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Abstract Data distribution in memory or on disks is an important factor influencing
the performance of parallel applications. On the other hand, programs or systems,
like a parallel file system, frequently redistribute data between memory and disks.

This paper presents a generalization of previous approaches of the redistribution
problem. We introduce algorithms for mapping between two arbitrary distributions
of a data set. The algorithms are optimized for multidimensional array partitions. We
motivate our approach and present potential utilizations. The paper also presents a
case study, the employment of mapping functions, and redistribution algorithms in a
parallel file system.

Keywords Parallel file systems · Parallel I/O · Noncontiguous I/O ·
Multi-dimensional array redistribution · Mapping functions

1 Introduction

The discrepancy between processor and memory speed on one side and disks on
the other side, has been identified as a major drawback for applications with inten-
sive I/O activity. For addressing this problem, parallel file systems like nCube par-
allel file system [1], CM5 parallel file system [2], PIOUS [3], PPFS [4], Vesta [5],
SPIFFI [6], ParFiSys [7], Galley [8], Paradise [9], PVFS [10], GPFS [11], and li-
braries like Panda [12] and MPI [13] have employed mechanisms such as striping a
file on several independent disks and allowing parallel file access.
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Another main problem in parallel I/O is the efficient handling of byte granular-
ity, noncontiguous I/O. For instance, parallel scientific applications often access the
files noncontiguously or their contiguous accesses translates into noncontiguous disk
accesses [14]. MPI-IO [13] and Vesta [5] allow setting linear views on noncontigu-
ous file data, whereas Galley parallel file system [8] offers the user a nested strided
interface.

Parallel I/O access characterization studies [14–16] have noticed that the poor
match between I/O access patterns of applications and physical layout of data on
disks represents a large source of I/O usage inefficiency. First, a poor match can
cause fragmentation of data on the disks of the I/O nodes and complex index compu-
tations of accesses are needed. Second, the fragmentation of data results in sending
large numbers of small messages over the network. Message aggregation is possible,
but the costs for gathering and scattering are not negligible. Third, the contention of
related processes at I/O nodes can lead to overload and can hinder the parallelism.
Fourth, poor spacial locality of data on the disks of the I/O nodes translates into disk
access other than sequential. Fifth, a poor match also increases the probability of false
sharing within the file blocks.

The parallel I/O access studies have also found out that the most frequently used
data structures of parallel scientific applications are multidimensional arrays [14].
The arrays are typically stored on parallel disks and partitioned between processors.
Therefore, the application would benefit from mapping functions, which efficiently
exploit the regularity of multidimensional array partitions.

Motivated by these considerations, we have designed a parallel file model that al-
lows arbitrary logical and physical partitions, while being optimized for multidimen-
sional array distributions. A file can be physically partitioned into subfiles, stored on
parallel disks. Additionally, parallel applications may set logical views on the file us-
ing the same model. The same data representation is used for both logical and phys-
ical distributions. Using this parallel file model, we implemented general mapping
functions between linear files and subfiles and vice-versa. We also designed a general
data redistribution algorithm used for conversion between arbitrary distributions.

In this paper, we will present the parallel file model, along with mapping functions
and a data redistribution algorithm used to convert between two partitions of the same
file. Section 2 compares and contrasts our approach with related work. In Sect. 3,
we motivate the choice of our design and present potential applications. Section 4
presents the mathematical representation used for file partitions. Section 5 introduces
the parallel file model. Section 6 describes mapping functions between two partitions
of the same file. Section 7 outlines an algorithm used for data redistribution of two
partitions of a file. Section 8 presents a case study, a particular implementation of
mapping functions and redistribution algorithm in a parallel file system. Section 9
contains conclusions and our future plans.

2 Related work

At the core of our file model is a representation for regular data distributions called
PITFALLS (Processor Indexed Tagged FAmily of Line Segments) [17]. PITFALLS
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are used in the PARADIGM compiler for automatic generation of efficient array re-
distribution routines. In order to be able to express a larger number of access types,
we have extended the PITFALLS representation to nested PITFALLS, as we show
in Sect. 4. Based on PITFALLS representation, Ramaswamy and Banerjee present
a redistribution algorithm that is specific for multidimensional arrays. The intersec-
tion of distributions is computed independently on each array dimension. The mul-
tidimensional intersection result is the union of these intersections. The independent
computation is possible, because it is performed for two distributions that have the
same sizes in all dimensions. For instance, this will not generally work if the array has
to be resized. Our redistribution algorithm uses Ramaswamy’s intersection algorithm
for one dimension and generalizes the redistribution, such that array redistribution
is efficiently handled and the redistribution can be performed between arbitrary pat-
terns.

The nCube parallel I/O system [1] builds mapping functions between processor’s
views of a file and disks using address bit permutations. The mappings are performed
for multidimensional array distributions on disks or at the processors. The major de-
ficiency of this approach is that all array sizes must be powers of two. Our mapping
functions are general, and, therefore, a superset of those from nCube.

The Vesta parallel file system [5, 18] allows file physical partitioning into sub-
files and logical partitions into views. The partitioning scheme, and, therefore, the
mappings are restricted only to data sets that can be partitioned into two dimensional
rectangular arrays. Our data representation and mappings allow efficient physical and
logical partitioning of n-dimensional arrays, not necessary partitioned into rectangu-
lar blocks. Additionally, arbitrary physical and logical distributions are possible.

The MPI-IO [13] file model, like ours, allows files to be logically partitioned into
arbitrary views. The view is mapped on linear files of several file systems. Each par-
ticular file system uses its particular scheme for physically storing the file on disks.
Our approach encompasses logical and physical distribution in a single model, allow-
ing for relating and optimizing them. Therefore, our mappings are used to map the
logical views on each physical component of the file. Mapping the views on the linear
file is just a subcase. Additionally, for noncontiguous I/O accesses involving network
transfers between a remote memory and a local disk, the direct view-disk mapping
is split into two intermediate mappings allowing for optimizing network transfer: a
mapping of the noncontiguous view on a linear buffer used for transfer and one of the
linear buffer on noncontiguous locations on the disk.

The file in the Galley parallel file system [8] is a linear addressable sequence of
bytes, which consists of subfiles, structured as a collection of forks. Noncontiguous
I/O is supported by a nested strided operation user interface. Our file model is unitary
with respect to physical and logical partitioning. Noncontiguous I/O is achieved by
setting a linear view on the data set and accessing it contiguously. This has the ad-
vantage that once the view is set, the set of indices corresponding to the mappings are
computed and eventually transferred remotely. Subsequent noncontiguous I/O oper-
ation will not pay this overhead. Therefore, a view operation can be amortized over
several data accesses.

Panda [12] is a high-level library that allows regular distributions both on disks and
in memory and implements disk and memory array redistributions on-the-fly. Our
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file model is thought as a low-level implementation that can also express irregular
distributions and can be used by a high-level implementation as Panda.

Flexible physical partitions into subfiles are supported also by the Portable Parallel
File System (PPFS) [4], and PIOUS [3]. The Parallel Virtual File System (PVFS) [10]
physically distributes the files in a round-robin manner over the I/O nodes, with a
variable stripe size and offers a multi-dimensional logical partition facility.

3 Motivation and utilization

As shown in Sect. 1, large sources of parallel I/O system inefficiencies are the poor
match between logical and physical distribution of a file, as well as inefficient non-
contiguous I/O handling. In the related work section, we have outlined several ap-
proaches for mapping the logical partition of a file to its physical partition, which
address these drawbacks. Our main goal is to introduce a parallel file model that gen-
eralizes ideas presented in earlier work, along with useful procedures for mapping
between two different instances of the model.

As we show in detail in Sect. 4, nested PITFALLS represents a subset of a file’s
data as a set of noncontiguous segments of the file. This linear addressable subset is
called a subfile, if it is physically stored on a disk, and view if it is a logical entity.
There are three main reasons for choosing nested PITFALLS as the core of our data
representation:

• PITFALLS can compactly represent regular distributions of data. Therefore, sup-
port for any High-Performance Fortran-style [19] BLOCK and CYCLIC based
data distribution on disk and in memory is a straightforward application of our
approach.

• Their regularity is used for building efficient mapping functions and a redistribu-
tion algorithm.

• Nested PITFALLS can represent arbitrary distributions of data. For instance, MPI
data types [20] can be build on top of them. We have also implemented a conversion
between PITFALLS and MPI data types that is not presented in this paper.

Mapping functions, described in detail in Sect. 6, are used to map a file offset onto
a file partition element (subfile or view), and vice-versa. Therefore, mapping func-
tion compositions may be used for mapping between two elements of two different
partitions, as we show in Sect. 6.3.

However, a byte-to-byte mapping between two partitions is inefficient for large
data sets. The redistribution algorithm, described in Sect. 7, maps noncontiguous
byte segments instead of singular bytes.

The mapping functions and data redistribution algorithm most important benefits
are:

• They can be used in parallel file systems or libraries. Section 8 presents a case
of applying them in a parallel file system. We have also implemented the MPI-IO
library file model [13] by using our file model and mappings.

• They can be used for any combination of redistributions: disk–disk, disk–memory,
memory–memory.
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• They relate the logical and physical partitions of the same file and may be used
to improve performance. For instance, the redistribution algorithm can implement
disk redistribution on-the-fly, like in Panda [12], in order to better suit the layout
to a certain access pattern.

• Multidimensional array redistribution is efficiently handled by using the regularity
of the array partition.

• A high utilization of network bandwidth can be obtained for noncontiguous access.
Section 7.4 shows the computation of the mappings of a noncontiguous pattern to
a linear buffer and Sect. 8.1 outlines how the data representation is used for scatter
and gather operations in a parallel file system. The pack and unpack operations of
MPI can be implemented using the scatter and gather procedures from 8.1.

• Data redistribution allows also to better partition the data, in order to alleviate
disk contention and improve the load balance of several disks, and, therefore, to
increase the efficiency of programs performing parallel disk access.

4 Data representation

Our data representation is an extension of PITFALLS (Processor Indexed Tagged
FAmily of Line Segments), introduced in [17]. In this subsection, we will present the
elements of PITFALLS necessary for understanding this paper.

4.1 Line segment

A line segment (LS) is a tuple (l, r) describing a contiguous portion of a file starting
at offset l and ending at r .

4.2 FAmily of Line Segments (FALLS)

A family of line segments (FALLS) f is a quadruple (lf , rf , sf , nf ) representing a set
of nf equally spaced, equally sized line segments. The left index of the first LS is lf ,
the right index of the first LS is rf and the distance between every two consecutive
LSs is called a stride and is denoted sf . A FALLSs block is defined as the bytes
contained between lf and rf . A line segment (l, r) can be represented as the FALLS
(l, r,−,1). Figure 1 shows an example of (3,5,6,5).

Fig. 1 FALLS example: (3,5,6,5)
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Fig. 2 Nested FALLS example

(a) Array form (b) Tree form

Fig. 3 Tree representation of a nested FALLS

4.3 Nested FALLS

A nested FALLS f is a quintuple (lf , rf , sf , nf , If ) representing a FALLS together
with a set of inner nested FALLS If . The inner FALLSs If are located between lf
and rf and are relative to the left index of the outer FALLS. In constructing a nested
FALLS, it is advisable to start from the outer FALLS to inner FALLS.

Figure 2 shows an example of a nested FALLS (0,3,8,2, {(0,0,2,2,∅)})). The
outer FALLS are drawn with thick line.

A nested FALLS can be represented as a tree. Each tree node contains a FALLS
f and its children are the inner FALLS of f . Figure 3 represents the nested FALLS
(0,15,32,2, {(0,0,4,2,∅), (8,9,4,2,∅)}).

A set of nested FALLS is to be seen as a collection of line segments, compactly
representing a subset of a file. The x-th byte of a file belongs to a set of nested FALLS
S if it lies on one of line segments of S.

4.4 Simplifying FALLS

A FALLS represented as a tree can be simplified either by compacting contiguous
line segments or by promoting children to their parents.

The first case may occur when two FALLS, which are leaves, belong to the same
set and represent contiguous line segments. For instance, {(0,15,32,2, {(1,3,−,1,∅),

(4,6,−,1,∅)})} can be simplified to {(0,15,32,2, {(1,6, −,1,∅)})}.
Given a FALLS f = (lf , rf , sf , nf , If ) such that f ∈ S, the promotion of chil-

dren to their parents can be performed in two subcases. First, given a child c ∈ If

such that nc = 1, c can be promoted to S. The FALLS c is eliminated from If and a
new FALLS (lf + lc, lf + rc, sf , nf , Ic) is inserted into S. In the example above, the
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result of the first simplification can be further simplified to {(1,6,32,2,∅)}. Second,
if nf = 1, all children If can be promoted to S. As a result of the simplification,
f is removed from S and for all c ∈ If , the FALLS (lf + lc, lf + rc, sc, nc, Ic) is
inserted into S. For example, the set of nested FALLS {(1,16,32,1, {(0,0,4,2,∅),

(8,9,4,2,∅)})} can be simplified to {(1,1,4,2,∅), (9,10,4,2,∅)})}.
4.5 PITFALLS and nested PITFALLS

For regular distributions, a set of nested FALLS can be shortly expressed using the
nested PITFALLS representation [17, 21]. However, for the sake of simplicity, in this
paper, we will use only the nested FALLS representation, because each nested PIT-
FALLS is just a compact representation of a set of nested FALLS.

4.6 Size

A nested FALLS is a set of indices which represent a subset of a file. The size of a
nested FALLS f is the number of bytes in the subset defined by f . The size of a set
of nested FALLS S is the sum of sizes of all its elements. The following two mutual
recursive equation express formally the previous two definitions.

SIZEf =
{

nf (rf − lf + 1) if If = ∅
nf SIZEIf

otherwise

SIZES =
∑
f ∈S

SIZEf

For instance, the size of the nested FALLS from Fig. 2 is 4.

4.7 Contiguous set of FALLS

A set of FALLS is called contiguous between l and r if it describes a region without
holes between l and r . For instance, the set containing the FALLS from Fig. 1 is
contiguous between 9 and 11, but it is not contiguous between 5 and 11.

5 The file model

This section presents our file model, which can be applied both for partitioning the
file into subfiles, which are physically stored on disks and views, which are logical
entities. Both subfiles and views are linear addressable and are described by sets of
nested FALLS. For the rest of this section, the discussion about subfiles applies also
for views.

A file in our model is a linear addressable sequence of bytes, consisting of a dis-
placement and a partitioning pattern. The displacement is an absolute byte position
relative to the beginning of the file. The partitioning pattern P consists of the union
of n sets of nested FALLS S0, S1, . . . , Sn−1, each of which defines a subfile:

P =
n−1⋃
i=0

Si
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Fig. 4 File partitioning example

The sets must describe nonoverlapping regions of the file. Additionally, P must de-
scribe a contiguous region. The partitioning pattern maps each byte of the file on a
pair subfile-position within subfile, and is applied repeatedly throughout the linear
space of the file starting at the displacement.

We define the size of the partitioning pattern P to be the sum of the sizes of all of
its nested FALLS.

SIZEP =
n−1∑
i=0

SIZESi

Figure 4 illustrates a file, physically partitioned into 3 subfiles, starting at dis-
placement 2 and defined by FALLS (0,1,6,1, ∅), (2,3,6,1,∅), and (4,5,6,1,∅).
The size of the partitioning pattern is 6. The arrows represent mappings from the file’s
linear space to the subfile linear space.

6 Mapping functions

Given one partition P of a file, this section shows how to build a mapping function
between a file offset and the offset of one of the partition elements. Using the mapping
function and its reverse, we then show how to convert offsets between the linear
spaces of two different partitions of the same file.

Given a set of nested FALLS S, belonging to a file partition, the functions
MAPS(x) and MAP−1

S (x) compute the mappings between the linear space of a file
and the linear space of a subfile. For instance, if the partition element is described
by the set of nested FALLS {(2,3,−,1,∅)} and the partition size is 6, as in Fig. 4,
the byte at file offset 10 maps on the byte with subfile offset 2 (MAPS(10) = 2) and
vice-versa (MAP−1

S (2) = 10).

6.1 Mapping a file on a subfile

MAPS(x) computes the mapping of a position x from the linear file space on the
linear subfile space defined by S, where S belongs to the partitioning pattern P ,
starting at displacement displ. The MAPS(x) is the sum of the map value of the
beginning of the current partitioning pattern and the map of the position within the
partitioning pattern.
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MAPS(x)

1: ((x − displ) div SIZEP )SIZES + MAP-AUXS((x − displ) mod SIZEP )

MAP-AUXS(x) computes the file–subfile mapping for a set of nested FALLS S.
Line 1 of MAP-AUXS(x) identifies the nested FALLS j of S onto which x maps.
The returned map value (line 2) is the sum of total size of previous FALLS and the
mapping onto fj , relative to lfj

, the beginning of fj .

MAP-AUXS(x)

1: j ← min{k|x ≥ lfk
}

2: if x − lfj
≥ sfj

cfj
then

3: return
∑j

i=0 SIZEfi

4: else
5: return

∑j−1
i=0 SIZEfi

+ MAP-AUXfj
((x − lfj

)

6: end if
MAP-AUXf (x) maps the file offset x onto the linear space described by the

nested FALLS f . The returned value is the sum of the sizes of the previous blocks of
f and the mapping on the set of inner FALLS, relative to the current block begin.

MAP-AUXf (x)

1: if If = ∅ then
2: return (x div sf )(rf − lf + 1) + x mod sf
3: else
4: return (x div sf )SIZEIf

+ MAP-AUXIf
(x mod sf )

5: end if
For instance, for the partition element described by the nested FALLS S =

(0,1,−1,∅), where the partition size is 6 and displacement is 2, shown in Fig. 4b,
the file-partition element mapping is computed by the function:

MAPS(x) = 2((x − 2)div 6) + (x − 2)mod 6

Notice that MAPS(x) computes the mapping of x on the partition element defined
by S, only if x belongs to one of the line segments of S. For instance, in Fig. 4,
the byte at file offset 5 does not map on partition element 0. However, it is possible
to slightly modify MAP-AUXf , to compute the mapping of either the next or the
previous byte of the file, which directly maps on a given partition element. The idea is
to detect when x lies outside any block of f and to update x to the position of the end
of the current stride (next byte mapping) or of the end of the previous block(previous
byte mapping), before executing the body of MAP-AUXf . In Fig. 4, the previous
map of file offset x = 5 on partition element 0 is the byte at offset 1 and the next map
is the byte at offset 2.

6.2 Mapping a subfile on a file

MAP−1
S computes the mapping from the linear space of a partition element described

by S and belonging to a partitioning pattern P , starting at displacement displ to the
file, as the sum of the start position of the current partitioning pattern and position
within the current partitioning pattern.
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MAP−1
S (x)

1: displ + (x div SIZES)SIZEP + MAP-AUX−1
S (x mod SIZES)

MAP-AUX−1
S (x) looks for the FALLS fj ∈ S, in which x is located. The result is

the sum of lfj
, the start position of fj , and the mapping within fj of the remaining

offset.

MAP-AUX−1
S (x)

1: j ← max{k|x <
∑k

i=0 SIZEfi
}

2: return lfj
+MAP-AUX−1

fj
(x − ∑j−1

i=0 SIZEfi
)

MAP-AUX−1
f (x) maps position x of the linear space described by the nested

FALLS f on the file. The result is the sum of mapping the begin of the inner FALLS
of f and the mapping of the position remainder on the inner FALLS.

MAP-AUX−1
f (x)

1: if If = ∅ then
2: return (x div LENf )sf + x mod LENf

3: else
4: return (x div SIZEIf

)sf + MAP-AUX−1
If

(x mod SIZEIf
)

5: end if
For instance, for the subfile described by the nested FALLS S = (0,1,−,1,∅),

with partition size 6, in Fig. 4b, the partition element-file mapping is computed by
the function:

MAP−1
S (x) = 2 + 6(x div 2) + x mod 2

6.3 Mapping between two partitions

Given two partition elements defined by S and V and belonging to two different
partitions of the same file, we compute the direct mapping of x between S and V as
MAPS(MAP−1

V (x)). For instance, in Fig. 7b, the mapping of the byte at offset 4 from
partition element V on the partition element S is MAPS(MAP−1

V (4)) = 4.

It can be noticed that MAP−1
S actually represents the inverse of MAPS , for the

same S:

MAP−1
S (MAPS(x)) = MAPS(MAP−1

S (x)) = x

As a consequence, given a physical partition into subfile and a logical partition
into views, described by the same parameters, each view maps exactly on a subfile.
Therefore, every contiguous access of the view translates into a contiguous access
of the subfile. This represents the optimal physical distribution for a given logical
distribution.

7 Redistribution algorithm

Given two partitions of the same file, our goal is to redistribute the file data from one
partition to the other. In order to do this, it is necessary to copy all the data from each



Mapping functions and data redistribution for parallel files 223

(a) Example 1

(b) Example 2

Fig. 5 FALLS intersection algorithm

element of the first partition into the elements of the second partition. One element of
the first partition may contain data that has to be copied in one or more elements of
the second partition. Therefore, each element of the first partition has to be intersected
with all elements of the second partition, in order to determine the indices where the
data has to be moved. In this section, we will show how to compute the intersection
between two elements of two different file partitions.

The partition elements of a parallel file are represented by sets of nested FALLS.
The intersection algorithm described in Sect. 7.3 computes the set of nested FALLS
that can be used to represent data common to two sets of nested FALLS, belonging
to two given file partitions. The indices of the sets of nested FALLS are given in file
linear space. In Sect. 7.4 we show how these sets of indices can be projected on the
linear space of each of the two intersected partition elements.

7.1 FALLS intersection algorithm

Our nested FALLS intersection algorithm from Sect. 7.3 uses the FALLS intersec-
tion algorithm from [17], INTERSECT-FALLS(f1, f2). INTERSECT-FALLS ef-
ficiently computes the set of nested FALLS, representing the indices of data common
to both f1 and f2. In order to make the computation efficient, the algorithm uses the
period of the intersection result (the lowest common multiplier of the strides of f1
and f2) and considers just pairs of line segments of f1 and f2 that intersect.

Figure 5 shows two examples of algorithm employment: (a) INTERSECT-
FALLS((0,7,16,2), (0,3,8,4)) = (0,3,16,2) and (b) INTERSECT-FALLS((0,1,

4,1), (0,0,2,2)) = (0,0,4,1).
INTERSECT-FALLS is used in array redistributions [17]. The old and new dis-

tributions of an n-dimensional array are represented as FALLS on each dimension and
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the intersection is performed independently on each dimension. Because our goal is
providing arbitrary redistributions, we can not employ the multidimensional array
redistribution. We will describe an algorithm, which allows arbitrary redistributions,
while efficiently performing multidimensional array redistribution.

7.2 Cutting a FALLS

The following procedure computes the set of FALLS which results from cutting a
FALLS f between an inferior limit l and superior limit r . The resulting FALLS
are computed relative to l. We use this procedure in the nested FALLS intersection
algorithm.

CUT-FALLS(f, l, r)

1: DEF g:FALLS
2: lg ← l; rg ← r ; ng ← 1
3: S ← INTERSECT-FALLS(f,g)
4: for all h ∈ S do
5: lh ← lh − l

6: rh ← rh − l

7: end for
8: return S

For example, cutting the FALLS (3,5,6,5) from Fig. 1 between l = 4 and r = 28
results in set {(0,1,2,1), (5,7,6,3), (23,24,2,1)}, computed relative to l = 4.

7.3 Intersection of sets of nested FALLS

We are ready now to describe the algorithm for intersecting sets of nested FALLS S1
and S2, belonging to the partitioning patterns P1 and P2, starting at displacements d1
and d2. The sets contain FALLS in the tree representation. The algorithm assumes,
without loss of generality, that the trees have the same height. If they do not, the
height of the shorter tree can be transformed by adding outer FALLS.

In the PREPROCESS phase of INTERSECT, P1 and P2, and implicitly S1 and
S2, are extended over a size equal to the lowest common multiplier of the sizes of P1
and P2. In Fig. 6b, two partitioning patterns of sizes 3 and 4 and starting at displace-
ments 5 and 3, from Fig. 6a are extended to a size of lcm(3,4) = 12. Subsequently,
they are aligned at the maximum of the two displacements, by cutting and extending
the partitioning pattern starting at the lowest displacement (see also Figs. 6b and 6c).
After preprocessing, the two partitioning patterns have the same displacements and
the same sizes and can be intersected.

INTERSECT(S1, S2)

1: PREPROCESS
2: return INTERSECT-AUX(S1, 0, SIZEP1 − 1, S2,0, SIZEP2 − 1)

INTERSECT-AUX computes the intersection between two sets of nested FALLS
S1 and S2, by recursively traversing the FALLS trees (line 12), after intersecting the
FALLS pairwise (line 8).
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(a) Two partitioning patterns with different sizes (4 and 3)
and different displacements (5 and 3)

(b) Extending the partitioning patterns to the size
of the lowest common multiplicator of their sizes

(c) Aligning the partitioning patterns

Fig. 6 Extending and aligning two partitioning patterns

INTERSECT-AUX considers first all possible pairs (f1, f2) such that f1 ∈ S1 and
f2 ∈ S2. The FALLS f1 is cut between the left and right index of intersection of outer
FALLS of S1 and S2 (line 4), l1 and r1. The indices l1 and r1 are computed relative to
outer FALLS of S1, and are received as parameters of recursive call from line 12. The
same discussion applies to f2 (line 5). CUT-FALLS is used for assuring the property
of inner FALLS of being relative to left index of outer FALLS. The FALLS resulting
from cutting f1 and f2, are subsequently pairwise intersected (line 8). The recursive
call descends in the subtrees of f1 and f2 and computes recursively the intersection
of their inner FALLS (line 12).

INTERSECT-AUX(S1, l1, r1, S2, l2, r2)

1: S ← ∅
2: for all f1 ∈ S1 do
3: for all f2 ∈ S2 do
4: C1 ← CUT-FALLS(f1, l1, r1)
5: C2 ← CUT-FALLS(f2, l2, r2)
6: for all g1 ∈ C1 do
7: for all g2 ∈ C2 do
8: S ← S ∪ INTERSECT-FALLS(g1, g2)
9: end for

10: end for
11: for all f ∈ S do
12: I ← INTERSECT-AUX(If1, (lf − lf1) mod sf1 , (rf − lf1) mod sf1 ,

If2 , (lf − lf2) mod sf2 , (rf − lf2) mod sf2 )
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(a) Logical and physical partitioning (array form)

(b) Logical and physical partitioning (file form)

(c) Projection of V ∩ S (d) Projection of V ∩ S

on the view defined by V on the subfile defined by S

Fig. 7 Nested FALLS intersection algorithm

13: end for
14: end for
15: end for
16: return S

For instance, Fig. 7 shows the intersection of two sets of nested FALLS, S1 =
(0,7,16,2, (0,1,−,1,∅)) and S2 = (0,3,8,4, (0,0,2,2,∅)), belonging to partition-
ing patterns of size 32. The outer and the inner FALLS intersections were already
shown in Fig. 5. The intersection result is V ∩ S = (0,3,16,2, (0,0,4,1,∅)), which
can be simplified to (0,0,16,2,∅).

7.4 Projection of a set of FALLS

The algorithm from the previous subsection computes the intersection S of the two
sets of FALLS S1 and S2. Consequently, data set represented by S is a subset of both
S1 and S2. The projection of S1 on S is defined as the set of nested FALLS which
represents the positions of the data segments from S in the linear space of the S1. For
instance, for the example in Fig. 7, the intersection results of V and S computed in
Sect. 7.3 was (0,0,16,2,∅), representing 2 bytes in the linear space of the file. The
V = (0,7,16,2, (0,1,−,1,∅)) represents a partition element consisting of 8 bytes.
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The 2 bytes of V ∩ S are a subset of the 8 bytes of V . The projection PROJV (V ∩ S)

= (0,0,4,2,∅) (Fig. 7c) represents the relative position of the 2 bytes of V ∩S inside
the 8 bytes of V . The projection PROJS(V ∩ S) can be calculated with a similar
argument as (0,0,4,2,∅) (Fig. 7d).

This subsection shows a procedure for projecting S on the linear space (view or
subfile) described by S1 and S2. We use this projection in scattering and gathering
data exchanged between a compute node and an I/O node, as we will show in the
next section.

PROJS(R) computes the projection of R on S by simply calling an auxiliary
procedure PROJ-AUX.

PROJS(R)

1: PROJ-AUXS(R,0)

PROJ-AUXS(R,offset) traverses the trees representing the FALLS of R and it
projects each FALLS on the subfile described by S. The argument offset is needed
because each set of inner FALLS is given relative to the left index of the outer FALLS.
Therefore, offset accumulates the absolute displacement from the subfile beginning.

PROJ-AUXS(R,offset)

1: P ← ∅
2: for all f ∈ R do
3: p ← PROJ-AUXS(f,offset)
4: if If �= ∅ then
5: Ip ←PROJ-AUXS(If ,offset + lf )

6: end if
7: P ← P ∪ {p}
8: end for
9: return P

PROJ-AUXS(f,offset) projects a FALLS f displaced with offset to the subfile
described by S.

PROJ-AUXS(f,offset)

1: DEF g:FALLS
2: lg ←MAPS(lf + offset)− MAPS(offset)
3: rg ←MAPS(rf + offset)− MAPS(offset)
4: sg ←MAPS(sf + offset)− MAPS(offset)
5: ng ← nf

6: return g

For instance, for the example from Sect. 7.3, the projection results are
PROJV (V ∩ S) = (0,0,4,2,∅) (Fig. 7c) and PROJS (V ∩ S) = (0,0,4,2,∅)

(Fig. 7d).
INTERSECT and PROJS can be compacted in a single algorithm, as they are

both traversing the same sets of trees. For the sake of clarity, we have presented them
separately.
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8 Case study: a parallel file system

This section shows the employment of the mapping functions and the intersection
algorithm in the data operations of Clusterfile parallel file system. We will present
only parts of Clusterfile relevant to the discussion. For a detailed description, please
see [21–24]. Because the write and read are reverse symmetrical, we will present
only the write operation. We will accompany our description by an example shown
in Fig. 8, for the view and subfile presented in Fig. 7.

Clusterfile is a parallel file system for clusters. The nodes of a cluster are divided
in two sets, which may or may not overlap: compute nodes and I/O nodes. A file may
be physically partitioned into subfiles and logically and physically partitioned into
views by using the file model described in Sect. 5. The subfiles of a file are stored on
the disks of the I/O nodes. The views on a file may be set by the applications running
on the compute nodes. The file metadata, including the physical partition into subfiles
is stored at a metadata manager.

Fig. 8 Write operation in
Clusterfile. The numbers in
circles represent the lines of
compute node pseudocode. The
numbers in hexagons represent
the lines of I/O node pseudocode

(a) Compute node maps lV and rV on the subfile

(b) Communication between compute node and I/O node
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8.1 Scatter and gather

This subsection shows how the noncontiguous file access is implemented in Cluster-
file. The two procedures are used by data operations from Sect. 8.5.

Suppose we are given a set on nested FALLS S, a left and a right limit, l and
r , respectively. We have implemented two procedures for copying data between the
noncontiguous regions defined by S and a contiguous buffer buf (or a subfile):

• GATHER(dest, src,m,M,S) copies the data lying noncontiguously, as defined
by the nested FALLS S between m and M , from src buffer from to a contiguous
buffer (or to a subfile) dest. For instance, in Fig. 8b, the compute node gathers the
data between m = 0 and M = 4 from a view to the buffer buf2, using the set of
FALLS {(0,0,4,2,∅)}.

• SCATTER(dest, src,m,M,S) copies data from the contiguous buffer (or subfile)
src, noncontiguously, as defined by S between m and M on the buffer dest. For
instance, in Fig. 8b, the I/O node scatters the data from buf2, to a subfile, between
m = 0 and M = 4, using the set of FALLS {(0,0,4,2,∅)}.
The implementation consists of the recursive traversal of the set of trees represen-

tation of the nested FALLS from S. Copying operations take place at the leafs of the
tree.

8.2 File open

When a compute node opens an existing file, it sends a message to the metadata
manager and it receives the displacement displ and the partitioning pattern P . If the
file is created, a default physical partition is chosen.

8.3 Physical partition set

After creating a file, a compute node can modify file’s physical partition, by sending
a message to the metadata manager. As a result the old physical partition is discarded
and the new one is stored by the metadata manager.

8.4 View set

When a compute node sets a view, described by V , on an open file, with displacement
displ and partitioning pattern P , the intersection between V and each of the subfiles
is computed (line 2). The projection of the intersection on V is computed (line 3) and
stored at compute node. The projection of the intersection on S is computed (line 4)
and sent to I/O node of the corresponding subfile (line 5).

1: for all S ∈ P do
2: V ∩ S ← INTERSECT(V ,S)

3: PROJV ∩S
V ← PROJV (V ∩ S)

4: PROJV ∩S
S ← PROJV (V ∩ S)

5: Send PROJV ∩S
S to I/O node of subfile S

6: end for
The example from Fig. 8b shows the projections PROJV ∩S

V and PROJV ∩S
S , for a

view and one subfile, as computed in the example at the end of Sect. 7.4.
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8.5 The write operation

Suppose that a compute node has opened a file defined by displ and P and has set
a view V on it. As previously shown, the compute node stores PROJV ∩S

V , and the
I/O node of subfile S stores PROJV ∩S

S , for all S ∈ P . We will show next the steps
involved in writing a contiguous portion of the view, between mV and MV , from a
buffer buf to the file (see also Fig. 8 and the following two pseudocode fragments).

For each subfile described by S (1) and intersecting V (2), the compute node
computes the mapping of mV and MV on the subfile, mS and MS , respectively (3 and
4), and then sends them to the I/O server of subfile S(5). Subsequently, if PROJV ∩S

V is
contiguous between mV and MV , buf is sent directly to the I/O server(7). Otherwise
the noncontiguous regions of buf are gathered in the buffer buf2(9) and sent to the
I/O node(10).

1: for all S ∈ P do
2: if PROJV ∩S

V �= ∅ then
3: mS ← MAPS(MAP−1

V (mV ))

4: MS ← MAPS(MAP−1
V (MV ))

5: Send (mS,MS) of subfile S to the I/O server of S

6: if PROJV ∩S
V is contiguous between mV and MV then

7: Send MV − mV + 1 bytes between mV and MV to I/O server of subfile
defined by S

8: else
9: GATHER(buf 2,buf ,m, M, PROJV ∩S

V )
10: Send buf 2 to I/O server of subfile defined by S

11: end if
12: end if
13: end for

The I/O server receives a write request to a subfile defined by S between mS and
MS (1) and the data to be written in buffer buf (2). If PROJV ∩S

S is contiguous, buf is
written contiguously to the subfile (4). Otherwise the data is scattered from buf to the
file (6).

1: Receive mS and MS from compute node
2: Receive the data in buf
3: if PROJV ∩S

S is contiguous between mS and MS then
4: Write buf to subfile S between mS and MS

5: else
6: SCATTER(subfile,buf ,mS,MS,PROJV ∩S

S )
7: end if

8.6 Experimental results

In the previous part of this section, we have seen how the mapping functions and the
redistribution algorithm are employed in Clusterfile. In this subsection, we present an
analysis of timings of data operations in Clusterfile. Our goal is to measure the over-
head associated with the phases of data operations that involve the mapping functions
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b c r

Fig. 9 Matrix partitioning (b: block, c: block of columns, r: block of rows)

and the redistribution algorithm and to investigate how it relates to the total time in a
particular implementation.

We performed our experiments on a cluster of 16 Pentium III 800 MHz, having
256 kB L2 cache and 512 MB RAM, interconnected by Myrinet. Each machine is
equipped with IDE disks. They were all running LINUX kernels. The throughput of
the buffered disk reads, as measured by the hdparm utility, is 25.50 MB/sec. The TCP
throughput as measured by the ttcp benchmark is 82 MB/sec. Eight nodes were used:
four compute nodes and four I/O nodes.

We wrote a benchmark that writes and reads a two dimensional matrix to and
from a file in Clusterfile. We repeated the experiment for different sizes of the matrix:
256 × 256, 512 × 512, 1024 × 1024, 2048 × 2048 and 4096 × 4096. All the matrix
sizes are in bytes. For each size, we physically partitioned the file into four subfiles
in three ways (see Fig. 9): square blocks (b), blocks of columns (c) and blocks of
rows (r). Each subfile is stored to one I/O node. For each size and each physical
partition, we logically partitioned the file among four processors in blocks of rows.
All measurements were repeated ten times and the mean computed. The standard
deviation for all measurements was within 4% of the mean value.

We timed different phases of the write operation in two cases: when the I/O nodes
leave the data in their buffer caches and when they write it to their disks. Table 1
shows the average times for the four compute nodes, and Table 2 the average times
for the four I/O nodes. Based on them, we make the following observations:

• Given a physical and a logical partitioning, ti represents the time to perform the
intersection and to compute the projections as shown in Sect. 8.4. ti does not vary
significantly with the matrix size. As expected, ti is small for the same partitions,
and larger when the partitions do not match. It is worth noting that ti has to be paid
only at view setting and can be amortized over several accesses.

• The time to map the access interval extremities of the view on the subfile (lines 3
and 4 from the first pseudocode fragment from Sect. 8.5) tm is very small. It is 0
when a view and a subfile perfectly overlap.

• The gather time tg (line 9 from the first pseudocode fragment from Sect. 8.5) con-
sists of copying operations, by using the indices precomputed at view setting. As a
consequence, it increases with the size of the matrix, as the size of the copied data
increases. For a given matrix size, tg is largest when the partitions match poorly,
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Table 1 Write timing at compute node

Matrix size Physical Logical ti tm tg tBC
n tdisk

n

(bytes) partition partition (µs) (µs) (µs) (µs) (µs)

256 c r 1229 9 344 1205 4346

× b r 514 4 203 831 2191

256 r r 310 0 0 510 1455

512 c r 1096 11 940 2871 7614

× b r 506 6 568 2294 5900

512 r r 333 0 0 1425 4018

1024 c r 1136 18 2414 9237 22309

× b r 518 9 1703 7104 19375

1024 r r 318 0 0 5340 15136

2048 c r 1222 22 6501 30781 80793

× b r 503 11 5496 26184 71358

2048 r r 296 0 0 20333 56475

4096 c r 1118 23 21872 112795 312578

× b r 506 11 20394 100244 280626

4096 r r 321 0 0 79467 219237

ti : time to intersect the view with the subfiles

tm: time to map the extremities of the write interval on the subfiles

tg : time to gather the noncontiguous data into one buffer

tBC
n : the interval between the moment the compute node sends the first write request to an I/O node and

the moment the last acknowledgment arrives when writing to the buffer cache of I/O nodes

tdisk
n : the interval between the moment the compute node sends the first request to an I/O node and the

moment the last reply arrives when writing on the disks of I/O nodes

because repartitioning results in many small pieces of data which are assembled in
a buffer. It is 0 for an optimal matching for all sizes, because no copying is needed
before sending the data over the network.

• For a given size, the times tBC
n and tdisk

n contain the interval between sending the
first write request at one I/O node and receiving the last acknowledgment, as mea-
sured at the compute node. Because I/O servers are running in parallel, tBC

n and
tdisk
n are limited by the slowest I/O server.

• The performance is influenced by the I/O node contention, the average number of
compute nodes which contact one I/O node. The contention is large for patterns
that match poorly, and, therefore, hinders the parallelism of compute nodes, and
implicitly the scalability. For instance, redistributing data between row of blocks
and row of columns results in each of the four computing nodes contacting all
four I/O servers ( see the fourth column of Table 2). For an optimal match, the
contention is one, therefore, the requests of each compute node are sent to different
I/O nodes.
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Table 2 Write timing at I/O node

Matrix size Physical Logical Contention tn tBC
s tdisk

s

(bytes) partition partition at I/O nodes (µs) (µs) (µs)

256 c r 4 345 87 2255

× b r 2 311 61 1278

256 r r 1 361 45 918

512 c r 4 883 292 3593

× b r 2 1066 261 3095

512 r r 1 1118 219 2717

1024 c r 4 3904 1096 10602

× b r 2 4023 1068 10622

1024 r r 1 3886 1194 10951

2048 c r 4 15495 4942 41684

× b r 2 15555 4919 41178

2048 r r 1 15049 5081 41179

4096 c r 4 61651 20026 163271

× b r 2 60875 19855 163600

4096 r r 1 60213 19937 158602

Contention at I/O nodes: the average number of compute nodes, which sent requests to one I/O node

ti : time to intersect the view with the subfiles

tm: time to map the extremities of the write interval on the subfiles

tn: the average time of network operations of an I/O node

tBC
s : the scatter average time of an I/O node, when writing to the buffer cache

tdisk
s : the scatter average time of an I/O node, when writing on the disks

• The scatter times tBC
s and tdisk

s contain the times to write a noncontiguous buffer to
buffer cache, and to disk, respectively. We did not optimize the contiguous write
case to write directly from the network card to buffer cache. Therefore, we perform
an additional copy. Consequently, the figures for all three pairs of distributions are
close for large messages. However, for small sizes (256 × 256, 512 × 512), the
write performance to buffer cache and especially to disk is the best for an optimal
match of distributions.

Table 3 shows the average throughput of one compute node. ThruBC is computed
as the sum of tm, tg and tBC

n divided by the number of bytes written by each node.
Thrud is computed similarly except that td instead of tBC

n is used. The intersect time
ti is not included because the intersection at view declaration and not at write. Ad-
ditionally, ti can be amortized over several access operations. The fifth and seventh
columns show a significant performance improvement for optimal over poorer match-
ing patterns for the same matrix size, ranging between 111% and 295% for writes to
the buffer cache and 111% and 322% for writes on the disk.
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Table 3 Average compute node throughput

Matrix size Physical Logical ThruBC gainBC Thrud gaind

(bytes) partition partition (MB/s) (%) (MB/s) (%)

256 c r 10.51 – 3.76 –

× b r 15.78 145 7.47 191

256 r r 32.12 295 11.26 322

512 c r 17.14 – 8.60 –

× b r 22.85 132 11.10 132

512 r r 45.99 262 16.31 213

1024 c r 22.46 – 11.75 –

× b r 29.73 132 13.53 116

1024 r r 49.09 218 17.31 163

2048 c r 28.10 – 12.97 –

× b r 33.08 117 14.69 113

2048 r r 51.57 183 18.56 154

4096 c r 31.11 – 12.54 –

× b r 34.71 111 13.93 111

4096 r r 52.76 169 19.12 152

ThruBC : average throughput of a compute node, when I/O nodes are writing to the buffer cache

gainBC : throughput gain over the row-block physical partitioning, when I/O nodes are writing to the buffer
cache
Thrud : average throughput of a compute node, when I/O nodes write on the disk

gaind : throughput gain over the row-block physical partitioning, when I/O nodes write on the disk

We have seen in this subsection that the overhead associated with the mapping
functions and redistribution is to be primarily paid at view declaration (ti from Ta-
ble 1). This overhead can be amortized over several write operations. It also does not
vary significantly with the size for the same physical and logical partitions. There-
fore, the larger sizes of the matrix, the smaller the impact ti has on the total time. The
overhead paid at write time, i.e., the mapping of the write interval extremities on the
subfiles (tm from Table 1), is very small.

9 Conclusions and future work

Large files are often physically striped on several independent disks in order to im-
prove the data access throughput. On the other side, parallel applications may share
and access concurrently a file. In this paper, we presented a parallel file model, which
allows a file to be partitioned in several entities. The partitions may be physical or
logical. We introduced mapping functions and a data redistribution algorithm used
for converting between two arbitrary partitions.

The partitions, mapping functions and the redistribution algorithm are optimized
for multidimensional arrays. The data representation may use the regularity of a mul-
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tidimensional array partition for compact representation of complex patterns. The
regularity of the partition, expressed by the nested FALLS representation, is also
used for building efficient mapping functions and a redistribution algorithm.

The paper also showed potential utilizations of our approach. Specifically, we de-
scribed how we implemented the algorithms in the Clusterfile parallel file system.
We showed that the overhead of implementing the redistribution algorithm in Clus-
terfile can be amortized over several access operations and does not vary significantly
with the size of the data set for the same partition parameters. The mapping function
employment overhead was very small.

In the future, we plan to use the parallel file model, the mapping functions, and
the data redistribution algorithms to further investigate performance issues related to
the matching degree of two partitions of the same file. We are interested in finding a
quantitative description of the matching degree of two partitions. Subsequently, we
would like to investigate how the performance of parallel applications relates to this
quantitative evaluation.
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