OWL API. In the following

speci�cations, the formal parameters C, D, R, U , and o stand for ontological concepts,

data types, abstract roles, datatype roles, and individuals. The sets NC, ND, NR, NU,

and NI contain the names of the concepts, data types, abstract roles, datatype roles,

and individuals of the ontology under consideration (e.g., C ∈ NC means that a concept

description named C is declared in the ontology under consideration). The names Cfresh,

Dfresh, Rfresh, Ufresh, and ofresh stand for fresh ontological concepts, data types, abstract

roles, datatype roles, and individuals that have neither been declared in the ontology

under consideration and have not been assigned to formal precondition parameters.

335

Pc-OwlApi-Declared-Concept(C)

Requires: C ∈ NC

Required predecessor: �

Creates: �

Binds: C = Cfresh

Expects: UndeclaredConceptException

Creates: CA v >

Binds: C = CA

Pc-OwlApi-Declared-Concepts(C1, C2)

Requires: C1 ∈ NC, C2 ∈ NC

Required predecessor: �

Creates: �

Binds: C1 = Cfresh1 , C2 = Cfresh2

Expects: UndeclaredConceptException

Creates: CA v >, CB v >

Binds: C1 = CA, C2 = CB

Pc-OwlApi-Declared-Datatype(D)

Tests: D ∈ ND

Required predecessor: �

Creates: �

Binds: D = Dfresh

Expects: UndeclaredDatatypeException

Creates: �

Binds: D = xsd#integer

336

Pc-OwlApi-Is-Valid-DataValue(v, D)

Requires: vD ∈ DD

Required predecessor: Pc-OwlApi-Declared-Datatype(D)

Creates: �

Binds: v = ”NaN ”, D = xsd#integer

Expects: InvalidDataValueException

Creates: �

Binds: v = 100, D = xsd#integer

Pc-OwlApi-Declared-Individual(o)

Requires: o ∈ NI

Required predecessor: �

Creates: �

Binds: o = ofresh

Expects: UndeclaredIndividualException

Creates: CA v >, CA(oA)

Binds: o = oA

Pc-OwlApi-Declared-Individuals(o1, o2)

Requires: o1 ∈ NI, o2 ∈ NI

Required predecessor: �

Creates: �

Binds: o1 = ofresh1 , o2 = ofresh2

Expects: UndeclaredIndividualException

Creates: CA v >, CA(oA), CB v >, CB(oB)

Binds: o1 = oA, o2 = oB

337

Pc-OwlApi-Declared-ObjectProperty(R)

Requires: R ∈ NR

Required predecessor: �

Creates: �

Binds: R = Rfresh

Expects: UndeclaredObjectPropertyException

Creates: CA v >, CB v >, RAB v CA × CB

Binds: R = RAB

Pc-OwlApi-Undeclared-ObjectProperty(R)

Requires: R /∈ NR

Required predecessor: �

Creates: CA v >, CB v >, RAB v CA × CB

Binds: R = RAB

Expects: InvalidPropertyNameException

Creates: �

Binds: R = Rfresh

Pc-OwlApi-Declared-DatatypeProperty(U)

Requires: U ∈ NU

Required predecessor: �

Creates: �

Binds: U = Ufresh

Expects: UndeclaredDatatypePropertyException

Creates: CA v >, UAbyte v CA × xsd#byte

Binds: U = UAbyte

338

Pc-OwlApi-Undeclared-DatatypeProperty(U)

Requires: U /∈ NU

Required predecessor: �

Creates: CA v >, UAbyte v CA × xsd#byte

Binds: U = UAbyte

Expects: InvalidPropertyNameException

Creates: �

Binds: U = Ufresh

Pc-OwlApi-Has-ObjectProperty(o, R)

Requires: O ` oI ∈
⋃

i∈1..n
{Ci| ≥1R v Ci}I

Required predecessor: Pc-OwlApi-Declared-Individual(o),

Pc-OwlApi-Declared-ObjectProperty(R)

Creates: Cfresh1 v >, Cfresh2 v >, Rfresh12 v Cfresh1 × Cfresh2

Binds: o = oA, R = Rfresh12

Expects: InvalidPropertyDomainException

Creates: �

Binds: o = oA, R = RAB

Pc-OwlApi-Has-DatatypeProperty(o, U)

Requires: O ` oI ∈
⋃

i∈1..n
{Ci| ≥1U v Ci}I

Required predecessor: Pc-OwlApi-Declared-Individual(o),

Pc-OwlApi-Declared-DatatypeProperty(U)

Creates: Cfresh1 v >, Ufresh1byte
v Cfresh1 × xsd#byte

Binds: o = oA, U = Ufresh1byte

Expects: InvalidPropertyDomainException

Creates: �

Binds: o = oA, U = UAbyte

339

Pc-OwlApi-Is-Range-Object(o, R)

Requires: O ` oI ∈
⋃

i∈1..n
{Ci|> v ∀R.Ci}I

Required predecessor: Pc-OwlApi-Has-ObjectProperty(o, R)

Creates: Cfresh v >, Cfresh(ofresh)

Binds: o = ofresh, R = RAB

Expects: InvalidPropertyRangeException

Creates: CB(oB)

Binds: o = oB, R = RAB

Pc-OwlApi-Is-Range-Type(D, U)

Requires: D <: range(U)

Required predecessor: Pc-OwlApi-Declared-DatatypeProperty(U)

Creates: �

Binds: D = xsd#string, U = UAbyte

Expects: InvalidPropertyRangeException

Creates: �

Binds: D = xsd#byte, U = UAbyte

Pc-OwlApi-Is-ObjectProperty-Value-Of-Individual(o1, R, o2)

Requires: O ` 〈o1
I , o2

I〉 ∈ RI

Required predecessor: Pc-OwlApi-Declared-Individual(o),

Pc-OwlApi-Declared-ObjectProperty(R)

Creates: Cfresh v >, Cfresh(ofresh)

Binds: o1 = oA, R = RAB, o2 = ofresh

Expects: UndeclaredPropertyValueException

Creates: CB v >, CB(oB), RAB(oA, oB)

Binds: o1 = oA, R = RAB, o2 = oB

340

Pc-OwlApi-Is-DatatypeProperty-Value-Of-Individual(o, U , v)

Tests: O ` 〈oI , vD〉 ∈ UI

Required predecessor: Pc-OwlApi-Declared-Individual(o),

Pc-OwlApi-Declared-DatatypeProperty(U)

Creates: �

Binds: o = oA, U = UAbyte, v = 100

Expects: UndeclaredPropertyValueException

Creates: UAbyte(oA, 100)

Binds: o = oA, U = UAbyte, v = 100

Pc-OwlApi-Is-Compatible-Primitive-Base-Type(D, U)

Tests: O ` DD ∩ range(U)D 6= ∅

Required predecessor: Pc-OwlApi-Declared-DatatypeProperty(U)

Creates: �

Binds: D = xsd#string, U = UAbyte

Expects: InvalidDataValueException

Creates: �

Binds: D = xsd#byte, U = UAbyte

Pc-OwlApi-Is-Natural-Number(n)

Tests: n ∈ N

Required predecessor: �

Creates: �

Binds: n = −1

Expects: NotANaturalNumberException

Creates: �

Binds: n = 1

341

APPENDIX G

The CHIL OWL API

G.1 The ITellingABox Interface

addIndividual(o, C)

(Ht-OwlApi-AddIndividual)

addIndividual(o, C)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Concept(C)


{Q}: O, addIndividual(o, C)

{R}:
{

(O ` o : C) ∧ (R = ∅)
}

deleteIndividual(o)

Note: This method removes the speci�ed named individual from the ontology by deleting

any statements that refer to it, as either statement-subject or statement-object.

(Ht-OwlApi-DeleteIndividual)

deleteIndividual(o)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Individual(o)


{Q}: O, deleteIndividual(o)

{R}:
{

(O 0 o ∈ NI) ∧ (R = ∅)
}

342

declareSameAs(o1, o2)

(Ht-OwlApi-DeclareSameAs)

declareSameAs(o1, o2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Individual(o1),

O ` Pc-OwlApi-Declared-Individual(o2)


{Q}: O, declareSameAs(o1, o2)

{R}:
{

(O ` o1 = o2) ∧ (R = ∅)
}

revokeSameAs(o1, o2)

(Ht-OwlApi-RevokeSameAs)

revokeSameAs(o1, o2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Individual(o1),

O ` Pc-OwlApi-Declared-Individual(o2)


{Q}: O, revokeSameAs(o1, o2)

{R}:
{

(O 0 o1 = o2) ∧ (R = ∅)
}

declareDi�erentFrom(o1, o2)

(Ht-OwlApi-DeclareDifferentFrom)

declareDifferentFrom(o1, o2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Individual(o1),

O ` Pc-OwlApi-Declared-Individual(o2)


{Q}: O, declareDifferentFrom(o1, o2)

{R}:
{

(O ` o1 6= o2) ∧ (R = ∅)
}

343

revokeDi�erentFrom(o1, o2)

(Ht-OwlApi-RevokeDifferentFrom)

revokeDifferentFrom(o1, o2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Individual(o1),

O ` Pc-OwlApi-Declared-Individual(o2)


{Q}: O, revokeDifferentFrom(o1, o2)

{R}:
{

(O 0 o1 6= o2) ∧ (R = ∅)
}

addObjectPropertyValue(o1, R, o2)

(Ht-OwlApi-AddObjectPropertyValue)

addObjectPropertyValue(o1, R, o2)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-Individual(o1),

O ` Pc-OwlApi-Declared-Individual(o2),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, addObjectPropertyValue(o1, R, o2)

{R}:
{

(O ` R(o1, o2)) ∧ (R = ∅)
}

344

addObjectPropertyValueChecked(o1, R, o2)

(Ht-OwlApi-AddObjectPropertyValueChecked)

addObjectPropertyValueChecked(o1, R, o2)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-Individual(o1),

O ` Pc-OwlApi-Declared-Individual(o2),

O ` Pc-OwlApi-Declared-ObjectProperty(R),

O ` Pc-OwlApi-Has-ObjectProperty(o1, R),

O ` Pc-OwlApi-Is-Range-Object(o2, R)


{Q}: O, addObjectPropertyValueChecked(o1, R, o2)

{R}:
{

(O ` R(o1, o2)) ∧ (R = ∅)
}

deleteObjectPropertyValue(o1, R, o2)

(Ht-OwlApi-DeleteObjectPropertyValue)

deleteObjectPropertyValue(o1, R, o2)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-Individual(o1),

O ` Pc-OwlApi-Declared-Individual(o2),

O ` Pc-OwlApi-Declared-ObjectProperty(R),

O ` Pc-OwlApi-Is-ObjectProperty-Value-Of-Individual(o1, R, o2)


{Q}: O, deleteObjectPropertyValue(o1, R, o2)

{R}:
{

(O 0 R(o1, o2)) ∧ (R = ∅)
}

345

assignObjectPropertyValue(o1, R, o2)

(Ht-OwlApi-AssignObjectPropertyValue)

assignObjectPropertyValue(o1, R, o2)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-Individual(o1),

O ` Pc-OwlApi-Declared-Individual(o2),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, assignObjectPropertyValue(o1, R, o2)

{R}:


(O ` R(o1, o2)) ∧

(O ` ∀o.(〈o1
I , oI〉 ∈ RI)⇒ (o = o2)) ∧

(R = ∅)


assignObjectPropertyValueChecked(o1, R, o2)

(Ht-OwlApi-AssignObjectPropertyValueChecked)

assignObjectPropertyValueChecked(o1, R, o2)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-Individual(o1),

O ` Pc-OwlApi-Declared-Individual(o2),

O ` Pc-OwlApi-Declared-ObjectProperty(R),

O ` Pc-OwlApi-Has-ObjectProperty(o1, R),

O ` Pc-OwlApi-Is-Range-Object(o2, R)


{Q}: O, assignObjectPropertyValueChecked(o1, R, o2)

{R}:


(O ` R(o1, o2)) ∧

(O ` ∀o.(〈o1
I , oI〉 ∈ RI)⇒ (o = o2)) ∧

(R = ∅)



346

addDatatypePropertyValue(o, U , v, D)

(Ht-OwlApi-AddDatatypePropertyValue)

addDatatypePropertyValue(o, U, v, D)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-Individual(o),

O ` Pc-OwlApi-Declared-Datatype(D),

O ` Pc-OwlApi-Is-Valid-DataValue(v, D),

O ` Pc-OwlApi-Declared-DatatypeProperty(U),

O ` Pc-OwlApi-Is-Compatible-Primitive-Base-Type(D, U)


{Q}: O, addDatatypePropertyValue(o, U, v, D)

{R}:
{

(O ` U(o, v)) ∧ (R = ∅)
}

addDatatypePropertyValueChecked(o, U , v, D)

(Ht-OwlApi-AddDatatypePropertyValueChecked)

addDatatypePropertyValueChecked(o, U, v, D)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-Individual(o),

O ` Pc-OwlApi-Declared-Datatype(D),

O ` Pc-OwlApi-Is-Valid-DataValue(v, D),

O ` Pc-OwlApi-Declared-DatatypeProperty(U),

O ` Pc-OwlApi-Is-Compatible-Primitive-Base-Type(D, U),

O ` Pc-OwlApi-Has-DatatypeProperty(o, U),

O ` Pc-OwlApi-Is-Range-Type(D, U)


{Q}: O, addDatatypePropertyValueChecked(o, U, v, D)

{R}:
{

(O ` U(o, v)) ∧ (R = ∅)
}

347

deleteDatatypePropertyValue(o, U , v, D)

Note: For de�ned datatype property values this method deletes all values whose types are

derived from the same primitive base type like data type D. For example, datatype prop-

erty values "23"��http://www.w3.org/2001/XMLSchema#integer and "23"��http://-

www.w3.org/2001/XMLSchema#long are both deleted for either parameter "23"��http://-

www.w3.org/2001/XMLSchema#integer and "23"��http://www.w3.org/2001/XMLSchema-

#long).

An InvalidDataValueException is thrown if a property value of the given type does not

exist (e.g., "v"��D must not be "23"��http://www.w3.org/2001/XMLSchema#string

for datatype property values "23"��http://www.w3.org/2001/XMLSchema#integer and

"23"��http://www.w3.org/2001/XMLSchema#long).

(Ht-OwlApi-DeleteDatatypePropertyValue)

deleteDatatypePropertyValue(o, U, v, D)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-Individual(o),

O ` Pc-OwlApi-Declared-Datatype(D),

O ` Pc-OwlApi-Is-Valid-DataValue(v, D),

O ` Pc-OwlApi-Declared-DatatypeProperty(U),

O ` Pc-OwlApi-Is-Compatible-Primitive-Base-Type(D, U),

O ` Pc-OwlApi-Is-DatatypeProperty-Value-Of-Individual(o, U, v)


{Q}: O, deleteDatatypePropertyValue(o, U, v, D)

{R}:
{

(O 0 U(o, v)) ∧ (R = ∅)
}

348

assignDatatypePropertyValue(o, U , v, D)

(Ht-OwlApi-AssignDatatypePropertyValue)

assignDatatypePropertyValue(o, U, v, D)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-Individual(o),

O ` Pc-OwlApi-Declared-Datatype(D),

O ` Pc-OwlApi-Is-Valid-DataValue(v, D),

O ` Pc-OwlApi-Declared-DatatypeProperty(U),

O ` Pc-OwlApi-Is-Compatible-Primitive-Base-Type(D, U)


{Q}: O, assignDatatypePropertyValue(o, U, v, D)

{R}:

 (O ` U(o, v)) ∧ (O ` ∀x.(〈oI , xD〉 ∈ UI)⇒ (xD = vD)) ∧

(R = ∅)


assignDatatypePropertyValueChecked(o, U , v, D)

(Ht-OwlApi-AssignDatatypePropertyValueChecked)

assignDatatypePropertyValueChecked(o, U, v, D)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-Individual(o),

O ` Pc-OwlApi-Declared-Datatype(D),

O ` Pc-OwlApi-Is-Valid-DataValue(v, D),

O ` Pc-OwlApi-Declared-DatatypeProperty(U),

O ` Pc-OwlApi-Is-Compatible-Primitive-Base-Type(D, U),

O ` Pc-OwlApi-Has-DatatypeProperty(o, U),

O ` Pc-OwlApi-Is-Range-Type(D, U)


{Q}: O, assignDatatypePropertyValueChecked(o, U, v, D)

{R}:

 (O ` U(o, v)) ∧ (O ` ∀x.(〈oI , xD〉 ∈ UI)⇒ (xD = vD)) ∧

(R = ∅)



349

G.2 The IAskingABox Interface

listSameIndividuals(o)

(Ht-OwlApi-ListSameIndividuals)

listSameIndividuals(o)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Individual(o)


{Q}: O, listSameIndividuals(o)

{R}:
{
R = {x | O ` xI = oI}

}
listDi�erentIndividuals(o)

(Ht-OwlApi-ListDifferentIndividuals)

listDifferentIndividuals(o)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Individual(o)


{Q}: O, listDifferentIndividuals(o)

{R}:
{
R = {x | O ` xI 6= oI}

}
listIndividualsOfClass(C)

(Ht-OwlApi-ListIndividualsOfClass)

listIndividualsOfClass(C)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Concept(C)


{Q}: O, listIndividualsOfClass(C)

{R}:
{
R = {o | O ` oI ∈ CI}

}

350

getCardinalityOfClass(C)

(Ht-OwlApi-GetCardinalityOfClass)

getCardinalityOfClass(C)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Concept(C)


{Q}: O, getCardinalityOfClass(C)

{R}:
{
R = |{o | O ` oI ∈ CI}|

}
listRDFTypesOfIndividual(o)

Note: For declared individuals, the list of RDF types returned by this method always

includes the top level concept http://www.w3.org/2002/07/owl#Thing ; the list does not

contain http://www.w3.org/2000/01/rdf-schema#Resource.

(Ht-OwlApi-ListRDFTypesOfIndividual)

listRDFTypesOfIndividual(o)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Individual(o)


{Q}: O, listRDFTypesOfIndividual(o)

{R}:
{
R = {C | O ` oI ∈ CI}

}
listDirectRDFTypesOfIndividual(o)

(Ht-OwlApi-ListDirectRDFTypesOfIndividual)

listDirectRDFTypesOfIndividual(o)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Individual(o)


{Q}: O, listDirectRDFTypesOfIndividual(o)

{R}:
{
R = {C | O ` (oI ∈ CI) ∧ @E.((O ` EI ⊆ CI) ∧ (O ` oI ∈ EI))}

}

351

listObjectPropertiesOfIndividual(o)

(Ht-OwlApi-ListObjectPropertiesOfIndividual)

listObjectPropertiesOfIndividual(o)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Individual(o)


{Q}: O, listObjectPropertiesOfIndividual(o)

{R}:
{
R = {R | O ` (≥1R v C) ∧ O ` (oI ∈ CI)}

}
listDatatypePropertiesOfIndividual(o)

(Ht-OwlApi-ListDatatypePropertiesOfIndividual)

listDatatypePropertiesOfIndividual(o)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Individual(o)


{Q}: O, listDatatypePropertiesOfIndividual(o)

{R}:
{
R = {U | O ` (≥1U v C) ∧ O ` (oI ∈ CI)}

}
listObjectPropertyValuesOfIndividual(o, R)

(Ht-OwlApi-ListObjectPropertyValuesOfIndividual)

listObjectPropertyValuesOfIndividual(o, R)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Individual(o),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, listObjectPropertyValuesOfIndividual(o, R)

{R}:
{
R = {x | O ` 〈oI , xI〉 ∈ RI}

}

352

getCardinalityOfObjectPropertyValuesOfIndividual(o, R)

(Ht-OwlApi-GetCardinalityOfObjectPropertyValuesOfIndividual)

getCardinalityOfObjectPropertyValuesOfIndividual(o, R)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Individual(o),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, getCardinalityOfObjectPropertyValuesOfIndividual(o, R)

{R}:
{
R = |{x | O ` 〈oI , xI〉 ∈ RI}|

}
listDatatypePropertyValuesOfIndividual(o, U)

(Ht-OwlApi-ListDatatypePropertyValuesOfIndividual)

listDatatypePropertyValuesOfIndividual(o, U)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Individual(o),

O ` Pc-OwlApi-Declared-DatatypeProperty(U)


{Q}: O, listDatatypePropertyValuesOfIndividual(o, U)

{R}:
{
R = {x | O ` 〈oI , xD〉 ∈ UI}

}
getCardinalityOfDatatypePropertyValuesOfIndividual(o, U)

(Ht-OwlApi-GetCardinalityOfDatatypePropertyValuesOfIndividual)

getCardinalityOfDatatypePropertyValuesOfIndividual(o, U)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Individual(o),

O ` Pc-OwlApi-Declared-DatatypeProperty(U)


{Q}: O, getCardinalityOfDatatypePropertyValuesOfIndividual(o, U)

{R}:
{
R = |{x | O ` 〈oI , xD〉 ∈ UI}|

}

353

G.3 The ITellingTBox Interface

declareClass(C)

(Ht-OwlApi-DeclareClass)

declareClass(A)
.
=

{P}:
{
η(O)

}
{Q}: O, declareClass(C)

{R}:
{

(O ` C ∈ NC) ∧ (R = ∅)
}

removeClass(C)

Note: This method removes the speci�ed named concept description from the ontology by

deleting any statements that refer to it, as either statement-subject or statement-object.

(Ht-OwlApi-RemoveClass)

removeClass(C)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Concept(C)


{Q}: O, removeClass(C)

{R}:
{

(O 0 C ∈ NC) ∧ (R = ∅)
}

declareEquivalentClass(C1, C2)

(Ht-OwlApi-DeclareEquivalentClass)

declareEquivalentClass(C1, C2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Concept(C1),

O ` Pc-OwlApi-Declared-Concept(C2)


{Q}: O, declareEquivalentClass(C1, C2)

{R}:
{

(O ` C1 ≡ C2) ∧ (R = ∅)
}

354

declareDisjointClass(C1, C2)

(Ht-OwlApi-DeclareDisjointClass)

declareDisjointClass(C1, C2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Concept(C1),

O ` Pc-OwlApi-Declared-Concept(C2)


{Q}: O, declareDisjointClass(C1, C2)

{R}:
{

(O ` C1 v ¬C2) ∧ (R = ∅)
}

declareSubClass(C1, C2)

(Ht-OwlApi-DeclareSubClass)

declareSubClass(C1, C2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Concept(C1),

O ` Pc-OwlApi-Declared-Concept(C2)


{Q}: O, declareSubClass(C1, C2)

{R}:
{

(O ` C1 v C2) ∧ (R = ∅)
}

declareSuperClass(C1, C2)

(Ht-OwlApi-DeclareSuperClass)

declareSuperClass(C1, C2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Concept(C1),

O ` Pc-OwlApi-Declared-Concept(C2)


{Q}: O, declareSuperClass(C1, C2)

{R}:
{

(O ` C1 w C2) ∧ (R = ∅)
}

355

declareIntersectionClass(C, {Ci}i∈1..n)

(Ht-OwlApi-DeclareIntersectionClass)

declareIntersectionClass(C, {Ci}i∈1..n)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Concept(C),

O ` Pc-OwlApi-Declared-Concept(Ci)
i∈1..n


{Q}: O, declareIntersectionClass(C, {Ci}i∈1..n)

{R}:
{

(O ` C ≡ C1 u · · · u Cn) ∧ (R = ∅)
}

declareUnionClass(C, {Ci}i∈1..n)

(Ht-OwlApi-DeclareUnionClass)

declareUnionClass(C, {Ci}i∈1..n)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Concept(C),

O ` Pc-OwlApi-Declared-Concept(Ci)
i∈1..n


{Q}: O, declareUnionClass(C, {Ci}i∈1..n)

{R}:
{

(O ` C ≡ C1 t · · · t Cn) ∧ (R = ∅)
}

declareComplementClass(C1, C2)

(Ht-OwlApi-DeclareComplementClass)

declareComplementClass(C1, C2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Concept(C1),

O ` Pc-OwlApi-Declared-Concept(C2)


{Q}: O, declareComplementClass(C1, C2)

{R}:
{

(O ` C1 ≡ ¬C2) ∧ (R = ∅)
}

356

declareEnumeratedClass(C, {oi}i∈1..n)

(Ht-OwlApi-DeclareEnumeratedClass)

declareEnumeratedClass(C, {oi}i∈1..n)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Concept(C),

O ` Pc-OwlApi-Declared-Individual(oi)
i∈1..n


{Q}: O, declareEnumeratedClass(C, {oi}i∈1..n)

{R}:
{

(O ` C ≡ {o1, . . . , on}) ∧ (R = ∅)
}

declareObjectProperty(C1, R, C2)

(Ht-OwlApi-DeclareObjectProperty)

declareObjectProperty(C1, R, C2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Concept(C1),

O ` Pc-OwlApi-Declared-Concept(C2)


{Q}: O, declareObjectProperty(C1, R, C2)

{R}:
{

(O ` (≥1R) v C1) ∧ (O ` > v ∀R.C2) ∧ (R = ∅)
}

addObjectPropertyDomain(C, R)

(Ht-OwlApi-AddObjectPropertyDomain)

addObjectPropertyDomain(C, R)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Concept(C),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, addObjectPropertyDomain(C, R)

{R}:
{

(O ` (≥1R) v C1) ∧ (R = ∅)
}

357

addObjectPropertyRange(R, C)

(Ht-OwlApi-AddObjectPropertyRange)

addObjectPropertyRange(R, C)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Concept(C),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, addObjectPropertyRange(R, C)

{R}:
{

(O ` > v ∀R.C2) ∧ (R = ∅)
}

declareAsFunctionalObjectProperty(R)

(Ht-OwlApi-DeclareAsFunctionalObjectProperty)

declareAsFunctionalObjectProperty(R)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, declareAsFunctionalObjectProperty(R)

{R}:
{

(O ` > v (≤1R)) ∧ (R = ∅)
}

declareAsSymmetricObjectProperty(R)

(Ht-OwlApi-DeclareAsSymmetricObjectProperty)

declareAsSymmetricObjectProperty(R)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, declareAsSymmetricObjectProperty(R)

{R}:
{

(O ` R v R−) ∧ (R = ∅)
}

358

declareAsTransitiveObjectProperty(R)

(Ht-OwlApi-DeclareAsTransitiveObjectProperty)

declareAsTransitiveObjectProperty(R)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, declareAsTransitiveObjectProperty(R)

{R}:
{

(O ` Trans(R)) ∧ (R = ∅)
}

declareAsInverseFunctionalObjectProperty(R)

(Ht-OwlApi-DeclareAsInverseFunctionalObjectProperty)

declareAsInverseFunctionalObjectProperty(R)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, declareAsInverseFunctionalObjectProperty(R)

{R}:
{

(O ` > v (≤1R−)) ∧ (R = ∅)
}

declareAsInverseObjectProperties(R1, R2)

(Ht-OwlApi-DeclareAsInverseObjectProperties)

declareAsInverseObjectProperties(R1, R2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R1),

O ` Pc-OwlApi-Declared-ObjectProperty(R2)


{Q}: O, declareAsInverseObjectProperties(R1, R2)

{R}:
{

(O ` R1 v R−2) ∧ (O ` R2 v R−1) ∧ (R = ∅)
}

359

declareDatatypeProperty(C, U , D)

(Ht-OwlApi-DeclareDatatypeProperty)

declareDatatypeProperty(C, U, D)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-Concept(C),

O ` Pc-OwlApi-Declared-Datatype(D)


{Q}: O, declareDatatypeProperty(C, U, D)

{R}:
{

(O ` (≥1U) v C) ∧ (O ` > v ∀U.D) ∧ (R = ∅)
}

declareAsFunctionalDatatypeProperty(U)

(Ht-OwlApi-DeclareAsFunctionalDatatypeProperty)

declareAsFunctionalDatatypeProperty(U)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-DatatypeProperty(U)


{Q}: O, declareAsFunctionalDatatypeProperty(U)

{R}:
{

(O ` > v (≤1U)) ∧ (R = ∅)
}

declareSubObjectProperty(R1, R2)

(Ht-OwlApi-DeclareSubObjectProperty)

declareSubObjectProperty(R1, R2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R1),

O ` Pc-OwlApi-Declared-ObjectProperty(R2)


{Q}: O, declareSubObjectProperty(R1, R2)

{R}:
{

(O ` R1 v R2) ∧ (R = ∅)
}

360

declareEquivalentObjectProperty(R1, R2)

(Ht-OwlApi-DeclareEquivalentObjectProperty)

declareEquivalentObjectProperty(R1, R2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R1),

O ` Pc-OwlApi-Declared-ObjectProperty(R2)


{Q}: O, declareEquivalentObjectProperty(R1, R2)

{R}:
{

(O ` R1 ≡ R2) ∧ (R = ∅)
}

declareSuperObjectProperty(R1, R2)

(Ht-OwlApi-DeclareSuperObjectProperty)

declareSuperObjectProperty(R1, R2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R1),

O ` Pc-OwlApi-Declared-ObjectProperty(R2)


{Q}: O, declareSuperObjectProperty(R1, R2)

{R}:
{

(O ` R1 w R2) ∧ (R = ∅)
}

declareSubDatatypeProperty(U1, U2)

(Ht-OwlApi-DeclareSubDatatypeProperty)

declareSubDatatypeProperty(U1, U2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-DatatypeProperty(U1),

O ` Pc-OwlApi-Declared-DatatypeProperty(U2)


{Q}: O, declareSubDatatypeProperty(U1, U2)

{R}:
{

(O ` U1 v U2) ∧ (R = ∅)
}

361

declareEquivalentDatatypeProperty(U1, U2)

(Ht-OwlApi-DeclareEquivalentDatatypeProperty)

declareEquivalentDatatypeProperty(U1, U2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-DatatypeProperty(U1),

O ` Pc-OwlApi-Declared-DatatypeProperty(U2)


{Q}: O, declareEquivalentDatatypeProperty(U1, U2)

{R}:
{

(O ` U1 ≡ U2) ∧ (R = ∅)
}

declareSuperDatatypeProperty(U1, U2)

(Ht-OwlApi-DeclareSuperDatatypeProperty)

declareSuperDatatypeProperty(U1, U2)
.
=

{P}:


η(O),

O ` Pc-OwlApi-Declared-DatatypeProperty(U1),

O ` Pc-OwlApi-Declared-DatatypeProperty(U2)


{Q}: O, declareSuperDatatypeProperty(U1, U2)

{R}:
{

(O ` U1 w U2) ∧ (R = ∅)
}

addObjectPropertyHasValueRestriction(C, R, o)

(Ht-OwlApi-AddObjectPropertyHasValueRestriction)

addObjectPropertyHasValueRestriction(C, R, o)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R),

O ` Pc-OwlApi-Declared-Concept(C),

O ` Pc-OwlApi-Declared-Individual(o)


{Q}: O, addObjectPropertyHasValueRestriction(C, R, o)

{R}:
{

(O ` C v (∃R.{o})) ∧ (R = ∅)
}

362

addSomeValuesFromConceptRestriction(C1, R, C2)

(Ht-OwlApi-AddSomeValuesFromConceptRestriction)

addSomeValuesFromConceptRestriction(C1, R, C2)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R),

O ` Pc-OwlApi-Declared-Concept(C1),

O ` Pc-OwlApi-Declared-Concept(C2)


{Q}: O, addSomeValuesFromConceptRestriction(C1, R, C2)

{R}:
{

(O ` C1 v (∃R.C2)) ∧ (R = ∅)
}

addSomeValuesFromDatatypeRestriction(C, U , D)

(Ht-OwlApi-AddSomeValuesFromDatatypeRestriction)

addSomeValuesFromDatatypeRestriction(C, U, D)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-DatatypeProperty(U),

O ` Pc-OwlApi-Declared-Concept(C),

O ` Pc-OwlApi-Declared-Datatype(D)


{Q}: O, addSomeValuesFromDatatypeRestriction(C, U, D)

{R}:
{

(O ` C v (∃U.D)) ∧ (R = ∅)
}

363

addAllValuesFromConceptRestriction(C1, R, C2)

(Ht-OwlApi-AddAllValuesFromConceptRestriction)

addAllValuesFromConceptRestriction(C1, R, C2)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R),

O ` Pc-OwlApi-Declared-Concept(C1),

O ` Pc-OwlApi-Declared-Concept(C2)


{Q}: O, addAllValuesFromConceptRestriction(C1, R, C2)

{R}:
{

(O ` C1 v (∀R.C2)) ∧ (R = ∅)
}

addAllValuesFromDatatypeRestriction(C, U , D)

(Ht-OwlApi-AddAllValuesFromDatatypeRestriction)

addAllValuesFromDatatypeRestriction(C, U, D)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-DatatypeProperty(U),

O ` Pc-OwlApi-Declared-Concept(C),

O ` Pc-OwlApi-Declared-Datatype(D)


{Q}: O, addAllValuesFromDatatypeRestriction(C, U, D)

{R}:
{

(O ` C v (∀U.D)) ∧ (R = ∅)
}

364

addObjectPropertyMinCardinalityRestriction(C, R, n)

(Ht-OwlApi-AddObjectPropertyMinCardinalityRestriction)

addObjectPropertyMinCardinalityRestriction(C, R, n)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R),

O ` Pc-OwlApi-Declared-Concept(C),

O ` Pc-OwlApi-Is-Natural-Number(n)


{Q}: O, addObjectPropertyMinCardinalityRestriction(C, R, n)

{R}:
{

(O ` C v (≥nR)) ∧ (R = ∅)
}

addObjectPropertyCardinalityRestriction(C, R, n)

(Ht-OwlApi-AddObjectPropertyCardinalityRestriction)

addObjectPropertyCardinalityRestriction(C, R, n)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R),

O ` Pc-OwlApi-Declared-Concept(C),

O ` Pc-OwlApi-Is-Natural-Number(n)


{Q}: O, addObjectPropertyCardinalityRestriction(C, R, n)

{R}:
{

(O ` C v (=nR)) ∧ (R = ∅)
}

365

addObjectPropertyMaxCardinalityRestriction(C, R, n)

(Ht-OwlApi-AddObjectPropertyMaxCardinalityRestriction)

addObjectPropertyMaxCardinalityRestriction(C, R, n)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R),

O ` Pc-OwlApi-Declared-Concept(C),

O ` Pc-OwlApi-Is-Natural-Number(n)


{Q}: O, addObjectPropertyMaxCardinalityRestriction(C, R, n)

{R}:
{

(O ` C v (≤nR)) ∧ (R = ∅)
}

addDatatypePropertyMinCardinalityRestriction(C, U , n)

(Ht-OwlApi-AddDatatypePropertyMinCardinalityRestriction)

addDatatypePropertyMinCardinalityRestriction(C, U, n)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-DatatypeProperty(U),

O ` Pc-OwlApi-Declared-Concept(C),

O ` Pc-OwlApi-Is-Natural-Number(n)


{Q}: O, addDatatypePropertyMinCardinalityRestriction(C, U, n)

{R}:
{

(O ` C v (≥nU)) ∧ (R = ∅)
}

366

addDatatypePropertyCardinalityRestriction(C, U , n)

(Ht-OwlApi-AddDatatypePropertyCardinalityRestriction)

addDatatypePropertyCardinalityRestriction(C, U, n)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-DatatypeProperty(U),

O ` Pc-OwlApi-Declared-Concept(C),

O ` Pc-OwlApi-Is-Natural-Number(n)


{Q}: O, addDatatypePropertyCardinalityRestriction(C, U, n)

{R}:
{

(O ` C v (=nU)) ∧ (R = ∅)
}

addDatatypePropertyMaxCardinalityRestriction(C, U , n)

(Ht-OwlApi-AddDatatypePropertyMaxCardinalityRestriction)

addDatatypePropertyMaxCardinalityRestriction(C, U, n)
.
=

{P}:



η(O),

O ` Pc-OwlApi-Declared-DatatypeProperty(U),

O ` Pc-OwlApi-Declared-Concept(C),

O ` Pc-OwlApi-Is-Natural-Number(n)


{Q}: O, addDatatypePropertyMaxCardinalityRestriction(C, U, n)

{R}:
{

(O ` C v (≤nU)) ∧ (R = ∅)
}

367

G.4 The IAskingTBox Interface

listClasses()

(Ht-OwlApi-ListClasses)

listClasses()
.
=

{P}:
{
η(O)

}
{Q}: O, listClasses()

{R}:
{
R = {C | O ` C ∈ NC}

}
listSubClasses(C)

(Ht-OwlApi-ListSubClasses)

listSubClasses(C)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Concept(C)


{Q}: O, listSubClasses(C)

{R}:
{
R = {E | O ` E v C}

}
listDirectSubClasses(C)

(Ht-OwlApi-ListDirectSubClasses)

listDirectSubClasses(C)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Concept(C)


{Q}: O, listDirectSubClasses(C)

{R}:

 R = {E | O ` E v C ∧ ∀F.((O ` E v F ∧ O ` F v C)⇒

O ` (E ≡ F ∨ F ≡ C))}



368

listEquivalentClasses(C)

(Ht-OwlApi-ListEquivalentClasses)

listEquivalentClasses(C)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Concept(C)


{Q}: O, listEquivalentClasses(C)

{R}:
{
R = {E | O ` E ≡ C}

}
listDisjointClasses(C)

(Ht-OwlApi-ListDisjointClasses)

listDisjointClasses(C)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Concept(C)


{Q}: O, listDisjointClasses(C)

{R}:
{
R = {E | O ` E v ¬C}

}
listSuperClasses(C)

(Ht-OwlApi-ListSuperClasses)

listSuperClasses(C)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Concept(C)


{Q}: O, listSuperClasses(C)

{R}:
{
R = {E | O ` E w C}

}

369

listDirectSuperClasses(C)

(Ht-OwlApi-ListDirectSuperClasses)

listDirectSubClasses(C)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Concept(C)


{Q}: O, listDirectSubClasses(C)

{R}:

 R = {E | O ` E w C ∧ ∀F.((O ` E w F ∧ O ` F w C)⇒

O ` (F ≡ E ∨ F ≡ C))}


listDatatypes()

(Ht-OwlApi-ListDatatypes)

listDatatypes()
.
=

{P}:
{
η(O)

}
{Q}: O, listDatatypes()

{R}:
{
R = {D | O ` D ∈ ND}

}
listObjectProperties()

(Ht-OwlApi-ListObjectProperties)

listObjectProperties()
.
=

{P}:
{
η(O)

}
{Q}: O, listObjectProperties()

{R}:
{
R = {R | O ` R ∈ NR}

}

370

listObjectPropertiesOfClass(C)

(Ht-OwlApi-ListObjectPropertiesOfClass)

listObjectPropertiesOfClass(C)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Concept(C)


{Q}: O, listObjectPropertiesOfClass(C)

{R}:
{
R = {R | O ` (≥1R) v C}

}
listDatatypeProperties()

(Ht-OwlApi-ListDatatypeProperties)

listDatatypeProperties()
.
=

{P}:
{
η(O)

}
{Q}: O, listDatatypeProperties()

{R}:
{
R = {U | O ` U ∈ NU}

}
listDatatypePropertiesOfClass(C)

(Ht-OwlApi-ListDatatypePropertiesOfClass)

listDatatypePropertiesOfClass(C)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-Concept(C)


{Q}: O, listDatatypePropertiesOfClass(C)

{R}:
{
R = {U | O ` (≥1U) v C}

}

371

listSubObjectProperties(R)

(Ht-OwlApi-ListSubObjectProperties)

listSubObjectProperties(R)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, listSubObjectProperties(R)

{R}:
{
R = {S | O ` S v R}

}
listEquivalentObjectProperties(R)

(Ht-OwlApi-ListEquivalentObjectProperties)

listEquivalentObjectProperties(R)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, listEquivalentObjectProperties(R)

{R}:
{
R = {S | O ` S ≡ R}

}
listInverseObjectProperties(R)

(Ht-OwlApi-ListInverseObjectProperties)

listInverseObjectProperties(R)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, listInverseObjectProperties(R)

{R}:
{
R = {S | O ` S ≡ R−}

}

372

listSubDatatypeProperties(U)

(Ht-OwlApi-ListSubDatatypeProperties)

listSubDatatypeProperties(U)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-DatatypeProperty(U)


{Q}: O, listSubDatatypeProperties(U)

{R}:
{
R = {S | O ` S v U}

}
listEquivalentDatatypeProperties(U)

(Ht-OwlApi-ListEquivalentDatatypeProperties)

listEquivalentDatatypeProperties(U)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-DatatypeProperty(U)


{Q}: O, listEquivalentDatatypeProperties(U)

{R}:
{
R = {S | O ` S ≡ U}

}
listDomainOfObjectProperty(R)

Note: This list always contains the top level concept http://www.w3.org/2002/07/owl-

#Thing.

(Ht-OwlApi-ListDomainOfObjectProperty)

listDomainOfObjectProperty(R)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, listDomainOfObjectProperty(R)

{R}:
{
R = {C | O ` (≥1R) v C}

}

373

listRangeOfObjectProperty(R)

Note: This list always contains the top level concept http://www.w3.org/2002/07/owl-

#Thing.

(Ht-OwlApi-ListRangeOfObjectProperty)

listRangeOfObjectProperty(R)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, listRangeOfObjectProperty(R)

{R}:
{
R = {C | O ` > v ∀R.C}

}
listDomainOfDatatypeProperty(U)

Note: This list always contains the top level concept http://www.w3.org/2002/07/owl-

#Thing.

(Ht-OwlApi-ListDomainOfDatatypeProperty)

listDomainOfDatatypeProperty(U)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-DatatypeProperty(U)


{Q}: O, listDomainOfDatatypeProperty(U)

{R}:
{
R = {C | O ` (≥ 1U) v C}

}
listRangeOfDatatypeProperty(U)

(Ht-OwlApi-ListRangeOfDatatypeProperty)

listRangeOfDatatypeProperty(U)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-DatatypeProperty(U)


{Q}: O, listRangeOfDatatypeProperty(U)

{R}:
{
R = {D | > v ∀U.D}

}

374

isFunctionalObjectProperty(R)

(Ht-OwlApi-IsFunctionalObjectProperty)

isFunctionalObjectProperty(R)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, isFunctionalObjectProperty(R)

{R}:

 R =


true ; if O ` > v (≤1R)

false ; otherwise


isInverseFunctionalObjectProperty(R)

(Ht-OwlApi-IsInverseFunctionalObjectProperty)

isInverseFunctionalObjectProperty(R)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, isInverseFunctionalObjectProperty(R)

{R}:

 R =


true ; if O ` > v (≤1R−)

false ; otherwise


isSymmetricObjectProperty(R)

(Ht-OwlApi-IsSymmetricObjectProperty)

isSymmetricObjectProperty(R)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, isSymmetricObjectProperty(R)

{R}:

 R =


true ; if O ` R v R−

false ; otherwise



375

isTransitiveObjectProperty(R)

(Ht-OwlApi-IsTransitiveObjectProperty)

isTransitiveObjectProperty(R)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-ObjectProperty(R)


{Q}: O, isTransitiveObjectProperty(R)

{R}:

 R =


true ; if O ` Trans(R)

false ; otherwise


isFunctionalDatatypeProperty(U)

(Ht-OwlApi-IsFunctionalDatatypeProperty)

isFunctionalDatatypeProperty(U)
.
=

{P}:

 η(O),

O ` Pc-OwlApi-Declared-DatatypeProperty(U)


{Q}: O, isFunctionalDatatypeProperty(U)

{R}:

 R =


true ; if O ` > v (≤1U)

false ; otherwise



376

APPENDIX H

Mapping of the CHIL OWL API

The following three sections present mappings from interfaces of the CHIL OWL API

to auxiliary methods and properties of ontological individuals, roles, and static concept

references in Zhi# programs.

The �rst row of each of the following tables contains conventional C# method invoca-

tions on the CHIL OWL API (the Zhimantic.OWL.API.IOWLAPI host object is omitted

for brevity), where concept, role, and individual names are given as quoted string literals.

The second row of each table contains corresponding Zhi# code, where the IOWLAPI

host object is substituted by ontology elements. Also, string literals denoting concept,

role, and individual names will partially be replaced by concept, role, and individual

objects (qualifying namespace aliases are omitted for brevity). Thus, de�ned method

preconditions that are related to the introduced ontology elements can now be statically

checked, which eliminates dynamic checks and possible exceptions at runtime.

The functionality of CHIL OWL API methods marked with an asterisk has already

been implemented in the current version of the OWL DL plug-in for the Zhi# compiler (see

Subsection 6.1.3). Note that in the following sections the naming of the suggested auxiliary

methods and properties may di�er from the actual implementation. Also, the functionality

of particular CHIL OWL API methods may be provided in Zhi# by means of object-

oriented member access and operators instead of auxiliary methods and properties. Also

recall that the TBox of managed knowledge bases is assumed immutable! Furthermore,

note that preconditions marked with an asterisk can only be checked at compile time if

modi�cations of the ABox are monotonic (e.g., individuals must not be deleted).

377

H.1 The ITellingABox Interface

CHIL OWL API: addIndividual("o", "C")∗

Zhi#code: C.New("o")

Checkable preconditions: Pc-OwlApi-Declared-Concept(C)

CHIL OWL API: deleteIndividual("o")∗

Zhi#code: o.Delete()

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)(∗)

CHIL OWL API: declareSameAs("o1", "o2")

Zhi#code: o1.SameAs(o2)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o1)∗

Pc-OwlApi-Declared-Individual(o2)∗

CHIL OWL API: revokeSameAs("o1", "o2")

Zhi#code: o1.RevokeSameAs(o2)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o1)∗

Pc-OwlApi-Declared-Individual(o2)∗

CHIL OWL API: declareDi�erentFrom("o1", "o2")

Zhi#code: o1.Di�erentFrom(o2)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o1)∗

Pc-OwlApi-Declared-Individual(o2)∗

CHIL OWL API: revokeDi�erentFrom("o1", "o2")

Zhi#code: o1.RevokeDi�erentFrom(o2)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o1)∗

Pc-OwlApi-Declared-Individual(o2)∗

378

CHIL OWL API: addObjectPropertyValue("o1", "R", "o2")
∗

Zhi#code: o1.R.Add(o2)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o1)∗

Pc-OwlApi-Declared-Individual(o2)∗

Pc-OwlApi-Declared-ObjectProperty(R)

CHIL OWL API: addObjectPropertyValueChecked("o1", "R", "o2")
∗

Zhi#code: o1.R.AddChecked(o2)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o1)∗

Pc-OwlApi-Declared-Individual(o2)∗

Pc-OwlApi-Declared-ObjectProperty(R)

Pc-OwlApi-Has-ObjectProperty(o1, R)

Pc-OwlApi-Is-Range-Object(o2, R)

CHIL OWL API: deleteObjectPropertyValue("o1", "R", "o2")
∗

Zhi#code: o1.R.Delete(o2)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o1)∗

Pc-OwlApi-Declared-Individual(o2)∗

Pc-OwlApi-Declared-ObjectProperty(R)

CHIL OWL API: assignObjectPropertyValue("o1", "R", "o2")
∗

Zhi#code: o1.R.Assign(o2)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o1)∗

Pc-OwlApi-Declared-Individual(o2)∗

Pc-OwlApi-Declared-ObjectProperty(R)

379

CHIL OWL API: assignObjectPropertyValueChecked("o1", "R",

"o2")
∗

Zhi#code: o1.R.AssignChecked(o2)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o1)∗

Pc-OwlApi-Declared-Individual(o2)∗

Pc-OwlApi-Declared-ObjectProperty(R)

Pc-OwlApi-Has-ObjectProperty(o1, R)

Pc-OwlApi-Is-Range-Object(o2, R)

CHIL OWL API: addDatatypePropertyValue("o", "U", "v", "D")∗

Zhi#code: o1.U .Add(v, D)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)∗

Pc-OwlApi-Declared-Datatype(D)

Pc-OwlApi-Declared-DatatypeProperty(U)

Pc-OwlApi-Is-Compatible-Primitive-Base-

Type(D, U)

CHIL OWL API: addDatatypePropertyValueChecked("o", "U", "v",

"D")∗

Zhi#code: o1.U .AddChecked(v, D)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)∗

Pc-OwlApi-Declared-Datatype(D)

Pc-OwlApi-Declared-DatatypeProperty(U)

Pc-OwlApi-Is-Compatible-Primitive-Base-

Type(D, U)

Pc-OwlApi-Has-DatatypeProperty(o, U)

Pc-OwlApi-Is-Range-Type(D, U)

380

CHIL OWL API: deleteDatatypePropertyValue("o", "U", "v", "D")∗

Zhi#code: o1.U .Delete(v, D)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)∗

Pc-OwlApi-Declared-Datatype(D)

Pc-OwlApi-Declared-DatatypeProperty(U)

Pc-OwlApi-Is-Compatible-Primitive-Base-

Type(D, U)

CHIL OWL API: assignDatatypePropertyValue("o", "U", "v", "D")∗

Zhi#code: o1.U .Assign(v, D)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)∗

Pc-OwlApi-Declared-Datatype(D)

Pc-OwlApi-Declared-DatatypeProperty(U)

Pc-OwlApi-Is-Compatible-Primitive-Base-

Type(D, U)

CHIL OWL API: assignDatatypePropertyValueChecked("o", "U",

"v", "D")∗

Zhi#code: o1.U .AssignChecked(v, D)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)∗

Pc-OwlApi-Declared-Datatype(D)

Pc-OwlApi-Declared-DatatypeProperty(U)

Pc-OwlApi-Is-Compatible-Primitive-Base-

Type(D, U)

Pc-OwlApi-Has-DatatypeProperty(o, U)

Pc-OwlApi-Is-Range-Type(D, U)

381

H.2 The IAskingABox Interface

CHIL OWL API: listSameIndividuals("o")∗

Zhi#code: o.ListSame()

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)∗

CHIL OWL API: listDi�erentIndividuals("o")∗

Zhi#code: o.ListDi�erent()

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)∗

CHIL OWL API: listIndividualsOfClass("C")∗

Zhi#code: C.List()

Checkable preconditions: Pc-OwlApi-Declared-Concept(C)

CHIL OWL API: getCardinalityOfClass("C")∗

Zhi#code: C.Cardinality

Checkable preconditions: Pc-OwlApi-Declared-Concept(C)

CHIL OWL API: listRDFTypesOfIndividual("o")∗

Zhi#code: o.ListRDFTypes()

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)∗

CHIL OWL API: listDirectRDFTypesOfIndividual("o")∗

Zhi#code: o.ListDirectRDFTypes()

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)∗

CHIL OWL API: listObjectPropertiesOfIndividual("o")

Zhi#code: o.ListObjectProperties()

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)∗

CHIL OWL API: listDatatypePropertiesOfIndividual("o")

Zhi#code: o.ListDatatypeProperties()

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)∗

382

CHIL OWL API: listObjectPropertyValuesOfIndividual("o", "R")

Zhi#code: o.ListObjectPropertyValues(R)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)∗

Pc-OwlApi-Declared-ObjectProperty(R)

CHIL OWL API: getCardinalityOfObjectPropertyValues-

OfIndividual("o", "R")

Zhi#code: o.GetObjectPropertyValuesCount(R)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)∗

Pc-OwlApi-Declared-ObjectProperty(R)

CHIL OWL API: listDatatypePropertyValuesOfIndividual("o", "U")

Zhi#code: o.ListDatatypePropertyValues(U)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)∗

Pc-OwlApi-Declared-DatatypeProperty(U)

CHIL OWL API: getCardinalityOfDatatypePropertyValues-

OfIndividual("o", "U")

Zhi#code: o.GetDatatypePropertyValuesCount(U)

Checkable preconditions: Pc-OwlApi-Declared-Individual(o)∗

Pc-OwlApi-Declared-DatatypeProperty(U)

383

H.3 The IAskingTBox Interface

CHIL OWL API: listSubClasses("C")

Zhi#code: C.ListSubClasses()

Checkable preconditions: Pc-OwlApi-Declared-Concept(C)

CHIL OWL API: listDirectSubClasses("C")

Zhi#code: C.ListDirectSubClasses()

Checkable preconditions: Pc-OwlApi-Declared-Concept(C)

CHIL OWL API: listEquivalentClasses("C")

Zhi#code: C.ListEquivalentClasses()

Checkable preconditions: Pc-OwlApi-Declared-Concept(C)

CHIL OWL API: listDisjointClasses("C")

Zhi#code: C.ListDisjointClasses()

Checkable preconditions: Pc-OwlApi-Declared-Concept(C)

CHIL OWL API: listSuperClasses("C")

Zhi#code: C.ListSuperClasses()

Checkable preconditions: Pc-OwlApi-Declared-Concept(C)

CHIL OWL API: listDirectSuperClasses("C")

Zhi#code: C.ListDirectSuperClasses()

Checkable preconditions: Pc-OwlApi-Declared-Concept(C)

CHIL OWL API: listObjectPropertiesOfClass("C")

Zhi#code: C.ListObjectProperties()

Checkable preconditions: Pc-OwlApi-Declared-Concept(C)

CHIL OWL API: listDatatypePropertiesOfClass("C")

Zhi#code: C.ListDatatypeProperties()

Checkable preconditions: Pc-OwlApi-Declared-Concept(C)

384

CHIL OWL API: listSubObjectProperties("R")

Zhi#code: R.ListSubProperties()

Checkable preconditions: Pc-OwlApi-Declared-ObjectProperty(R)

CHIL OWL API: listEquivalentObjectProperties("R")

Zhi#code: R.ListEquivalentProperties()

Checkable preconditions: Pc-OwlApi-Declared-ObjectProperty(R)

CHIL OWL API: listInverseObjectProperties("R")

Zhi#code: R.ListInverseProperties()

Checkable preconditions: Pc-OwlApi-Declared-ObjectProperty(R)

CHIL OWL API: listSubDatatypeProperties("U")

Zhi#code: U .ListSubProperties()

Checkable preconditions: Pc-OwlApi-Declared-DatatypeProperty(U)

CHIL OWL API: listEquivalentDatatypeProperties("U")

Zhi#code: U .ListEquivalentProperties()

Checkable preconditions: Pc-OwlApi-Declared-DatatypeProperty(U)

CHIL OWL API: listDomainOfObjectProperty("R")

Zhi#code: R.ListDomain()

Checkable preconditions: Pc-OwlApi-Declared-ObjectProperty(R)

CHIL OWL API: listRangeOfObjectProperty("R")

Zhi#code: R.ListRange()

Checkable preconditions: Pc-OwlApi-Declared-ObjectProperty(R)

385

CHIL OWL API: listDomainOfDatatypeProperty("U")

Zhi#code: U .ListDomain()

Checkable preconditions: Pc-OwlApi-Declared-DatatypeProperty(U)

CHIL OWL API: listRangeOfDatatypeProperty("U")

Zhi#code: U .ListRange()

Checkable preconditions: Pc-OwlApi-Declared-DatatypeProperty(U)

CHIL OWL API: isFunctionalObjectProperty("R")

Zhi#code: R.IsFunctional

Checkable preconditions: Pc-OwlApi-Declared-ObjectProperty(R)

CHIL OWL API: isInverseFunctionalObjectProperty("R")

Zhi#code: R.IsInverseFunctional

Checkable preconditions: Pc-OwlApi-Declared-ObjectProperty(R)

CHIL OWL API: isSymmetricObjectProperty("R")

Zhi#code: R.IsSymmetric

Checkable preconditions: Pc-OwlApi-Declared-ObjectProperty(R)

CHIL OWL API: isTransitiveObjectProperty("R")

Zhi#code: R.IsTransitive

Checkable preconditions: Pc-OwlApi-Declared-ObjectProperty(R)

CHIL OWL API: isFunctionalDatatypeProperty("U")

Zhi#code: U .IsFunctional

Checkable preconditions: Pc-OwlApi-Declared-DatatypeProperty(U)

386

APPENDIX I

Zhi# Syntax and Semantics

The Zhi# programming language is a proper superset of ECMA standard C# version 1.0

[HWG02]. Zhi# includes a modicum of syntactical extensions to accommodate for the

import and use of external type de�nitions in Zhi# programs. The syntactical extensions

provided by the Zhi# compiler framework are �xed (i.e. compiler plug-ins cannot augment

the syntax of the Zhi# programming language). Zhi#'s syntactical extensions to the

conventional C# language grammar comprise the import-directive for including external

namespaces, the naming scheme of external types in Zhi# programs, and seven additional

binary operators, which correspond to constraining facets in XML Schema De�nition

[BM04b]. The syntactical extensions are described in Section I.1.

Compiler plug-ins contribute external (sub-)typing and type inference mechanisms of

external type systems. External type systems determine the semantics of object creation

and conversion, object-oriented member access, operators, assignments, and runtime type

checks in Zhi# programs that involve external type de�nitions. In particular, compiler

plug-ins can provide for property access and method invocations on external types on

the class and instance level. External types can be indexed and be subject to iterator

expressions. Compiler plug-ins can implement meta-properties of external types that do

not exist in the external type system but improve the programmability.

Section I.2 speci�es the semantics of the import-directive and XSD and OWL-speci�c

semantics of object creations and conversions, object-oriented member access, operators,

assignments, and runtime type checks. Both syntax as well as semantics are speci�ed

complementary to the C# language speci�cation.

387

I.1 Syntax

This section describes Zhi#'s extensions to the C# 1.0 lexical and syntactic grammars.

Extensions to the original C# grammar productions are underlined. The C# 1.0 lexical

and syntactic grammar is given in Appendix A.13 and A.14, respectively, in the ECMA 334

standard speci�cation [HWG02]. The following paragraph names correspond to paragraph

names in the ECMA speci�cation. Omitted production rules in paragraphs are indicated

with ellipses. Monospace font indicates Zhi# keywords.

Basic concepts (syntactic)

type-name:

namespace-or-type-name

external-type-name

external-type-name:

#identi�er#identi�er

. . .

Namespaces (syntactic)

compilation-unit:

using-directivesopt import-directivesopt global-attributesopt ↪→

namespace-member-declarationsopt

namespace-body:

{ using-directivesopt import-directivesopt namespace-member-declarationsopt }

import-directives:

import-directive

import-directives import-directive

import-directive:

import identi�er identi�er = external-namespace-name ;

. . .

388

Keywords (lexical)

keyword: one of

abstract as base bool break byte case

catch char checked class const continue decimal

default delegate do double else enum event

explicit false finally float for foreach goto

if implicit import in int interface internal

is lock long namespace new null object

operator out override params private protected public

readonly ref return sbyte sealed short sizeof

static string struct switch this throw true

try typeof uint ulong unchecked ushort using

virtual void volatile while

Operators and punctuators (lexical)

operator-or-punctuator: one of

{ } [] () . , : ; + − ∗

/ % & | ^ ! ~ = < > ? ++ −−

&& | | << >> == ! = <= >= + = − = ∗ = / = % =

&= |= ^= <<= >>= ?= ?< ?> ?? $= %% %.

Note: In C# 3.0 the �null coalescing� operator (??) was introduced, which checks

whether the value provided on the left side of the expression is null, and if so it returns

an alternative value indicated by the right side of the expression.

External namespace name (additional lexical)

external-namespace-name:

An RFC 2396 1 compliant Uniform Resource Identi�er (URI)

1see [BFM98]

389

I.2 Semantics

Following the speci�cation of the Zhi# syntax by means of a formal grammar, this sec-

tion speci�es the semantics of Zhi# expressions that involve external types. Programming

language semantics can be de�ned in a number of ways. The behavior of programming

languages can be made explicit by model (or reference) implementations. Reference im-

plementations are designated as authoritative. The meaning of a program can simply be

determined by running the program on the reference implementation, which, of course,

needs to behave deterministically for the given input. The model implementation ap-

proach has been used for, for example, the Perl programming language. The implementa-

tion of the Zhi# programming language described in this work is, however, not intended

to be a reference implementation since this would con�ate bugs of the current implemen-

tation with the language speci�cation. Notably, in case of Perl, the existence of a reference

implementation has prevented any other implementation of the language. In contrast, the

characteristic features of the Zhi# programming language may prospectively be adopted

in other programming languages as well. In the same vein, Zhi# is not completely de�ned

by the test suite mentioned in Section 7.1. Obviously, language implementations that can

only run the test suite would be near to useless. Still, the approximately 12 KLOC re-

gression test code may certainly be used for testing di�erent implementations of the Zhi#

programming language. In particular, similar test code could be used if Zhi# language

features are integrated with other statically typed object-oriented programming languages

such as, for example, Java. Formal semantics of programming languages are grounded in

mathematics. Formal semantics allow for mathematical proofs of program correctness and

the soundness of type systems. However, mathematical rigor to devise unambiguous and

uniform language standards is mostly applicable only to simple programming languages,

such as, for example, the λC-calculus (see Chapter 3). In practice, formal semantics of real

life programming languages quickly become too di�cult for practical use and are therefore

often accompanied by natural language descriptions. Semantic de�nitions of, for exam-

390

ple, the C language are given in natural language. In the following two subsections, the

semantics of Zhi# expressions that involve XML data types and OWL DL ontologies will

be explained. Based on the discussion above, semantic de�nitions are provided in natu-

ral language. In particular, semantics are speci�ed for object creations and conversions,

object-oriented member access, runtime type checks, and method invocations.

I.2.1 XML Schema De�nition

The following speci�cation of the behavior of the use of XML data types in Zhi# programs

is complementary to the ECMA 334 standard speci�cation of the C# programming lan-

guage [HWG02], which applies for all cases that are not considered below. In particular,

Zhi# grammar production rules can be found in Section I.1 above and in [HWG02]. For

the sake of brevity, in this section, citations of paragraphs denoted by � or �� refer to

sections in the C# language speci�cation [HWG02].

I.2.1.1 Import directives

Import directives facilitate the use of XML data types that are de�ned in XML name-

spaces (cf. � 9.3). The scope of an import-directive extends over the namespace-member-

declarations of its immediately containing compilation unit or Zhi# namespace body. The

scope of an import-directive speci�cally does not include its peer import-directives. Thus,

peer import-directives do not a�ect each other, and the order in which they are written

is insigni�cant.

import-directives:

import-directive

import-directives import-directive

import-directive:

import identi�er identi�er = external-namespace-name ;

391

The �rst identi�er following the import keyword serves as a type system evidence,

which determines the Zhi# compiler plug-in that processes the import-directive (XML is

used for XML Schema De�nition). A compile-time error occurs if no plug-in is available for

the speci�ed type system. The second identi�er serves as an alias for an XML namespace

within the immediately enclosing compilation unit or Zhi# namespace body. Within

member declarations in a compilation unit or Zhi# namespace body that contains an

import-directive, the identi�er introduced by the import-directive can be used to reference

the given XML namespace. For example:

1 import XML xsd = http ://www.w3 . org /2001/XMLSchema ;

2 c l a s s C {

3 pub l i c s t a t i c void Main () {

4 #xsd#in t = 23 ;

5 }}

The identi�er of an import-directive must be unique within the declaration space of

the compilation unit or Zhi# namespace that immediately contains the import-directive.

It is a compile-time error for two or more import-directives in the same compilation unit

or Zhi# namespace body to declare aliases by the same name. For example:

1 import XML xsd = namespace 1 ;

2 import XML xsd = namespace 2 ; // Error, xsd already exists

An import-directive makes an alias available within a particular compilation unit or

namespace body, but it does not contribute any new members to the underlying decla-

ration space. In other words, an import-directive is not transitive but rather a�ects only

the compilation unit or Zhi# namespace body in which it occurs. In the example

1 namespace N1 {

2 import XML xsd = http ://www.w3 . org /2001/XMLSchema ;

3 }

4 namespace N1 {

392

5 c l a s s C {

6 pub l i c s t a t i c void Main () {

7 #xsd#in t = 23 ;

8 }}}

the scope of the import-directive that introduces xsd only extends to member decla-

rations in the Zhi# namespace body in which it is contained, so xsd is unknown in the

second namespace declaration. However, placing the import-directive in the containing

compilation unit causes the alias to become available within both namespace declarations:

1 import XML xsd = http ://www.w3 . org /2001/XMLSchema ;

2 namespace N1 {

3 [. . .]

4 }

5 namespace N1 {

6 c l a s s C {

7 pub l i c s t a t i c void Main () {

8 #xsd#in t = 23 ;

9 }}}

Just like regular members, aliases introduced by import-directives are hidden by sim-

ilarly named members in nested scopes. In the example

1 import XML xsd = http ://www.w3 . org /2001/XMLSchema ;

2 namespace N1 {

3 c l a s s C {

4 pub l i c s t a t i c void Main () {

5 i n t xsd = 0 ;

6 #xsd#in t = 23 ; // Error, xsd has no member int

7 }}}

the reference to #xsd#int in line 6 causes a compile-time error because xsd refers to

the System.Int32 variable declared in line 5.

393

The order in which import-directives are written has no signi�cance, and resolution

of the external-namespace-name referenced by an import-directive is not a�ected by the

import-directive itself or by other import-directives in the immediately containing com-

pilation unit or Zhi# namespace body. In other words, the external-namespace-name of

an import-directive is resolved as if the immediately containing compilation unit or Zhi#

namespace body had no import-directives.

I.2.1.2 XML data types and variables

XML data types can be used in Zhi# programs in all places where .NET types are

admissible except for type declarations. XML data types appear as nullable values types

in Zhi# programs (i.e. XML variables can be assigned the null value). The default value

of XML variables is null. Hence, XML variables must be de�nitely assigned (see � 5.3)

before use. Variables are de�nitely assigned if the compiler can statically prove that the

variable has been initialized or has been assigned a value.

Reads and writes of XML data types are not guaranteed to be atomic (because reads

and writes of the .NET types long, ulong, double, and decimal, as well as user-de�ned

.NET types, are not guaranteed to be atomic either).

The value of an XML variable is the XML data type value that has been assigned to

the variable or the default value null if no value has been assigned (cf. � 5.3.1). XML

variables expose a Value property of type string. The Value property can be used both

in Zhi# as well as in compiled Zhi# programs (i.e. conventional C#) to obtain and to

set the value of an XML variable. The use of the Value property can be omitted in Zhi#

as shown below. Both in Zhi# as well as in C# assigned values are always checked to be

valid in respect of the underlying XML schema de�nition.

1 #xsd#in t i ;

2 i = 23 ;

3 i . Value = 23 ;

394

I.2.1.3 Conversions

Implicit conversions A conversion enables an expression of one type to be treated as

another type (cf. � 6). XML data types implicitly convert to themselves. This conversion

exists only such that an entity that already has a required type can be said to be convert-

ible to that type. Implicit conversions from built-in XML Schema De�nition data types

to built-in .NET value types and the .NET type string are:

• From xsd#string to string.

• From xsd#boolean to bool.

• From xsd#�oat to �oat or double.

• From xsd#double to double.

• From xsd#byte to sbyte, short, int, long, �oat, double, or decimal.

• From xsd#unsignedByte to byte, short, ushort, int, uint, long, ulong, �oat, double,

or decimal.

• From xsd#short to short, int, long, �oat, double, or decimal.

• From xsd#unsignedShort to ushort, int, uint, long, ulong, �oat, double, or decimal.

• From xsd#int to int, long, �oat, double, or decimal.

• From xsd#unsignedInt to uint, long, ulong, �oat, double, or decimal.

• From xsd#long to long, �oat, double, or decimal.

• From xsd#unsignedLong to ulong, �oat, double, or decimal.

Conversions from xsd#int, xsd#unsignedInt, xsd#long, or xsd#unsignedLong to �oat

and from xsd#long or xsd#unsignedLong to double may cause a loss of precision, but will

never cause a loss of magnitude. The other implicit conversions never lose any information.

395

Implicit conversions from built-in .NET value types and type string to built-in XML

Schema De�nition data types are:

• From string to xsd#string.

• From bool to xsd#boolean.

• From �oat to xsd#�oat or xsd#double.

• From double to xsd#double.

• From sbyte to xsd#byte, xsd#short, xsd#int, xsd#long, xsd#integer, xsd#decimal,

xsd#�oat, or xsd#double.

• From byte to xsd#unsignedByte, xsd#short, xsd#unsignedShort, xsd#int, xsd#-

unsignedInt, xsd#long, xsd#unsignedLong, xsd#integer, xsd#decimal, xsd#�oat,

xsd#double.

• From short to xsd#short, xsd#int, xsd#long, xsd#integer, xsd#decimal, xsd#�oat,

xsd#double.

• From ushort to xsd#unsignedShort, xsd#int, xsd#unsignedInt, xsd#long, xsd#un-

signedLong, xsd#integer, xsd#decimal, xsd#�oat, xsd#double.

• From int to xsd#int, xsd#long, xsd#integer, xsd#decimal, xsd#�oat, xsd#double.

• From uint to xsd#unsignedInt, xsd#long, xsd#unsignedLong, xsd#integer, xsd#de-

cimal, xsd#�oat, xsd#double.

• From long to xsd#long, xsd#integer, xsd#decimal, xsd#�oat, xsd#double.

• From ulong to xsd#unsignedLong, xsd#integer, xsd#decimal, xsd#�oat, xsd#double.

Conversions from int, uint, long, or ulong to xsd#�oat and from long or ulong to

xsd#double may cause a loss of precision, but will never cause a loss of magnitude. The

other implicit conversions never lose any information.

396

Standard explicit conversions Standard explicit conversions between XML data

types and .NET types are de�ned exactly like standard explicit conversions between .NET

types (see � 6.3.2). The standard explicit conversions between XML data types and .NET

types are all standard implicit conversions plus the subset of the explicit conversions be-

tween XML data types and .NET types for which an opposite standard implicit conversion

exists. If a standard implicit conversion exists from a type A to a type B, then a standard

explicit conversion exists from type A to type B and from type B to type A.

User-de�ned conversions Zhi# allows the pre-de�ned implicit and explicit conver-

sions between XML data types and .NET types to be augmented by certain user-de�ned

conversions. User-de�ned conversions are introduced by declaring conversion operators

in .NET class and struct types as described in � 10.9.3. It is not possible to rede�ne an

already existing implicit or explicit conversion between an XML data type and a .NET

type. A .NET class or struct is permitted to declare a conversion (implicit or explicit)

from an XML source type S to a .NET target type T or from a .NET source type S to

an XML target type T only if all of the following are true:

• Either S or T is the .NET class or struct type in which the operator declaration

takes place.

• Either S or T is an XML data type.

• Neither S nor T is object or a .NET interface-type.

User-de�ned conversions between XML data types and .NET types are evaluated

according to �� 6.4.2-6.4.4 based on the above stipulations for XML data types.

I.2.1.4 Expressions

Operators An expression is a sequence of operators and operands (cf. � 7). XML data

types can be used with binary operators and the ternary operator (?:). Binary operators

397

applicable to XML data types are listed in Section E.1. Binary operators can be used

with an XML data type and a .NET type if an implicit conversion exists between the

XML data type and the .NET type. The type of logical expressions involving XML data

types is bool. The type of arithmetic expressions is an XML data type, which is computed

based on the λC-constraint arithmetic algorithm (see Fig. 3.3) and the XSD constraint

arithmetic (see Section E.2). No binary assignment operators can be used with XML

data types. No unary operators can be used with XML data types. The semantics of

the XML-speci�c operators ?=, ?<, ?>, $=, ??, %%, and %. is as de�ned in Section

5.1.3. The precedence of the XML-speci�c operators is the same as of C#'s relational and

type testing operators (see � 7.9). When an operand occurs between two operators with

the same precedence, the associativity of the operators as de�ned in the C# language

speci�cation controls the order in which the operations are performed. Binary operators

that relate two XML data types cannot be overloaded. Binary operators are processed

according to �� 7.2.4 and 7.2.5. Cast operations are overloaded by providing user-de�ned

conversions.

Object creation XML variables are declared like .NET variables (see � 8.5). The initial

value of a variable can be an object for which an implicit conversion is de�ned to the type

of the XML variable. The initial value can be provided as is or as the argument of an

object-creation-expression (see � 7.5.10).

object-creation-expression:

new type (argument-listopt)

For XML data types, exactly one argument must be provided for which an implicit

conversion is de�ned to the type of the XML variable. Alternatively, a string object can

be provided that denotes an element of the lexical space of the XML data type. The

use of the new -operator is not required and can be omitted as shown below. There is no

default constructor for XML data types. The default value of uninitialized XML variables

is null. The following example shows how an xsd#int variable can be initialized with an

398

int literal or object-creation-expressions. The string value that is provided to the object-

creation-expression in line 3 is interpreted as a lexical representation of an element of the

xsd#int value space. Variable l, which is declared in line 4, remains uninitialized.

1 #xsd#in t i = 23 ; // i == 23

2 #xsd#in t j = new #xsd#in t (2 3) ; // j == 23

3 #xsd#in t k = new #xsd#in t ("23") ; // k == 23

4 #xsd#in t l ; // l == null

Arrays An array is a data structure that contains a number of elements that are accessed

through computed indices (see � 12). In Zhi#, the element type of an array can be an XML

data type. For arrays that contain XML variables, the same rules for array types, array

creation, element access, array members, and array initializers are e�ective as speci�ed

in � 12. Arrays of XML data types behave di�erently from arrays of .NET types in

terms of array covariance. C# allows covariant subtyping of arrays (see � 12.5). There

is no array covariance for arrays of XML data types in Zhi#. For example, the following

assignment causes a compile-time error despite the fact that an implicit conversion exists

from xsd#byte to xsd#int.

#xsd#in t [] a = new #xsd#byte [1] ; // Error, no array covariance

The is-Operator The is-operator is used to dynamically check if the runtime type of

an object is compatible with a given type (see � 7.9.9). The type of the operation e is T,

where e is an expression and T is a type, is bool. When used with an XML data type,

the operation is evaluated as shown below. No user-de�ned conversions are considered by

the is-operator.

• If the value of e is null, the result is false.

• Otherwise, an anonymous object of type T is created and initialized with value e.

If the initialization succeeds, the result is true; false otherwise.

399

Assignments The simple assignment operator (=) (see � 7.13.1) assigns a new value to

an XML variable. Zhi# admits covariant coercions for XML data types. An assignment

of the form x = y, where x or y are XML data types, is valid if the type of the rvalue

(i.e. the right operand) is subsumed by the type of the lvalue (i.e. the left operand) or if

an implicit conversion is de�ned from the type of y to the type of x. If the lvalue is an

XML data type, only the value (and not the type) of the source operand is assigned such

that, a fresh instance of the XML data type of the lvalue is created and initialized with

the rvalue. The rvalue evaluates to itself if its type is subsumed by the type of the lvalue

or to the result of a de�ned implicit conversion operator, which converts the rvalue to the

type of the lvalue. The type of the source operand may have an appropriate value space

that was inferred based on static �ow analysis as described below. In contrast to arrays

of .NET types, there is no array covariance for arrays of XML data types in Zhi# (see

above). Compound assignments of the form x op= y are evaluated for XML data types

as speci�ed in � 7.13.2. In particular, x is evaluated only once.

Type inference XML data types and .NET data types for which built-in implicit

conversions to XML data types exist are subject to type inference as described in Section

5.1.3. The XSD type inference rules are speci�ed in Appendix D. The compile-time XSD

type and constraint arithmetic rules are speci�ed in Appendix E.

Method overriding The variance rules for method overriding in Zhi# are as follows.

Formal XSD input parameters can be contravariant. Formal XSD output parameters can

be covariant. For .NET types the variance rules are unchanged to the C# speci�cation.

Member lookup XML variables in Zhi# programs expose the public Type and Value

members. The read-only string property Type yields the XML data type of the XML

variable. The read-write string property Value can be used to obtain and to set the value

of an XML variable.

400

I.2.2 Web Ontology Language

The following speci�cation of the behavior of the use of OWL classes in Zhi# programs

is complementary to the ECMA 334 standard speci�cation of the C# programming lan-

guage. Citations of paragraphs denoted by � or �� refer to sections in the C# language

speci�cation [HWG02]. Zhi# grammar production rules can be found in Section I.1. In

the example programs, fully qualifying namespace aliases are omitted for brevity.

I.2.2.1 Import directives

Import directives work for OWL namespaces like for XML namespaces. The type system

evidence OWL speci�es an OWL namespace.

I.2.2.2 OWL classes and variables

OWL classes can be used in Zhi# programs in all places where .NET types are admissible

except for type declarations. OWL variables refer to ontological individuals in a shared

ontological knowledge base, which is con�gured in the App.con�g con�guration �le of a

Zhi# application. OWL variables can be assigned the null value. The default value of

OWL variables is null. OWL variables must be de�nitely assigned (see � 5.3) before use.

The value of an OWL variable is the ontological individual that has been assigned to the

variable or the default value null if no value has been assigned (cf. � 5.3.1).

Before each single use of an OWL non-array variable the ontological individual that is

referred to by the variable is dynamically checked to be in the extension of the declared

OWL class and the knowledge base is checked to be consistent. An InvalidCastException

and InconsistentOntologyException is thrown, respectively, if either is not the case.

Reads and writes of OWL variables are not guaranteed to be atomic because 1) the

ontological knowledge base is likely to be remote and 2) the ontology management system

cannot be assumed to provide for atomic operations.

401

I.2.2.3 Conversions

Implicit conversions OWL classes implicitly convert to themselves. There are no im-

plicit conversions between OWL classes and .NET types. OWL class instances implement

the ubiquitous ToString() method, which returns the URI of the ontological individual

as a .NET string. Hence, OWL variables can be sensibly used with a variety of .NET

Base Class Library (BCL) methods that require the string representation of objects (e.g.,

Console.WriteLine()).

Standard explicit conversions A standard explicit conversion between two OWL

classes exists if both classes are not declared to be disjoint.

User-de�ned conversions A .NET class or struct is permitted to declare a conversion

(implicit or explicit) from an OWL source type S to a .NET target type T or from a

.NET source type S to an OWL target type T only if all of the following are true.

• Either S or T is the .NET class or struct type in which the operator declaration

takes place.

• Either S or T is an OWL class.

• Neither S nor T is object or a .NET interface-type.

User-de�ned conversions between OWL classes and .NET types are evaluated like

user-de�ned conversions between .NET types as speci�ed in �� 6.4.2-6.4.4.

I.2.2.4 Expressions

Object creation OWL variables are declared like .NET variables (see � 8.5). The ini-

tial value of an OWL variable can be a .NET object for which an implicit conversion to

the declared type exists, a de�ned OWL variable, or an object-creation-expression (see �

402

7.5.10) that answers an ontological individual (i.e. OWL class instance) in the ontologi-

cal knowledge base. Existing individuals in the knowledge base with the same name are

reused, following Semantic Web standards. Zhi# provides a constructor for OWL class

instances that takes the URI of the individual. There is no default constructor. As in C#,

the new -operator cannot be overloaded. The answered ontological individuals are subject

to ontological reasoning. Individual answering with the new -operator corresponds to the

use of the addIndividual() method of the CHIL OWL API. For constant constructor pa-

rameters (e.g., string literals) the provided class name is statically checked to be declared

in the ontology. A compile-time error occurs for undeclared class names.

Arrays In Zhi#, the element type of an array can be an OWL class. For arrays that

contain OWL variables, the same rules for array types, array creation, element access,

array members, array covariance, and array initializers are e�ective as speci�ed in � 12.

The is-Operator The is-operator can be used with an OWL class instance and an

OWL class name to check the runtime RDF type of the class instance. The type of the

operation e is T, where e is an OWL class instance and T is an OWL class name, is bool.

The operation is evaluated as shown below. No user-de�ned conversions are considered

by the is-operator. Compile-time errors occur for disjoint compile-time types of e and T.

• If the value of e is null, the result is false.

• Otherwise, the result is true if the ontological individual referred to by e is in the

extension of the named class T ; false otherwise.

Object equality The equality (==) and inequality (!=) operator can be used to test

if two OWL class instances are equal or di�erent, respectively. The == and !=-operator

evaluate on the ontology level. In the following example, the expression a == b in line 3

evaluates to true if the ontological individuals a and b, which are referred to by variables

403

a and b, refer to the same entities in the described world; a == b evaluates to false

otherwise. The expression a != b in line 4 evaluates to true if the ontological individuals

a and b are known to not refer to the same entities in the described world; a != b evaluates

to false otherwise.

#A a = new #A("#a ") ; // a refers to a

#B b = new #B("#b ") ; // b refers to b

i f (a == b) {Console . WriteLine ("{0} and {1} are the same" , a , b) ; }

i f (a != b) {Console . WriteLine ("{0} and {1} are not the same" , a , b) ; }

The == and !=-operator do not evaluate as the the logical negations of each other

since individuals can be unknown to be identical or di�erent. In particular, the expressions

a == b and a != b can simultaneously evaluate to false for two individuals a and b that

are neither the same nor di�erent.

Assignments The simple assignment operator (=) (see � 7.13.1) assigns a new value

to an OWL variable. Zhi# admits covariant coercions for OWL classes. Assignments to

OWL variables do not modify the ontological knowledge base. Assignments to properties

of OWL variables assert the given rvalue as a value for the given property of the given

host object. The following example adds the statement [a R b] to the ontology, where a

and b are the individuals referred to by variables a and b, respectively.

a .R = b ;

The semantics of assignments to OWL object and non-functional OWL datatype prop-

erties are additive. The speci�ed statement is added to the knowledge base; no statements

are removed. Assignments to functional OWL datatype properties update the knowledge

base with the speci�ed statement (i.e. all statements with the host object as the subject

and the given property are removed from the knowledge base and the speci�ed statement

is added). A compile-time error occurs if the property is not declared in the ontology. A

compile-time error occurs if the compile-time type of the rvalue (i.e. the asserted type of

404

an OWL class instance) is disjoint with the range declaration of an OWL object property.

Property assignments are not used for compile-time type inference (i.e. ontological

reasoning is not used to infer compile-time types of OWL variables).

The type of an assignment to an OWL object and non-functional datatype property

is an array type, where the element type is the property range declaration. The type of

an assignment to a functional OWL datatype property is the property range declaration.

Assignments to OWL datatype properties are valid if the type of the rvalue is subsumed

by the property range declaration or if an implicit conversion is de�ned from the type

of the rvalue to the property range declaration. The type of the rvalue may have an

appropriate value space that was inferred based on static �ow analysis (see Subsection

I.2.1). A compile-time error occurs if the declared or inferred type of the rvalue is not a

subtype of the range declaration and there is no implicit conversion.

The checked -keyword (c.f. 7.5.12) supports a frame-view on OWL object properties.

For assignments to OWL object properties within a checked -context the subject and

object of the declared triple must be in the extension of the property domain and range

restriction, respectively. An exception is thrown if either is not the case. The checked -

operator does not in�uence the static type checks that apply, for example, to disjoint

concept de�nitions. The checked -keyword can be used as an operator or a statement.

Member lookup The type of an OWL object and non-functional datatype property is

an array type, where the element type is the property range declaration. The type of a

functional OWL datatype property is the property range declaration.

OWL property access expressions are iterable by means of a foreach-loop. The values

of the foreach-iteration variable are dynamically checked to be in the extension of the

declared type (i.e. OWL class) of the iteration variable.

Auxiliary properties and methods are de�ned for OWL class instances, OWL proper-

ties, and static OWL class references as described in Appendix H.

405

406

References

[ACP89] Martín Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. �Dynamic
typing in a statically-typed language.� In 16th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL), pp. 213�227, New
York, NY, USA, January 1989. ACM Press. 213, 298

[ACP91] Martín Abadi, Luca Cardelli, Benjamin Pierce, and Gordon Plotkin. �Dynamic
typing in a statically-typed language.� ACM Transactions on Programming
Languages and Systems (TOPLAS), 13(2):237�268, April 1991. 213, 298

[AH03] Grigoris Antoniou and Frank van Harmelen. Handbook on Ontologies in Infor-
mation Systems, chapter Web Ontology Language: OWL, pp. 67�92. Interna-
tional Handbooks on Information Systems. Springer Verlag, 2003. 35

[AHM07] D. Akehurst, G. Howells, and K. McDonald-Maier. �Implementing associations:
UML 2.0 to Java 5.� Software and Systems Modeling, 6(1):3�35, March 2007.
247

[ANM06] Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein. �A frame-
work for implementing pluggable type systems.� ACM SIGPLAN Notices,
41(10):57�74, October 2006. 76

[Asp08] �AspectJ.�, December 2008. http://www.eclipse.org/aspectj/. 285

[Baa90] Franz Baader. �Augmenting Concept Languages by Transitive Closure of
Roles: An Alternative to Terminological Cycles.� Technical Report RR-90-
13, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, Erwin-
Schrödinger Strasse, Postfach 2080, 67608 Kaiserslautern, Germany, 1990. 17

[BBG63] John W. Backus, Friedrich L. Bauer, Julien Green, C. Katz, John Mc-
Carthy, Alan J. Perlis, Heinz Rutishauser, Klaus Samelson, Bernard Vauquois,
Joseph Henry Wegstein, Adriaan van Wijngaarden, Michael Woodger, and
Peter Naur. �Revised report on the algorithm language ALGOL 60.� Commu-
nications of the ACM (CACM), 6(1):1�17, January 1963. 45

[BCF07] Scott Boag, Don Chamberlin, Mary F. Fernández, Daniela Florescu, Jonathan
Robie, and Jérôme Siméon. �XQuery 1.0: An XML Query Language.� Tech-
nical report, World Wide Web Consortium (W3C), January 2007. 170

[BCM03] Franz Baader, Diego Calvanese, Deborah McGuiness, Daniele Nardi, and Pe-
ter F. Patel-Schneider. The Description Logic Handbook. Cambridge Univer-
sity Press, Cambridge, United Kingdom, 2003. 1, 25, 41, 105, 175, 213

[Bec02] Sean Bechhofer. �The DIG Description Logic Interface: DIG/1.0.� Technical
report, University of Manchester, Oxford Road, Manchester M13 9PL, October
2002. 137

407

[Ber05] Tim Berners-Lee. �Primer: Getting into RDF and Semantic Web using N3.�
Technical report, World Wide Web Consortium (W3C), August 2005. 29

[BFM98] Tim Berners-Lee, R. Fielding, and L. Masinter. �RFC 2396 � Uniform Resource
Identi�ers (URI): Generic Syntax.� Technical report, Network Working Group,
August 1998. 25, 55, 145, 389

[BG04a] Andrew Begel and Susan L. Graham. �Language analysis and tools for am-
biguous input streams.� Electronic Notes in Theoretical Computer Science,
110:75�96, December 2004. 77

[BG04b] Dan Brickley and R.V. Guha. �RDF Vocabulary Description Language 1.0:
RDF Schema.� Technical report, World Wide Web Consortium (W3C), Febru-
ary 2004. 1, 32, 105

[BH91] Franz Baader and Philipp Hanschke. �A scheme for integrating concrete do-
mains into concept languages.� In John Mylopoulos and Raymond Reiter, ed-
itors, 12th International Joint Conference on Arti�cial Intelligence (IJCAI),
pp. 452�457. Morgan Kaufmann, August 1991. 17

[BHP99] Sean Bechhofer, Ian Horrocks, Peter F. Patel-Schneider, and Sergio Tessaris.
�A proposal for a description logic interface.� In Patrick Lambrix, Alexander
Borgida, Maurizio Lenzerini, Ralf Möller, and Peter F. Patel-Schneider, editors,
12th International Workshop on Description Logics (DL), volume 22 of CEUR
Workshop Proceedings. CEUR-WS.org, July 1999. 137

[BL84] Ronald J. Brachman and Hector J. Levesque. �The tractability of subsumption
in frame-based description languages.� In Ronald J. Brachman, editor, 4th
National Conference on Arti�cial Intelligence (AAAI), pp. 34�37, August 1984.
17

[BL85] Ronald J. Brachman and Hector J. Levesque. Readings in Knowledge Repre-
sentation. Morgan Kaufmann Publishers, Inc., San Francisco, CA, USA, 1985.
12

[BLS98] Don Batory, Bernie Lofaso, and Yannis Smaragdakis. �JTS: Tools for imple-
menting domain-speci�c languages.� In 5th International Conference on Soft-
ware Reuse (ICSR), pp. 143�153, Washington, DC, USA, June 1998. IEEE
Computer Society. 77

[BM04a] Dave Beckett and Brian McBride. �RDF/XML Syntax Speci�cation (Re-
vised).� Technical report, World Wide Web Consortium (W3C), February
2004. 30

[BM04b] Paul V. Biron and Ashok Malhotra. �XML Schema Part 2: Datatypes Second
Edition.� Technical report, World Wide Web Consortium (W3C), October
2004. 4, 26, 58, 81, 82, 83, 85, 176, 387

408

[BMP91] Ronald J. Brachman, Deborah L. McGuinness, Peter F. Patel-Schneider,
Lori Alperin Resnick, and Alexander Borgida. Principles of Semantic Net-
works: Explorations in the Representation of Knowledge, chapter Living with
CLASSIC: When and how to use a KL-ONE-like language, pp. 401�456. Prin-
ciples of Semantic Networks. Morgan Kaufmann Publishers, Inc., San Mateo,
CA, USA, 1991. 138

[BMS02] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. �The <bigwig>
project.� ACM Transactions on Internet Technology (TOIT), 2(2):79�114,
2002. 170

[BPS06] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, and François
Yergeau. �Extensible Markup Language (XML) 1.0 (Fourth Edition).� Tech-
nical report, World Wide Web Consortium (W3C), August 2006. 25, 27, 141

[Bra77] Ronald J. Brachman. �What's in a concept: Structural foundations for seman-
tic networks.� International Journal of Man-Machine Studies, 9(2):127�152,
1977. 12

[Bra79] Ronald J. Brachman. Associative Networks, chapter On the epistemological
status of semantic networks, pp. 3�50. Academic Press, 1979. 12

[Bra04] Gilad Bracha. �Pluggable type systems.� In OOPSLA Workshop on Revival of
Dynamic Languages, October 2004. 76

[BRJ99] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Uni�ed Modeling
Language User Guide. Addison Wesley Longman, Inc., Redwood City, CA,
USA, 1999. 36

[BS89] Ronald J. Brachman and James G. Schmolze. Arti�cial Intelligence and
Databases, chapter An overview of the KL-ONE knowledge representation sys-
tem, pp. 207�230. Kaufmann Publishers, Inc., San Mateo, CA, USA, 1989.
17

[BST94] Don Batory, Vivek Singhal, Je� Thomas, Sankar Dasari, Bart Geraci, and
Marty Sirkin. �The GenVoca model of software-system generators.� IEEE
Software, 11(5):89�94, September 1994. 285

[BV04] Martin Bravenboer and Eelco Visser. �Concrete syntax for objects. Domain-
speci�c language embedding and assimilation without restrictions.� In John M.
Vlissides and Douglas C. Schmidt, editors, 19th ACM SIGPLAN Conference
on Object-Oriented Programing, Systems, Languages, and Applications (OOP-
SLA), pp. 365�383, New York, NY, USA, October 2004. ACM Press. 77

[BW04] Fahiem Bacchus and Toby Walsh. �A constraint algebra.� In Marc van Dongen,
editor, 1st International Workshop on Constraint Propagation and Implemen-
tation (CPAI), pp. 1�15, September 2004. 171

409

[Cam09] Campwood Software. �SourceMonitor.�, 2009. http://www.campwoodsw.-
com/sourcemonitor.html. 219

[CCD08] Jonathan Calladine, George Cowe, Paul Downey, and Yves Lafon. �Basic XML
Schema Patterns for Databinding Version 1.0.� Technical report, World Wide
Web Consortium (W3C), March 2008. 223

[CD99] James Clark and Steve DeRose. �XML Path Language (XPath) Version 1.0.�
Technical report, World Wide Web Consortium (W3C), November 1999. 170

[CFF97] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D. Karp, and James
Rice. �The Generic Frame Protocol 2.0.� Technical report, Arti�cial Intelli-
gence Center, SRI International, Menlo Park, CA, USA, July 1997. 137

[CFF98] Vinay K. Chaudhri, Adam Farquhar, Richard Fikes, Peter D. Karp, and
James P. Rice. �Open Knowledge Base Connectivity 2.0.3.� Technical Re-
port KSL-09-06, Stanford University Knowledge Systems Laboratory, January
1998. 137

[Cha81] Eugene Charniak. �A common representation for problem solving and language
comprehension information.� Arti�cial Intelligence, 16(3):225�255, July 1981.
12

[Chi98] Shigeru Chiba. �Macro processing in object-oriented languages.� In 28th Inter-
national Conference on Technology of Object-Oriented Languages and Systems
(TOOLS), p. 113, Washington, DC, USA, November 1998. IEEE Computer
Society. 285

[Chu36] Alonzo Church. �A note on the Entscheidungsproblem.� The Journal of Sym-
bolic Logic, 1(1):40�41, 1936. 16

[Chu41] Alonzo Church. The Calculi of Lambda Conversion. Princeton University
Press, 1941. 41

[CMA94] Luca Cardelli, Florian Matthes, and Martín Abadi. �Extensible Syntax with
Lexical Scoping.� Technical Report 121, Systems Research Center, 130 Lytton
Avenue, Palo Alto, California 94301, February 1994. 77

[CMM05] Brian Chin, Shane Markstrum, and Todd Millstein. �Semantic type quali�ers.�
In 27th ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pp. 85�95, New York, NY, USA, June 2005. ACM
Press. 101, 171

[CMM06] Brian Chin, Shane Markstrum, Todd D. Millstein, and Jens Palsberg. �Infer-
ence of user-de�ned type quali�ers and quali�er rules.� In Peter Sestoft, editor,
15th European Symposium on Programming (ESOP), volume 3924 of Lecture
Notes in Computer Science, pp. 264�278, Berlin / Heidelberg, Germany, March
2006. Springer Verlag. 101, 171

410

[CMS03] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. �Ex-
tending Java for high-level web service construction.� ACM Transactions on
Programming Languages and Systems (TOPLAS), 25(6):814�875, 2003. 170

[CT04] John Cowan and Richard Tobin. �XML Information Set (Second Edition).�
Technical report, World Wide Web Consortium (W3C), February 2004. 25

[DAM04] DAML Ontologists. �DAML Ontology Library.� Technical report, DARPA's
Information Exploitation O�ce, 2004. 1

[DG87] Linda G. DeMichiel and Richard P. Gabriel. �The Common Lisp object system:
An overview.� In 1st European Conference on Object-Oriented Programming
(ECOOP), pp. 151�170, London, UK, 1987. Springer-Verlag. 213

[DLN95] Francesco M. Donini, Maurizio Lenzerini, Daniele Nardi, and Werner Nutt.
�The Complexity of Concept Languages.� Technical Report RR-95-07,
Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, Stuhlsatzen-
hausweg 3, 66123 Saarbr�ücken, Germany, 1995. 17

[Dru93] Peter Ferdinand Drucker. Concept of the Corporation. Transaction Publishers,
January 1993. 10

[DS04] Mike Dean and Guus Schreiber. �OWL Web Ontology Language Reference.�
Technical report, World Wide Web Consortium (W3C), February 2004. 34, 36

[FGK02] Daniela Florescu, Andreas Grünhagen, and Donald Kossmann. �XL: An XML
programming language for web service speci�cation and composition.� In 11th
International World Wide Web Conference (WWW), volume 42, pp. 65�76,
New York, NY, USA, May 2002. ACM Press. 170

[FHH01] Dieter Fensel, Frank van Harmelen, Ian Horrocks, Deborah L. McGuinness, and
Peter F. Patel-Schneider. �OIL: An ontology infrastructure for the Semantic
Web.� IEEE Intelligent Systems, 16(2):38�45, March/April 2001. 34

[FKS01] Wenfei Fan, Gabriel M. Kuper, and Jérôme Siméon. �A uni�ed constraint
model for XML.� In 10th International World Wide Web Conference (WWW),
pp. 179�190, New York, NY, USA, 2001. ACM Press. 171

[FTA02] Je�rey S. Foster, Tachio Terauchi, and Alex Aiken. �Flow-sensitive type quali-
�ers.� In 24th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), volume 37 of ACM SIGPLAN Notices, pp. 1�12,
New York, NY, USA, June 2002. ACM Press. 101, 171

[FW04] David C. Fallside and Priscilla Walmsley. �XML Schema Part 0: Primer Second
Edition.� Technical report, World Wide Web Consortium (W3C), October
2004. 26, 141

411

[GF07] David Green�eldboyce and Je�rey S. Foster. �Type quali�er inference for
Java.� In 22nd ACM SIGPLAN Conference on Object-Oriented Programing,
Systems, Languages, and Applications (OOPSLA), volume 42 of ACM SIG-
PLAN Notices, pp. 321�336, New York, NY, USA, October 2007. ACM Press.
101, 172

[GHJ94] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison Wesley
Longman, Inc., Reading, MA, USA, 1994. 110

[GJS05] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language
Speci�cation. Prentice Hall, 3 edition, June 2005. 26

[GP03] Vladimir Gapeyev and Benjamin C. Pierce. �Regular object types.� In Luca
Cardelli, editor, 17th European Conference on Object-Oriented Programming
(ECOOP), volume 2743 of Lecture Notes in Computer Science, pp. 151�175.
Springer Verlag, July 2003. 170

[Gra95] Paul Graham. ANSI Common LISP. Prentice Hall, November 1995. 137

[Gre91] R. Mac Gregor. Principles of Semantic Networks: Explorations in the Repre-
sentation of Knowledge, chapter The evolving technology of classi�cation-based
knowledge representation systems, pp. 385�400. Kaufmann, San Mateo, 1991.
17

[Han92] Philipp Hanschke. �Specifying role interaction in concept languages.� In Bern-
hard Nebel, Charles Rich, and William R. Swartout, editors, 3rd International
Conference on Principles of Knowledge Representation and Reasoning (KR),
pp. 318�329, San Francisco, CA, USA, October 1992. Morgan Kaufmann. 17

[Hay79] Patrick J. Hayes. Frame Conceptions and Text Understanding, chapter The
logic of frames, pp. 46�61. Walter de Gruyter and Co., 1979. 12

[HB91] Bernhard Hollunder and Franz Baader. �Qualifying Number Restrictions
in Concept Languages.� DFKI Research Report RR-91-03, Deutsches
Forschungszentrum für Künstliche Intelligenz, Stuhlsatzenhausweg 3, 66123
Saarbrücken, Germany, February 1991. 17

[HEP03] Masahiro Hori, Jérôme Euzenat, and Peter F. Patel-Schneider. �OWL Web
Ontology Language XML Presentation Syntax.� Technical report, World Wide
Web Consortium (W3C), June 2003. 36

[HHP01] Ian Horrocks, Frank van Harmelen, and Peter F. Patel-Schneider.
�DAML+OIL.� Technical report, DARPA's Information Exploitation O�ce
and European Union's Information Society Technologies, March 2001. 1, 34,
105

412

[HJW92] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn,
Joseph Fasel, María M. Guzmán, Kevin Hammond, John Hughes, Thomas
Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will Partain, and John Peterson.
�Report on the programming language Haskell: a non-strict, purely functional
language version 1.2.� ACM SIGPLAN Notices, 27(5):1�164, May 1992. 45

[HM01] Volker Haarslev and Ralf Möller. �RACER system description.� In R. Goré,
A. Leitsch, and T. Nipkow, editors, 1st International Joint Conference on
Automated Reasoning (IJCAR), pp. 701�706, London, United Kingdom, June
2001. Springer-Verlag. 18, 36

[HM04] Patrick Hayes and Brian McBride. �RDF Semantics.� Technical report, World
Wide Web Consortium (W3C), February 2004. 32

[Hoa69] C. A. R. Hoare. �An axiomatic basis for computer programming.� Communi-
cations of the ACM (CACM), 12(10):576�580, October 1969. 106, 121, 122

[Hol90] Bernhard Hollunder. �Hybrid inferences in KL-ONE-based knowledge rep-
resentation systems.� In 14th German Workshop on Arti�cial Intelligence
(GWAI), volume 251 of Informatik-Fachberichte, pp. 38�47, London, United
Kingdom, 1990. Springer Verlag. 17

[Hor98] Ian Horrocks. �The FaCT system.� In Harrie C. M. de Swart, editor, 7th
International Conference on Automated Reasoning with Analytic Tableaux and
Related Methods (TABLEAUX), volume 1397 of Lecture Notes in Computer
Science, pp. 307�312. Springer Verlag, May 1998. 17, 18, 36, 137

[Hor99] Ian Horrocks. �FaCT and iFaCT.� In Patrick Lambrix, Alexander Borgida,
Maurizio Lenzerini, Ralf Möller, and Peter F. Patel-Schneider, editors, 12th In-
ternational Workshop on Description Logics (DL), volume 22 of CEUR Work-
shop Proceedings, pp. 133�135. CEUR-WS.org, July 1999. 137

[Hor04] Matthew Horridge. �The Manchester Pizza Finder Application.�, 2004.
http://www.co-ode.org/downloads/pizza�nder/. 280

[HP 04] HP Labs. �Jena Semantic Web Framework.�, 2004.
http://jena.sourceforge.net. 1, 2, 105, 109, 131, 135, 138, 176, 264

[HP03] Haruo Hosoya and Benjamin C. Pierce. �XDuce: A statically typed XML
processing language.� ACM Transactions on Internet Technology (TOIT),
3(2):117�148, 2003. 170

[HP04] Ian Horrocks and Peter F. Patel-Schneider. �Reducing OWL entailment to de-
scription logic satis�ability.� Journal of Web Semantics, 1(4):345�357, October
2004. 25, 36, 41, 176

413

[HWG02] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. �C# Language Speci-
�cation Version 1.0.� Technical report, ECMA International, 2002. 5, 27, 54,
56, 387, 388, 391, 401

[Inf04] Information Society Technology integrated project 506909. �Computers in the
Human Interaction Loop (CHIL).�, 2004. http://chil.server.de. 20, 37, 106,
175, 211, 281

[Int86] International Organization for Standardization. �Standard Generalized
Markup Language (SGML) (ISO 8879).� Technical report, International Or-
ganization for Standardization, 1986. 25

[Int96] International Organization for Standardization. �Language-independent
datatypes (ISO 11404).� Technical report, International Organization for Stan-
dardization, 1996. 26

[Int99] International Organization for Standardization. �SQL � Part 2: Foundation
(SQL/Foundation) (ISO 9075-2).� Technical report, International Organiza-
tion for Standardization, 1999. 26

[Int03] International Organization for Standardization. �Document Schema De�nition
Languages (DSDL) � Part 2: Regular-grammar-based validation � RELAX NG
(ISO 19757).� Technical report, International Organization for Standardiza-
tion, 2003. 27

[Int04] International Organization for Standardization. �Representation of dates and
times (ISO 8601).� Technical report, International Organization for Standard-
ization, December 2004. 83

[JLS09] JLSoft. �SourceCode Counter.�, 2009. http://www.jlsoft.de/-
sourcecodecounter.html. 219

[KLM97] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda, Cristina
Lopes, Jean-Marc Loingtier, and John Irwin. �Aspect-oriented programming.�
In Mehmet Aksit and Satoshi Matsuoka, editors, 11th European Conference
on Object-Oriented Programming (ECOOP), volume 1241 of Lecture Notes in
Computer Science, pp. 220�242. Springer Verlag, June 1997. 285

[KMS04] Christian Kirkegaard, Anders Møller, and Michael I. Schwartzbach. �Static
analysis of XML transformations in Java.� IEEE Transactions on Software
Engineering (TSE), 30(3):181�192, March 2004. 170

[Knu97] Donald E. Knuth. The Art of Computer Programming, volume 2. Addison-
Wesley, Reading, MA, USA, 3 edition, 1997. 96

414

[KPB04] Aditya Kalyanpur, Daniel Jiménez Pastor, Steve Battle, and Julian A. Padget.
�Automatic mapping of OWL ontologies into Java.� In Frank Maurer and
Günther Ruhe, editors, 16th International Conference on Software Engineering
and Knowledge Engineering (SEKE), pp. 98�103, June 2004. 212

[KRB91] Gregor Kiczales, Jim d. Rivières, and Daniel G. Bobrow. The Art of the
Metaobject Protocol. MIT Press, Cambridge, MA, USA, 1991. 213

[KT06] Seiji Koide and Hideaki Takeda. �OWL Full reasoning from an object-oriented
perspective.� In Riichiro Mizoguchi, Zhongzhi Shi, and Fausto Giunchiglia,
editors, 1st Asian Semantic Web Conference (ASWC), volume 4185 of Lecture
Notes in Computer Science, pp. 263�277. Springer Verlag, September 2006.
213

[Lea66] B. M. Leavenworth. �Syntax macros and extended translation.� Communica-
tions of the ACM (CACM), 9(11):790�793, November 1966. 77

[Lev84] Hector J. Levesque. �Foundations of a functional approach to knowledge rep-
resentation.� Arti�cial Intelligence, 23(2):155�212, July 1984. 137

[LGA03] Juhnyoung Lee, Richard Goodwin, Rama Akkiraju, Yiming Ye, and Prashant
Doshi. �IBM Ontology Management System (Snobase).�, 2003. 136

[Lip82] Thomas A. Lipkis. Report No. 4842: Proceedings of the 1981 KL-One Work-
shop, chapter A KL-ONE classi�er, pp. 128�145. Bolt, Beranek and Newman,
Boston, MA, USA, 1982. 17

[LM07] Ralf Lämmel and Erik Meijer. �Revealing the X/O impedance mismatch
(Changing lead into gold).� In Datatype-Generic Programming, volume 4719
of Lecture Notes in Computer Science, p. 80. Springer-Verlag, June 2007. 222,
223

[LO04] Sten Loecher and Stefan Ocke. �A metamodel-based OCL-compiler for UML
and MOF.� Electronic Notes in Theoretical Computer Science, 102:43�61,
November 2004. 285, 286

[McC04] Steve McConnell. Code Complete. Microsoft Press, 2 edition, June 2004. 219

[MD04] Erik Meijer and Peter Drayton. �Static typing where possible, dynamic typing
when needed.� In OOPSLA Workshop on Revival of Dynamic Languages, 2004.
4, 234

[MDW91] Eric Mays, Robert Dionne, and Robert Weida. �K-Rep system overview.�
SIGART Bulletin, 2(3):93�97, 1991. 17

[MH04a] Deborah L. McGuinness and Frank van Harmelen. �OWL Web Ontology Lan-
guage Overview.� Technical report, World Wide Web Consortium (W3C),
February 2004. 1, 34, 36, 105, 141, 175

415

[MH04b] Ralf Möller and Volker Haarslev. �RACER: Renamed ABox and Concept Ex-
pression Reasoner.�, 2004. http://www.sts.tu-harburg.de/�r.f.moeller/racer/.
1, 2, 105, 136, 176

[Mic95] Microsoft Corporation. �Internet Explorer.�, August 1995. 228

[Mic02] Microsoft Corporation. �Visual Basic .NET.�, 2002. 230

[Mic06] Microsoft Corporation. �Common Language Infrastructure (CLI).� Technical
report, ECMA International, June 2006. 147, 170

[Mic07a] Microsoft Corporation. �LINQ to XML.�, November 2007. 230

[Mic07b] Microsoft Corporation. �Microsoft SQL Server.�, 2007. 109

[Mic07c] Microsoft Corporation. �Microsoft Visual Studio.�, 2007. 131

[Mic07d] Microsoft Corporation. �MSBuild.�, 2007. 303

[Min81] Marvin Minsky. Mind Design, chapter A framework for representing knowl-
edge, pp. 95�128. The MIT Press, 1981. A longer version appeared in The
Psychology of Computer Vision (1975). 12

[Mit07] Nilo Mitra. �SOAP Version 1.2 Part 0: Primer (Second Edition).� Technical
report, World Wide Web Consortium (W3C), April 2007. 135

[MM04] Frank Manola and Eric Miller. �RDF Primer.� Technical report, World Wide
Web Consortium (W3C), February 2004. 1, 28, 105, 141

[Mot06] Boris Motik. �KAON2.�, 2006. http://kaon2.semanticweb.org. 2, 135

[MRJ95] Deborah L. McGuinness, Lori Alperin Resnick, and Charles Lee Isbell Jr. �De-
scription logic in practice: A CLASSIC application.� In 16th International
Joint Conference on Arti�cial Intelligence (IJCAI), pp. 2045�2046, August,
1995. Morgan Kaufmann. 138

[MS03] Erik Meijer and Wolfram Schulte. �Unifying tables, objects and documents.�
In Workshop on Declarative Programming in the Context of Object-Oriented
Languages (DP-COOL). Forschungszentrum Jülich GmbH, 2003. 223

[MSD09] MSDN Library. �How to: Create Task List Comments.�, 2009. 307

[MyS07] MySQL AB. �MySQL.�, 2007. http://www.mysql.com. 109

[Neb90] Bernhard Nebel. Reasoning and Revision in Hybrid Representation Systems.
Springer-Verlag, New York, NY, USA, 1990. 17

[Net94] Netscape Communications Corporation. �Netscape Navigator.�, December
1994. 228

416

[Obj05a] Object Management Group (OMG). �MetaObject Facility.�, August 2005.
http://www.omg.org/mof/. 3, 300

[Obj05b] Object Management Group (OMG). �Ontology De�nition Metamodel.�, 2005.
http://www.omg.org/ontology/. 2, 300

[Obj06] Object Management Group. �Object Constraint Language, Version 2.0.� Tech-
nical report, Object Management Group, May 2006. 282, 283

[Obj09a] Object Management Group. �Uni�ed Modeling Language, Infrastructure.�
Technical report, Object Management Group, February 2009. 282

[Obj09b] Object Management Group. �Uni�ed Modeling Language, Superstructure.�
Technical report, Object Management Group, February 2009. 282

[Obj09c] Object Management Group (OMG). �CORBA.�, 2009.
http://www.corba.org/. 135

[Ope06] Open RDF. �Sesame RDF Database.�, 2006. http://www.openrdf.org. 136

[OWL09] �OWL2XMI.�, 2009. https://www.ohloh.net/p/owl2xmi. 281

[Paa07] Alexander Paar. �Zhi# � Programming Language Inherent Support for Ontolo-
gies.� In Jean-Marie Favre, Dragan Gasevic, Ralf Lämmel, and Andreas Win-
ter, editors, ateM '07: Proceedings of the 4th International Workshop on Soft-
ware Language Engineering, number 4/2007 in Mainzer Informatik-Berichte,
pp. 165�181, Mainz, Germany, October 2007. Johannes Gutenberg Universität
Mainz. Nashville, TN, USA. 178

[Par05] Terence Parr. �Another tool for language recognition (ANTLR).�, 2005.
http://www.antlr.org. 56, 60, 96

[Pat98] Peter F. Patel-Schneider. �DLP.� In Enrico Franconi, Giuseppe De Gia-
como, Robert M. MacGregor, Werner Nutt, and Christopher A. Welty, editors,
11th International Workshop on Description Logics (DL), volume 11 of CEUR
Workshop Proceedings. CEUR-WS.org, June 1998. 18

[Pel91] Christof Peltason. �The BACK system � an overview.� SIGART Bulletin,
2(3):114�119, June 1991. 17

[Pel06] �Pellet.�, 2006. http://pellet.owldl.com. 1, 2, 18, 105, 138, 202, 265

[PH06] Je� Z. Pan and Ian Horrocks. �OWL-Eu: Adding customised datatypes into
OWL.� Web Semantics: Science, Services and Agents on the World Wide Web,
4(1):29�39, January 2006. 209

417

[PHH04] Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. �OWL Web Ontol-
ogy Language Semantics and Abstract Syntax.� Technical report, World Wide
Web Consortium (W3C), February 2004. 36, 58

[Pie02] Benjamin C. Pierce. Types and Programming Languages. The MIT Press,
Cambridge, MA, USA, 2002. 41, 50, 91, 153, 168

[Plo81] Gordon D. Plotkin. A Structural Approach to Operational Semantics. PhD
thesis, Computer Science Department, Aarhus University, Aarhus, Denmark,
1981. 44

[Pos07] PostgreSQL Global Development Group. �PostgreSQL.�, 2007.
http://www.postgresql.org. 109

[PPC08] Colin Puleston, Bijan Parsia, James Cunningham, and Alan L. Rector. �Inte-
grating object-oriented and ontological representations: A case study in Java
and OWL.� In Amit P. Sheth, Ste�en Staab, Mike Dean, Massimo Paolucci,
Diana Maynard, Timothy W. Finin, and Krishnaprasad Thirunarayan, editors,
7th International Semantic Web Conference (ISWC), volume 5318 of Lecture
Notes in Computer Science, pp. 130�145. Springer Verlag, 2008. 264

[PR09] Alexander Paar and Jürgen Reuter. Computers in the Human Interaction
Loop, chapter Ontological Modeling and Reasoning, pp. 325�340. Human-
Computer Interaction Series. Springer Verlag London, April 2009. 37

[Pro07] Protégé Wiki. �Ontology Bean Generator.�, 2007.
http://protege.cim3.net/cgi-bin/wiki.pl?OntologyBeanGenerator. 211

[Pro08] Protégé Wiki. �Protégé OWL Library.� Technical re-
port, Stanford University School of Medicine, 2008.
http://protegewiki.stanford.edu/index.php/Protege_Ontology_Library.
1

[PRS06] Alexander Paar, Jürgen Reuter, John Soldatos, Kostas Stamatis, and Lazaros
Polymenakos. �A Formally Speci�ed Ontology Management API as a Registry
for Ubiquitous Computing Systems.� In Ilias Maglogiannis, Kostas Karpouzis,
and Max Bramer, editors, AIAI '06: Proceedings of the 3rd IFIP Conference
on Arti�cial Intelligence Applications and Innovations, volume 204/2006, pp.
137�146, Boston, MA, USA, June 2006. IFIP International Federation for In-
formation Processing, Springer-Verlag. Athens, Greece. 106, 121

[PRS09] Alexander Paar, Jürgen Reuter, John Soldatos, Kostas Stamatis, and Lazaros
Polymenakos. �A Formally Speci�ed Ontology Management API as a Reg-
istry for Ubiquitous Computing Systems.� Applied Intelligence, 30(1):37�46,
February 2009. 96, 139

418

[PS93] Peter F. Patel-Schneider and Bill Swartout. �Description-Logic Knowledge
Representation System Speci�cation from the KRSS Group of the ARPA
Knowledge Sharing E�ort.� Technical report, AI Principles Research Depart-
ment, AT&T Bell Laboratories, November 1993. 137

[Qui67] M. Ross Quillian. �Word concepts: A theory and simulation of some basic
capabilities.� Behavioral Science, 12:410�430, 1967. 12

[Rou07] Vlad Roubtsov. �EMMA: a free Java code coverage tool.�, 2007.
http://emma.sourceforge.net. 131, 139

[Rum87] James Rumbaugh. �Relations as semantic constructs in an object-oriented lan-
guage.� In 2nd ACM SIGPLAN Conference on Object-Oriented Programing,
Systems, Languages, and Applications (OOPSLA), pp. 466�481, New York,
NY, USA, 1987. ACM Press. 234

[Sch24] Moses Ilyich Schön�nkel. �Über die Bausteine der mathematischen Logik.�
Mathematische Annalen, 92(3 � 4):305�316, 1924. 46

[Sch91] Klaus Schild. �A correspondence theory for terminological logics: Preliminary
report.� In John Mylopoulos and Raymond Reiter, editors, 12th International
Joint Conference on Arti�cial Intelligence (IJCAI), pp. 466�471. Morgan Kauf-
mann, August 1991. 18

[Sch02] Guus Schreiber. �A UML Presentation Syntax for OWL Lite.� Technical
report, Vrije Universiteit Amsterdam, April 2002. 36

[SL05] Henrike Schuhart and Volker Linnemann. �Valid updates for persistent XML
objects.� In Gottfried Vossen, Frank Leymann, Peter C. Lockemann, and
Wol�ried Stucky, editors, 11te GI-Fachtagung Datenbanksysteme für Business,
Technologie und Web (BTW), volume 65 of Lecture Notes in Informatics, pp.
245�264, Bonn, Germany, March 2005. Gesellschaft für Informatik. 170

[Sow91] John F. Sowa, editor. Principles of Semantic Networks: Explorations in the
Representation of Knowledge. Morgan Kaufmann Publishers, Inc., San Mateo,
CA, USA, May 1991. 12

[SPG07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. �Pellet: A practical OWL-DL reasoner.� Web Semantics: Sci-
ence, Services and Agents on the World Wide Web, 5(2):51�53, June 2007.
18

[Spi01] J. Michael Spivey. �The Z Notation: A Reference Manual (Second Edition).�
Technical report, University of Oxford, Programming Research Group, 2001.
121

419

[SR05] Kurt Stirewalt and Spencer Rugaber. �Automated invariant maintenance via
OCL compilation.� In Lionel C. Briand and Clay Williams, editors, 8th In-
ternational Conference on Model Driven Engineering Languages and Systems
(MODELS), volume 3713 of Lecture Notes in Computer Science, pp. 616�632,
Berlin / Heidelberg, October 2005. Springer Verlag. 285

[SS91] Manfred Schmidt-Schauÿ and Gert Smolka. �Attributive concept descriptions
with complements.� Arti�cial Intelligence, 48(1):1�26, February 1991. 17, 19,
243, 250

[ST06] Jeremy G. Siek and Walid Taha. �Gradual typing for functional languages.�
In Mark W. Bailey, editor, 7th Workshop on Scheme and Functional Program-
ming (Scheme), volume 41 of ACM SIGPLAN Notices, New York, NY, USA,
September 2006. ACM Press. 214, 298

[Sta06] Stanford University School of Medicine. �Protégé knowledge acquisition sys-
tem.�, 2006. http://protege.stanford.edu. 1, 105, 136, 176, 264

[Sun06a] Sun Microsystems. �Java Remote Method Invocation (Java RMI).�, 2006. 135

[Sun06b] Sun Microsystems. �JDBC technology.�, 2006. 136

[TBM04] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn.
�XML Schema Part 1: Structures Second Edition.� Technical report, World
Wide Web Consortium (W3C), October 2004. 26

[Tel07] Telecom Italia. �Java Agent Development Framework (JADE).�, 2007.
http://jade.cselt.it/. 211

[TF08] Sam Tobin-Hochstadt and Matthias Felleisen. �The design and implementation
of typed scheme.� ACM SIGPLAN Notices, 43(1):395�406, January 2008. 214,
298

[Tha90] Satish R. Thatte. �Quasi-static typing.� In 17th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages (POPL), pp. 367�381,
New York, NY, USA, January 1990. ACM Press. 214, 298

[The98] The Document Object Model Working Group. �Document Object Model
(DOM) Level 1 Speci�cation.� Technical report, World Wide Web Consor-
tium (W3C), October 1998. 222, 228

[The00] The Defense Advanced Research Projects Agency. �The DARPA Agent
Markup Language.�, 2000. 34

[Tho03] Dave Thomas. �The impedance imperative: Tuples + objects + infosets =
too much stu�!� Journal of Object Technology, 2(5):7�12, September-October
2003. 223

420

[V06] Max Völkel. �RDFReactor � from ontologies to programmatic data access.� In
1st Jena User Conference (JUC). HP Bristol, May 2006. 212

[WC93] Daniel Weise and Roger F. Crew. �Programmable syntax macros.� In 15th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), pp. 156�165, 1993. 77

[Woo95] Derick Wood. �Standard Generalized Markup Language: Mathematical and
philosophical issues.� In Jan van Leeuwen, editor, Computer Science Today,
volume 1000 of Lecture Notes in Computer Science, pp. 344�365. Springer
Verlag, 1995. 25

[Zel05] Andreas Zeller. Why Programs Fail: A Guide to Systematic Debugging. Mor-
gan Kaufmann, October 2005. 267

[ZW97] Amy Moormann Zaremski and Jeannette M. Wing. �Speci�cation matching
of software components.� ACM Transactions on Software Engineering and
Methodology (TOSEM), 6(4):333�369, October 1997. 91

421

	Introduction
	Theses
	Position on the Market
	Conceptual Modeling with the Web Ontology Language
	From networks to Description Logics
	The SHOIN(D) Description Logic
	XSD – XML Schema Definition
	RDF – The Resource Description Framework
	RDFS – The Resource Description Framework Schema
	OWL – The Web Ontology Language
	The CHIL OWL DL Ontology

	Interpretation of Object-Oriented Programming Languages
	The untyped lambda-calculus
	The simply typed lambda-calculus
	The simply typed lambda-calculus with subtyping
	Properties of typing and subtyping

	The Zhi# Compiler Framework
	The Zhi# Programming Language
	Architecture and Implementation
	Framework Extension Points
	Typing extension point
	Program transformation extension point

	Type System Cooperation
	Related Work
	Summary

	The LambdaC-Calculus
	Facets
	Fundamental Facets
	Constraining Facets

	Type Derivation
	Subtyping
	Properties of the LambdaC-Type System
	Type Inference
	Implementation
	Constraint Arithmetic
	Related Work
	Summary

	The CHIL OWL API
	The CHIL Knowledge Base Server
	Architectural model
	The CHIL OWL API

	A Formally Specified OWL API
	Notational framework
	Examples
	The CHIL OWL API testing framework

	Example Scenario Implementation
	Related Work
	Off-the-shelf ontology management systems
	Knowledge base interface specifications

	Summary

	XSD Aware Compilation – Types and…Constraints
	Integrating XSD with the C# Programming Language
	Referencing XML Schema Definitions
	Static typing
	Type inference
	Compilation to C#
	Dynamic checking

	Related Work
	Summary

	OWL Aware Compilation – Complex Data, Simple Code
	Integrating OWL DL with the C# Programming Language
	Referencing OWL DL Ontologies
	Static typing
	Auxiliary properties and methods
	Compilation to C#
	Dynamic checking

	Example Scenario Implementation
	OWL and XSD
	Integration of the CHIL OWL API
	Related Work
	Summary

	Validation and Evaluation
	Technical Validation
	Microscopic Evaluation
	XML data types
	XML APIs vs. XML data types
	OWL concept constructors
	OWL role constructors and restrictions
	OWL APIs vs. OWL types

	Macroscopic Evaluation
	OCL invariants in Zhi#

	Conclusion and Outlook
	Conclusion
	Outlook

	The Zhi# Compiler Application
	Zhi# External Program Transformation Functions
	XSD Program Transformation Functions
	OWL Program Transformation Functions

	The LambdaC-Calculus
	XSD Type Inference Rules
	XSD Compile-Time Arithmetic
	XSD Type Arithmetic
	XSD Constraint Arithmetic

	CHIL OWL API Preconditions
	The CHIL OWL API
	The ITellingABox Interface
	The IAskingABox Interface
	The ITellingTBox Interface
	The IAskingTBox Interface

	Mapping of the CHIL OWL API
	The ITellingABox Interface
	The IAskingABox Interface
	The IAskingTBox Interface

	Zhi# Syntax and Semantics
	Syntax
	Semantics
	XML Schema Definition
	Web Ontology Language

	References

