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Abstract—In this paper we explore the problem of auto-
tuning the choice of algorithm. For a given task, there may
be multiple algorithms available, each of which may contain
its own set of tunable parameters and may provide optimal
performance under different sets of inputs.

Algorithmic choice is a type of tuning parameter which
has not been well studied in the history of autotuning. To
close this gap, we examine established autotuning techniques
with regard to their ability of handling these parameters.
We discuss the inadequacy of the state-of-the-art autotuning
toolbox in manipulating algorithmic choice parameters and
introduce four strategies to tackle this task.

We evaluate our strategies in two case studies of online-
autotuning scenarios, both with and without additional, nu-
meric tuning parameters. The strategies are able to determine
the optimal algorithm, and can even interoperate with the
autotuning of the additional parameters.

Keywords-autotuning; online-autotuning; algorithmic choice;
nominal parameters;

I. INTRODUCTION

The choice of the optimal algorithm is a key problem in
designing high performance software. This choice, however,
can rarely be made in a general, a priori way to achieve
maximum performance. The variations in data sizes, data
types, and even system properties such as processor speed
and parallelism make this impossible. Worse even, this
variation can occur during application runtime.

This problem can be addressed with the help of au-
totuning. Autotuning is a tool designed to find optimal
configurations for parameterized applications for a given
value function. By systematically exploring the search space
of possible configurations using some search strategy, the
best configuration is iteratively found (or approximated).
This method can be applied offline, e.g. as part of the
installation procedure, to optimize the application for the
concrete target machine. Alternatively, autotuning can be
performed online, during application runtime, to also ac-
count for variations in input data and size. While in an
offline scenario it is perfectly feasible to exhaustively try
every possible configuration, online tuning exhibits much
stricter real time constraints. Thus, a large body of fast
(and approximative) search techniques has been proposed
throughout the years in the autotuning literature, to speed
up both offline and online search.

Multiple previous projects exist that have applied autotun-
ing to approach the problem of algorithmic choice. However,
these limit themselves to offline tuning, often enhanced
with machine learning to provide some form of online
adaptivity. In this paper, we will reexamine the fundamental
properties of tuning algorithmic choice, and we will propose
a set of methods designed for its optimization in online
scenarios. Moreover, we will demonstrate how to combine
the tuning of the parameter governing algorithm selection
with autotuning of parameters exposed by the individual
algorithms themselves. In two case studies, we evaluate
our methods on two real-world applications, which offer
multiple alternative algorithms in performance critical stages
of their processing: We look at parallel string matching and
raytracing, which have applications in multiple fields of
research and industry. In these case studies we show that
our methods are able to find the optimal algorithm, and
are interoperable with autotuning the performance-relevant
parameters of the individual algorithms.

The remainder of this paper is organized as follows. In
the next section we will define the autotuning problem,
and review common optimization techniques used in online-
autotuning. We classify tuning parameters and algorithm
selection parameters, and discuss the insufficiencies of estab-
lished techniques in this parameter class. In Section III we
will introduce a new set of optimization methods specifically
for the class of nominal parameters and algorithmic choice.
We present the evaluation of our methods in Section IV.
The relevant related work is discussed in Section V. Sec-
tion VI concludes this paper by summarizing our findings
and discussing future work.

II. BACKGROUND

In the following we give a brief overview of performance
autotuning. We define the autotuning problem and review
the most common optimization techniques. Based on a
classification of tunable parameters we then analyze the
problem of tuning algorithmic choice, and analyze the ability
of the optimization techniques to handle algorithmic choice.

A. Autotuning

Autotuning is the process of automatically optimizing
the performance of an application by iteratively config-



urable application parameters, searching for the optimal
configuration. Application performance is interpreted with
respect to application runtime, but may also refer to different
metrics, such as energy consumption. In an offline tuning
scenario, the autotuner usually chooses a configuration of
the tunable parameters, then executes the application while
observing its performance, and repeats this process until
some termination criterion is met. In an online tuning setup,
this tuning loop is found further inside the application. As
a consequence, not every application lends itself to online
tuning: The application must implement some operation
which is executed repeatedly and is central to the appli-
caton’s performance. This operation must further allow for
the parameter configuration to change between tuning loop
iterations. Its performance should only depend on the current
configuration, as approximative search techniques tend to be
vulnerable to measurement noise. In this work we focus on
online autotuning, although the technique we develop here is
applicable to offline tuning as well. The difference between
online and offline tuning is mostly a technical one. Because
an online tuning operates at application runtime, it is subject
to stricter real time constraints.

More formally, both offline and online autotuning can be
defined as the process of finding the minimum of a given
measurment function mK : T → R defined as

Copt,K = argmin
C∈T

mK(C).

For a given context K = (KA,KS), describing the ap-
plication A running on the system S, the measurement
function mK maps application configurations C ∈ T onto
application specific measurement values. In practice, mK

often measures the application runtime or the systems energy
consumption. In this work we will assume mK to be a
measurement of time. For the sake of simplicity, the context
is usually assumed to be constant during the tuning process.
To ease readability we will therefore omit the context within
following definitions throughout the remainder of this paper,
implying that all conclusions we draw apply only within a
fixed, but arbitrary context.

The configurations C are points in a J-dimensional search
space T , which is composed from a finite set of tuning
parameters τj :

T = τ0 × τ1 × . . .× τJ .

Often, the τj are implemented as closed integer intervals.
Applying Steven’s typology[1], τj may be classified into

one of four categories: Nominal, Ordinal, Interval, or Ratio
Parameters. Their properties are summarized in table I.
Every class is characterized by a distinguishing property,
and subsumes the properties of all previous classes.

Minimizing m is a global optimization problem. Exhaus-
tive exploration of the search space is generally too expen-
sive in both online and offline scenarios. Therefore, research

and real world applications rely on efficient search strategies
to approximate the global optimum. In the following we give
a brief overview of several techniques that are frequently
applied in autotuning literature and by practitioners.

1) Hill Climbing: In every iteration, the hill climbing
method evaluates the neighbors of a current solution can-
didate, and greedily moves towards the neighbor with the
highest value. The method converges once there is no better
neighbor.

2) Downhill Simplex: Also named the Nelder-Mead-
Algorithm[2], this method maintains the nodes of a simplex
in the search space, and moves and contracts this simplex
towards an extremum (possibly local), using a small state-
machine of simplex transitions. This method is frequently
used in practice because it often shows very quick conver-
gence.

3) Particle Swarm: The particle swarm optimization[3]
searches an optimum by maintaining a set of candidate
solutions. Candidates are iteratively updated by an individual
local “velocity”.

4) Genetic Algorithms: Genetic algorithms[4] are mo-
tivated by biological evolution. A new configuration is
obtained either through “mutation”, by randomly modifying
one or more parameters, or through “crossover”, by inter-
leaving two old configurations at a random crossover point.

5) Differential Evolution: Differential evolution[5] oper-
ates on a set of candidate solutions referred to as agents. An
agent is updated based on three randomly selected agents.
Every dimension of the agent is probabilistically updated
based on the differences of the three selected agents in this
dimension.

6) Simulated Annealing: The simulated annealing
method[6] is motivated by the physical process of a cooling
material. In its essence, the method is identical to hill
climbing. However, in every hill climbing step, there is
a predefined chance of taking a step in a non-optimal
direction, thus reducing the probability of arriving in a
local minimum.

7) Exhaustive & Random Search: Although these tech-
niques are neither efficient nor sophisticated we see the
need to also mention exhaustive and random search. The
semantics of these are self explanatory: try every possi-
ble configuration systematically, or roll the dice in every
iteration, respectively. Exhaustive search is often applied in
offline tuning scenarios, and if the search space is small
enough that the search can be completed in a comfortable
time frame. Random search is rarely used in practice.

B. Autotuning Algorithmic Choice

Algorithmic choice, i.e. selecting an algorithm for a given
problem from a set of alternatives, represents an instance of a
nominal parameter. Algorithms, if they take the same inputs

1Note that the percentage itself is an interval value, however the actual
physical buffer size it represents is not.



Table I
PARAMETER CLASSES

Class Distinguishing Property Example

Nominal Labels Choice of algorithm
Ordinal Order Choice of buffer sizes from

a set small, medium,
large

Interval Distance Percentage of a maximum
buffer size1

Ratio Natural Zero, Equality of
Ratios

Number of threads

and produce the same outputs, can not be ordered, do not of-
fer a notion of distance and do not have a natural zero point.
To apply autotuning to algorithmic choice therefore requires
a tuning method that is able to handle nominal parameters.
The obvious first choice is of course exhaustive search. This
search technique is perfectly valid if algorithmic choice is
the only parameter that is being optimized, or, more gen-
erally, if the search space is comprised entirely of nominal
tuning parameters. Then, trying one configuration gives us
no information about any other possible configuration, and
picking every possible value once is optimal. If, on the other
hand, the search space contains a mixed set of parameter
classes, for instance when algorithms expose non-nominal
tunable parameters themselves, exhaustive search becomes
less adequate. It is necessary to minimize the time spent
searching because we wish to optimize total application
performance, which in an online tuning scenario includes
the search. Although exhaustive search is guaranteed to
eventually select the best configuration, it will also always
select the worst configuration. The autotuning happens at
runtime, therefore the costs of selected configurations has
to be amortized. Thus, a search technique is required that
focuses on the more promising candidates, based on the
information that can be derived from the non-nominal tuning
parameters.

Of the algorithms introduced in the previous section, only
genetic algorithms define a meaningful way of manipulating
the nominal parameter type. The Hill Climbing method and
by extension Simulated Annealing require a notion of neigh-
borhood. Differential Evolution operates on the difference
of configuration. Both Nelder-Mead and Particle Swarm
operate on a measure of direction and distance. Genetic
algorithms in turn do not require any of these measures,
which enables them to operate on nominal parameter spaces.
They are, however, applicable to the tuning of algorithmic
choice only in a very limited fashion. Selecting the algorithm
is only a single nominal parameter. Using either of the
mutation strategies discussed above thus turns the genetic
algorithm into a random search. On the other hand, if
we consider tunable parameters exposed by the individual
algorithms themselves, genetic algorithms can be applicable,
however at the cost of losing the performance benefits

offered by alternatives such as the Nelder-Mead method in
these parameter spaces.

Existing approaches for algorithmic choice (see Chap-
ter V) find several ways around this issue. PetaBricks[7]
converts the nominal parameter into a ratio parameter, by
linking algorithms to input sizes. The Nitro[8] framework
operates similarily, based on user-defined features extracted
from input data.

III. TUNING ALGORITHMIC CHOICE

The algorithmic choice tuning problem can be modeled
as a two-phase tuning problem. Given a set of algorithms
A, the tuning problem becomes

Copt = argmin
A∈A,C∈TA

mA(C),

for the updated measurement function mA,K : TA → R. As
distinct algorithms do not necessarily share tuning parame-
ters, parameter spaces are modeled as one tuning parameter
space per algorithm, TA, which need not necessarily be
disjoint (although in practice they usually are). Now, the
(globally) optimal configuration Copt contains the optimal
algorithm, as well as the configuration of that algorithm’s
tuning parameters.

The two-phase formulation of the tuning problem enables
us to tackle the optimization for each algorithm individually,
by first determining

Copt,A = argmin
C∈TA

mA(C)

for every A ∈ A. In the second phase, the global optimum
is determined as

Copt = argmin
A∈A,C=Copt,A

mA(C).

Numerous well-studied approximative solutions for the
first phase exists. However, since algorithmic choice param-
eters are nominative in nature, these solutions are not appli-
cable to the second phase. We hence devise four strategies to
address the second phase, which we further discuss below.

To approximate the optimal configuration of the algorithm
choice and the respective tuning parameters, we iteratively
apply both phases to the tuning problem in reverse order.
In tuning iteration i we first select an algorithm A using
one of the phase-two strategies. We then determine a tuning
parameter configuration Ci for A using a phase-one strategy.
In our case studies we rely on the Nelder-Mead downhill
simplex method in this step. Observing the runtime perfor-
mance of A with the configuration C, we obtain a runtime
sample mA,i = mA(Ci). We repeat this process indefinitely
or until a user-defined termination criterion is met.

In the remainder of this section we will discuss four
probabilistic strategies which we use to select an algorithm
in every iteration.



A. The ε-Greedy Strategy

The ε-Greedy strategy is a parameterized probabilistic
method which selects the currently best performing algo-
rithm with a probability of 1− ε. Otherwise, an algorithm is
chosen at random with uniform probability. In this strategy,
ε is a configurable parameter which enables direct control
of the explorative behavior of this method. We use ε-values
of 5%, 10%, and 20% in our case studies.

This strategy is probably most well known for its appli-
cation in the field of Reinforcement Learning as an action
selection policy. There, an agent selects an action for a
given state by either exploiting knowledge about the best
know action for this state, or by exploring different actions.
Another frequently applied alternative to the ε-Greedy policy
is a soft-max[9] policy, which chooses an action during
exploration according to a given probability, most commonly
using a Gibbs distribution. If some actions produce signifi-
cantly worse results than others, this policy helps to avoid
those actions. In our application however, we explicitely do
not want to avoid bad algorithms (which correspond to the
actions in a Reinforcement Learning framework), to allow
them to improve over time due to the second-phase tuning.

B. The Gradient Weighted Strategy

The Gradient Weighted strategy is a probabilistic method
which chooses an algorithm A ∈ A with probability pro-
portional to a weight wA in every iteration, based on the
gradient observed in the performance samples of the latest
iteration window [i0, i1] of A. We define wA as

wA =

{
GA + 2 if GA ≥ −1
− 1

GA

with GA =
1

mA,i1
− 1

mA,i0

i1−i0 . Note that in this definition, we
interpret “performance” inversely to the measured samples
mA,i to support intuition: an algorithm is considered “more
performant” the less time it consumes. Further note that in
our definition above the values of wA is always positive.
Thus, we never exclude an algorithm from the selection
process, and the selection probability of algorithm A is
PA = wA∑

A′∈A wA′
> 0.

In our case studies, we used an iteration window of 16.

C. The Optimum Weighted Strategy

The Optimum Weighted strategy is a probabilistic method
which chooses an algorithm A ∈ A with a probability
relative to its current optimal performance wA = maxi

1
mA,i

.
Again, the weight wA is strictly positive, and the selection
probability of algorithm A is PA = wA∑

A′∈A wA′
> 0.

D. The Sliding Window Area-Under-The-Curve Strategy

The Sliding Window AUC strategy is again a probabilistic
method, which assigns a weight wA based on the area under
the algorithm’s performance curve within a sliding iteration

Table II
SPECIFICATIONS OF THE BENCHMARK SYSTEM

Processor Intel Xeon E5-1620v2
Speed 3.70GHz
Threads 8
RAM 64GB

window [i0, i1] of A. This strategy is motivated by the
AUC Bandit meta heuristic described in the OpenTuner[10]
article. We define wA as

wA =

∑i1
i=i0

1
mA,i

i1 − i0
and the selection probability as before as PA =

wA∑
A′∈A wA′

> 0.
In our case studies, we used a window size of 16.

E. Genetic Algorithms

While the nature of genetic algorithms enables configu-
ration approximation in nominal parameter spaces, they do
not significantly contribute to solving the problem discussed
in this paper. Because there is only a single parameter that
we manipulate, the common genetic mutation strategies are
not applicable. Nonetheless, alternate mutation strategies are
imaginable. However, again because there is only a single
parameter, these strategies decay to one of the above.

IV. EVALUATION

We assess the ability of our four nominal parameter
tuning strategies to effectively manipulate algorithmic choice
parameters using two case studies.

In the first case study, we will look at parallel string
matching. The basis for this is our 2016 paper[11], in which
we presented parallel versions of several state-of-the-art
string matching algorithms. The algorithms themselves do
not expose any tunable parameters. In this study we will
observe the basic behavior of the search strategies.

The second case study covers a tunable raytracing ap-
plication. This application stems from the publication by
Tillmann et al.[12], and makes use of four different al-
gorithms for constructing a data structure fundamental to
raytracing performance. These algorithms expose multiple
tunable parameters. In this study we evaluate the effect of the
combination of tuning the choice of algorithm with tuning
the individual algorithms themselves.

A. Case Study 1: Parallel String Matching

String matching is a frequently employed tool with a
wide array of applications. We investigated parallel versions
of seven state-of-the-art string matching algorithms and
evaluated their performance on multiple text corpora[11],
including the text of the English King James Bible and
the sequence of the human genome. We evaluate an online
scenario: the query pattern and text corpora are supplied
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Figure 1. String Matching: Performance of the parallel string matching
algorithms

at program invocation. Any precomputation is part of the
algorithms runtime.

The seven string matching algorithms are
Boyer-Moore, EBOM, FSBNDM, Hash3, Knuth-
Morris-Pratt (KMP), ShiftOr and SSEF2. Additionally
we implemented a heuristic-based string matcher, labeled
Hybrid, that chooses one of the seven algorithms based on
the pattern length. The algorithms all follow the same two
phase pattern: first a precomputation is performed on the
pattern. Then a skip-ahead heuristic is iteratively evaluated
on the text to discard unfeasible text chunks, only checking
the remaining possible matches. The parallelization of the
algorithms is based around partitioning the input text. In
all algorithms, each partition is processed by one thread.
Where applicable, several of the algorithm implementations
make use of bit parallelism and SSE intrinsics in the text
search.

In this evaluation, we use all of the seven string matching
implementations, searching for the query phrase “the spirit
to a great and high mountain” within the English text of
the Bible. The benchmark system is an Intel Xeon E5-
1620v2 machine with 64GB of RAM, see table II for
further details. We tune the string matching application for
200 iterations, each iteration repeating the search for query
phrase. The length of this tuning loop is chosen to ensure
tuning convergence. This experiment is repeated 100 times
for stability. Figure 1 shows a boxplot of the performance
results for the individual string matching algorithms without
tuning on the bible benchmark. We see that four algorithms,
namely SSEF, EBOM, Hash3, and Hybrid, yield the
best performance.For a more detailed explanation of the

2The implementations are available at https://code.ipd.kit.edu/pmp/pgerp
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Figure 2. String Matching: Median performance in individual iterations
of all strategies

individual algorithms we refer the interested reader to the
source paper[11]. Since the boxes appear only as thin lines,
these results are very stable.

If we now enable tuning of the algorithm selection, we
observe the performance profile shown in figure 2. Here,
we show the median time consumed in every iteration over
the 100 experiments. Iterations are capped at 25 as all plots
are converged to a stable value. The first thing we observe
here is the effect of initialization. The ε-Greedy variants
initialize by trying every inidividual algorithm exactly once
in deterministic order, although this is still subject to the
ε-randomness. This order is clearly visible in the first seven
samples of the ε-Greedy curves. The remaining strategies do
not treat initialization in a special way, except that they start
with a deterministic configuration. The progression of the
Gradient Weighted curve is another point of interest, which
we discuss below in greater detail.

It is further noteworthy, that the ε-Greedy variants appear
strictly in unison in this plot. This is firstly due to the
fact that we’re showing median values here, and secondly,
because the exploration factor is much smaller than 50%,
there is a high likelihood that the median is always the
current best value.

For completeness we additionally show the mean perfor-
mance for all iterations in figure 3. In the curves of the ε-
Greedy variants we can see the effect of randomness in the
initialization period in the disparity between the curves. The
Gradient Weighted curve shows some unexpected results,
however. Because there are no tunable parameters in the
string matching implementations, we expect the performance
measurements to be very much the same in every iteration,
which should result in a gradient of 0. This in turn would
result in the Gradient Weighted curve to behave like a
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random selection, with a relatively stable average equal
to the runtime average over the untuned string matching
performance results. In our data, however, we observe a
converging trend as is visible in figure 3. We see the cause of
this in the measurement noise: Although figure 1 suggests
that the overall noise is very low, the standard deviations
of Boyer-Moore, KMP and ShiftOr are an order of
magnitude larger compared to the remaining algorithms (0.2
compared to 0.06).

Figure 4 shows the accumulated histogram of the algo-
rithm choice for all strategies. The frequencies are shown
as a boxplot over the 100 experiment repetitions. The plot

shows clearly how all the Greedy strategies prefer the
Hash3-algorithm, whereas Gradient Weighted, Optimum
Weighted, Sliding-Window AUC also give consideration to
EBOM, Hybrid, and SSEF with almost equal frequency.
Although there is a slight difference visible in the plot, this
difference is insignificant.

B. Case Study 2: Raytracing

In our second case study, we look at a raytracing ap-
plication. The raytracing application renders a single static
scene for 100 frames using a two stage rendering pipeline.
In the first stage, a lookup datastructure, called an SAH kD-
tree, is constructed to accelerate ray/primitive intersection
queries. In the second stage, rays are cast from the camera
into the scene and tested for intersection with the geometric
primitives of the objects of the scene. If a primitive is hit,
a second ray is cast toward the light sources to test for
ambient occlusion. The version of the application used in
this case study is identical to the version used by Tillmann
et al.[12], and offers four different, heuristical algorithms,
named Inplace, Lazy, Nested, Wald-Havran, to
construct the acceleration data structure in the first stage,
and a simple raycasting implementation in the second. The
algorithms build the kD-tree over the input scene in parallel
using OpenMP. They differ in the way they map geometric
primitives to threads, e.g. by mapping tree nodes to OpenMP
Tasks as in the Wald-Havran variant, or by relying on data
parallelism as in the Inplace algorithm. The paralleliza-
tion depth as well as the parameters of the SAH heuristic are
tunable parameters in all algorithms. The Lazy algorithm
adds another parameter, controlling the eager construction
cutoff. For a more in-depth discussion of the construction
algorithms and their relevant tuning parameters, refer to
Tillmann et al.

Here, we run the raytracing application for the Sibenik
scene from the original paper, rendering it for 100 frames
for a single experiment and repeat this 100 times. The tuning
loop is the rendering loop. For each frame, a construction
algorithm along with its new parameter configuration is
selected by the online tuner. The length of the tuning
loop is chosen to guarantee tuning convergence in every
experiment. Figure 5 displays the tuning profile for the
frame rendering iterations, averaged over all repetitions. This
plot gives an impression of how the Nelder-Mead online-
autotuner optimizes the construction performance over time.
Most noteworthy is the leap we see right on the first tuning
iteration. This is due to the fact that for all construction algo-
rithms the tuner starts off with a hand-crafted configuration
which Tillmann et al. created based on best practices of the
relevant literature.

When we combine the Nelder-Mead online-autotuner for
the algorithms’ own tuning parameters with our strategies
for algorithmic choice, we obtain a performance profile as
shown in figure 6. Here we see the combined effect of tuning
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individual algorithms and selecting an algorithm in every
frame. On the zeroth iteration, all strategies start off with the
same algorithm. The ε-Greedy variants quickly identify the
fastest of the construction algorithms and then converge on
that. The remaining strategies switch back and forth between
algorithms, and are able to achieve tuning progress on all
algorithms more or less simultaneously. For completeness,
figure 7 displays the averaged data for the same context,
which shows the same properties as the median data. The
large spike in the Optimum Weighted curve is caused
by picking up a large number (of 4) experiment runs in
which the Nested and Wald-Havran algorithms choose
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Figure 8. Raytracing: Frequency of all algorithms being chosen by the
strategies

a particularily bad configuration, whose durations are off by
a factor of 5. In our data, this occurs multiple times for the
Nested and Wald-Havran runs, however scattered over
different iterations in most cases.

Figure 8 again shows the accumulated histograms for all
strategies and algorithms as a boxplot over the experiment
runs. Again we see that the ε-Greedy variants concentrate on
the overall fastest algorithm. The remaining strategies do not
show a significant preference toward any single algorithm.
For the Gradient Weighted method the reason can be seen in
figure 5. The Gradient Weighted method prefers algorithms
which gain significant performance improvements within a



window of tuning iterations over those which do not. In the
algorithms used here, however, the autotuning progression
made by the Nelder-Mead autotuner is, on average, rela-
tively similar. The Gradient Weighted method can thus not
differentiate between the algorithms. In the remaining two
methods, the failure to discriminate algorithms is caused
by the way they calculate weights. The procedure is rather
similar in both cases, as they make decisions based on the
observed absolute performance within an iteration window.
To calculate weights, Optimum Weighted relies on the max-
imum norm, whereas Sliding Window AUC calculates the
average. Because the difference of the absolute performance
of all algorithms is (on average) small, both strategies are
unable to identify the fastest algorithm easily.

C. Discussion

In our case studies, we have seen that ε-Greedy is able
to pick the best algorithm. This is the case whether the
algorithms are subject to tuning themselves or not.

A threat to the validity of this conclusion is rooted in
the tuning progression of the algorithms in the second case
study. As we see in figure 5, the (average) performance
improvement profile of the algorithms is strikingly similar.
Thus, we are unable to predict how the ε-Greedy strategy
will behave if the tuning profile contains a crossover point,
however unlikely this may be in practice. In this situation,
ε-Greedy might take very long to converge to the second
algorithm with better post-tuning performance. We anticipate
to be able to mitigate this drawback by combining the
strategies we have presented here, in particular with the
Gradient-Weighted method.

The Gradient-Weighted method as we presented it here
is a special case, which we do not expect to be applica-
ble in practice. With this method, once the tuning of all
algorithms has converged, the algorithm selection will jump
randomly between algorithms in the set, without regard to
their individual absolute performance. We included it in this
paper and our case studies as a possible means to mitigate
drawbacks of the ε-Greedy strategy.

V. RELATED WORK

The need for autotuning software was first identified in
high peroformance and scientific computing. The field has
since recieved extensive attention. Two representatives of
autotuning in scientific computing are FFTW[13] and the
ATLAS project[14]. FFTW provides an adaptive software
architecture, which uses empirical offline tuning of FFT
solvers for the current system. The ATLAS project offers
linear algebra routines, automatically tuned for the current
system by fully exploring the configuration space.

Several general purpose tuning frameworks have since
been proposed, most prominent among them Active
Harmony[15]. This framework is built for online tuning of
applications in a distributed context. Application instances

report performance metrics to a centralized tuning controller,
which supports a variety of search techniques to generate
individual application configurations.

Autotuning is not limited to optimizing application run-
time, but is also able to operate in multi-objective scenarios.
Jordan et al. have built Insieme[16], a compiler and runtime
environment for multi-objective tuning of applications for
runtime performance and energy efficiency. Insieme follows
a hybrid approach, generating the multi-objective pareto
front during compiletime, and switching between pareto-
optimal configurations at runtime.

Although the history of autotuning dates back two
decades, autotuning of nominal parameters has, to the best
of our knowledge, not been studied explicitly in the relevant
literature. There are, however, several works available that
operate on special cases of at least partially nominal param-
eter spaces without identifying them as such. Instances of
this can be found in several projects[17], [18], [19] which
manipulate the sequence of compiler opimizations applied
during compilation. Tuning of algorithmic choice can also
be found in domain specific systems. SPIRAL[20] is a digital
signal processing tuner that optimizes user specified trans-
forms by generating a formula in a mathematical description
language. Tuning is applied to optimize the formula before
code is generated. The OpenTuner project[10] is dedicated
to optimize another type of nominal parameter, and offers a
meta-tuner which tries to find the optimal search technique
for a given tuning problem. The meta-tuner search strategy is
similar in nature to our Sliding Window AUC method. As
OpenTuner provides a general purpose tuning framework,
Ansel et al. recognize the existence of nominal parameters,
but leave it to the user to define a meaningful manipulation
method.

Furthermore, there are several projects that approach the
problem of algorithmic choice. Most recently, there have
been several publications around the work of Ansel et al.
and the PetaBricks language and compiler[7], [21]. The
PetaBricks language is a parallel programming language
which offers algorithmic choice as a first class construct.
Algorithms that solve the same problem on the same inputs
are labeled as alternatives. Offline autotuning on the target
system is then used to build a decision tree model for
choosing the optimal algorithm at runtime based on input
data characteristics[22]. A similar approach is taken by
the Nitro framework[8]. Muralidharan et al. use machine
learning to train a model over algorithm specific input data
characteristics (e.g. denominating the sparsitiy of a matrix).
ADAPT[23] and the work by Tiwari and Hollingsworth[24]
yield two examples which offer compiler-based algorith-
mic choice. Using dynamic code generation and online-
autotuning, compiler optimization variants are applied spec-
ulatively, and evaluated at application runtime.



VI. CONCLUSION

We have presented the problem of online-autotuning
algorithmic choice. By classifying tuning parameters and
reviewing common autotuning techniques, we identified the
shortcomings of these techniques with regard to selecting the
optimal algorithm. To mitigate these shortcomings we de-
vised four alternative methods capable of handling nominal
parameters, of which algorithmic choice is an instance. We
evaluate our new techniques in two case studies, first exam-
ining them in isolation on a string matching application, then
in collaboration with search-based autotuning of parameters
of the individual algorithms in a raytracing scenario.

In our case studies, we demonstrate the ability of our
techniques to find the optimal algorithm. We show that our ε-
Greedy strategy is able to achieve fastest convergence both in
the presence and absence of additional, non-nominal tuning
parameters. The remaining strategies achieve convergence as
well but at a slower rate.

In the future we will expand on this work by generalizing
from the problem of algorithmic choice towards arbitrary
nominal parameters. This requires combining the techniques
presented here to achieve maximum convergence speed
while defending against local extrema. Evaluating this will
call for a new set of benchmarks, that combines nominal
with non-nominal parameters.
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