
Finding Synchronization Defects in Java Programs:
Extended Static Analyses and Code Patterns

Frank Otto
University of Karlsruhe

76131 Karlsruhe, Germany
otto@ipd.uka.de

Thomas Moschny
University of Karlsruhe

76131 Karlsruhe, Germany
moschny@ipd.uka.de

ABSTRACT
Concurrent programming is getting more and more impor-
tant. Managing concurrency requires the usage of synchro-
nization mechanisms, which is error-prone. Well-known ex-
amples for synchronization defects are deadlocks and race
conditions. Detecting such errors is known to be difficult.
There are several approaches to identify potential errors, but
they either produce a high number of false positives or suf-
fer from high computational overhead, catching only a small
number of defects. Our approach uses static analysis tech-
niques combined with points-to and may-happen-in-parallel
(MHP) information to reduce the number of false positives.
Additionally, we present code patterns indicating possible
synchronization problems. We have implemented our ap-
proach using the Java framework Soot. Our tool was tested
with small code examples, an open source web server, and
commercial software. First results show that the number of
false positives is reduced significantly.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—parallel programming ; D.2.4 [Software Engineer-
ing]: Software/Program Verification—reliability

General Terms
Reliability, verification.

Keywords
Java, synchronization defects, lockset analysis, anti-pattern
detection.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IWMSE’08, May 11, 2008, Leipzig, Germany.
Copyright 2008 ACM 978-1-60558-031-9/08/05 ...$5.00.

1. INTRODUCTION
Software systems often perform several tasks in parallel,

operating on shared data. It is well-known that correct syn-
chronization of parallel applications is difficult. This paper
presents a new method for detecting code patterns that may
result in deadlocks or race conditions or indicate inefficient
synchronization. We focus on shared memory architectures
such as multicore systems.

A deadlock happens if threads wait for each other such
that none of them is able to make any progress [10]. A race
condition occurs when at least two threads access the same
resource simultaneously, without sufficient protection [1].
Detecting such errors is difficult because concurrent pro-
grams are non-deterministic: the outcome of a parallel ap-
plication may vary from run to run even if the input is the
same.

1.1 Concurrency in Java
Java [9] has become a widespread platform for developing

concurrent applications. It explicitly supports concurrency
by the Thread class and the Runnable interface. A key con-
cept for synchronizing threads in Java is provided in form of
monitors [10]. A monitor is declared by the keyword syn-

chronized and protects so-called critical sections. Critical
sections are guarded by locks that guarantee that only a sin-
gle thread can execute the statements within the section at
any time. Before a thread can execute that code, it has to
acquire (or already hold) the corresponding lock. In Java,
every object and class can be declared a monitor.

1.2 Contributions
To the best of our knowledge, our approach is the first one

to combine static analysis with points-to and MHP infor-
mation to effectively detect synchronization defects in Java
programs. The main contribution of our work is an extended
static analysis, which – compared to other approaches –
produces a tiny number of false positives. Based on the
extended analysis, we present detection strategies for code
patterns that might lead to synchronization defects.

1.3 Outline
The rest of the paper is organized as follows. Related work

is discussed in Section 2. Section 3 presents a brief outline
of our approach. Section 4 describes the lockset analysis.
Section 5 gives an overview about points-to and MHP anal-
ysis techniques, which we use to increase the accuracy of
our analysis. Section 6 describes code patterns indicating
potential synchronization defects and demonstrates how to

41

find them in real code based on the previous analysis. Expe-
riences are discussed in Section 7, while Section 8 presents
conclusions and future work.

2. RELATED WORK
Detecting synchronization defects is difficult because the

execution of concurrent programs is non-deterministic. The
thread schedule generally cannot be influenced by the appli-
cation and may vary from run to run even for the same pro-
gram input. Three core approaches for detecting such errors
are dynamic testing, static analysis, and model checking.

Dynamic testing examines a program’s behavior at run-
time, i.e. the program is executed with sample input in
order to find errors. The main problem is that only a small
number of execution paths can be examined. If no prob-
lems occur during testing, this does not necessarily mean
that the program is actually correct. One of the first tools
for detecting race conditions is Eraser [16]. It records lock-
sets and emits warnings if there are unprotected accesses
to shard objects. ConTest [3] is a tool which automatically
reruns tests to detect synchronization faults.

Static analysis focuses on the structure of the program
and does not require its execution. All possible (but also
infeasible) execution paths can be taken into consideration.
In general, static analyses run faster than dynamic tests but
are likely to produce a high number of false positives due
to infeasible paths and imprecise local information about
the program. JLint [1] is a well-known tool for detecting
synchronization faults and other runtime errors in Java pro-
grams. It runs extremely fast, but is not precise enough
and reports numerous false positives. RacerX [4] is a tool
for detecting deadlocks and data races in C programs. It
uses a lockset algorithm, heuristics and belief analysis to
identify possible faults. ESC/Java [7] is a tool examining
annotated code. It checks inconsistencies between the de-
sign decisions expressed by the annotations and the actual
code and warns of potential runtime errors including syn-
chronization problems. Findbugs [6] is a freely available tool
looking for bugs in Java code. There are bug categories such
as “multi-threaded correctness”, which include pattern-like
descriptions of bugs. However, these patterns are simple,
since they only refer to single code fragments instead to the
whole program, which is less effective.

Model Checking is a verification technique that checks if
certain properties hold for a model of a given program. One
challenge is to construct a “good” model, which should be
as simple as possible but also provide sufficient information
about the program. Related to this aspect is the state explo-
sion problem, i.e. the fact that the actual size of the model is
usually exponentially larger than the size of its implicit de-
scription. A well-known tool is Java PathFinder [19], which
can model check Java programs of a size up to 10 KLOC.

3. OVERVIEW
In this section, we give an overview of how our approach

works. It was built on top of the Soot framework [17] and
encompasses the following steps:

1. Our Java-adapted lockset algorithm computes the sets
of locks held at each statement of the program. This
algorithm operates on Jimple, an intermediate repre-
sentation used by Soot.

2. The results of the lockset algorithm are used (i) to
retrieve information about the order in which locks
are acquired (so-called constraints) and (ii) to group
the program into blocks, i.e. sequences of statements
protected by the same lock.

3. We extract precise information about constraints and
blocks by running points-to and MHP analyses. By
this, we can quickly answer questions like “Which ob-
jects might this lock name refer to?”, “Which blocks
may share objects?”, or “May these two blocks be ex-
ecuted in parallel?”.

4. On that basis, we use detection algorithms to search
for code patterns that might lead to synchronization
defects. In this paper, we present five code patterns
including detection strategies.

5. The findings are presented in form of a problem report,
which can be filtered by the user.

4. LOCKSET ANALYSIS
A fundamental part of our approach is a lockset algo-

rithm in the style of RacerX [4]. It operates on Jimple, an
intermediate representation used by Soot. For each single
statement, this algorithm computes the set of locks which
are held at this point. This set is called lockset.

Our algorithm traverses the whole program, starting with
the first statement of the main method. If there is a method
call, the callee will be analyzed with respect to the context of
the call, which is given by the so-called entry lockset consist-
ing of those locks held at the point where the call happens.
Since each method can be called within different contexts
(i.e. with different entry locksets), separate analyses have
to be done for each of those.

Figure 1 shows an example analysis for a simple Java pro-
gram. Whenever a monitor is entered, the variable name of
this monitor is added to the lockset. On exit of the monitor,
the corresponding name is removed from the lockset.

The lockset analysis is a classical data flow problem. The
purpose of a data flow analysis is to retrieve facts for each
point of a program [15]. This usually happens based on
the program’s control flow graph by computing so-called
GEN(s), KILL(s), IN(s) and OUT (s) sets for all state-
ments s. GEN(s) and KILL(s) contain those facts which
have to be added or removed for s. IN(s) and OUT (s)
contain those facts which hold before or after s.

The goal of our lockset analysis is to compute the lock-
sets for each statement of a program. For a statement s,
we define GEN(s) = {x}, if lock x is acquired by s, and
KILL(s) = {x}, if x is released by s. The flow through a
statement s is described by OUT (s) = (IN(s)\KILL(s))∪
GEN(s).

Determining locksets serves two purposes: to derive so-
called constraints and to collect information about the pro-
gram on the basis of blocks. These are defined in the follow-
ing two subsections.

4.1 Constraints
A constraint is an expression a → b, where a and b are

locks. a→ b means that at some point in the program lock b
is acquired while a is already held. In principle, constraints

42

GEN KILL lockset

public static void main(String[] args) { {} {} {}

foo(); // context c1 {} {} {}

synchronized(o) { {o} {} {o}

foo(); // context c2 {} {} {o}

} {} {o} {}

} {} {} {}

c1 c2

static void foo() { {} {} {} {o}

synchronized(p) { {p} {} {p} {o, p}

// ... {} {} {p} {o, p}

} {} {p} {} {o}

} {} {} {} {o}

Figure 1: Lockset analysis for a simple Java program

describe the order in which locks can be acquired. They are
essential for computing potential locking cycles, which may
lead to deadlocks.

The constraints can be derived from the locksets com-
puted for the program: if, for some part of code of the
program, there is a lockset {a} followed by another lock-
set {a, b}, the constraint a→ b is emitted. For the program
fragment in Figure 1, the only constraint is o → p, which
holds inside the method foo() if it is called from context c2.

4.2 Blocks
A block is a sequence of statements that are part of a

method and either protected by the same lock or not pro-
tected. If a block is protected by a lock, we call it a synchro-
nized block, and unsynchronized block otherwise. Blocks are
a fundamental entity with respect to synchronization. They
can be easily derived from the locksets: a sequence of state-
ments with the same lockset belongs to one block.

Grouping the program into blocks allows dedicated views
on it: for example, to determine which blocks are protected
by the same lock, whether two given blocks may be executed
in parallel, or which variables are referenced in a given block.
Answering questions like these requires more precise infor-
mation, which we gain from points-to and MHP analysis.
These techniques are described in the next section.

5. POINTS-TO AND MHP ANALYSIS
To increase the accuracy of our analysis, we use points-

to and may-happen-in-parallel (MHP) analysis. The goal of
points-to analysis is to determine the set of objects pointed
to by a variable or field carrying a reference. Given a variable
v, we define PS(v) to be the points-to set of v. Our approach
uses SPARK [11], a flexible points-to analysis framework for
Soot [17].

For our work, points-to information is needed to deter-
mine whether two variables v1, v2 may point to the same
object at runtime. This is the case if the corresponding
points-to sets have a non-empty intersection, i.e. if PS(v1)∩
PS(v2) 6= ∅. For example, it can be determined whether
(1) the same object might be accessed from two different
blocks or (2) two“different” locks might actually be the same
since their names refer to the same object.

MHP analysis [14] determines whether two pieces of code
might be executed in parallel. The Soot-based approach by
Lin Li [12] for two methods m1, m2 returns true if m1 and
m2 may be executed in parallel (which does not necessarily
mean that this actually happens) and false if they are never
executed in parallel. We modified this approach to operate
on blocks (as defined in Section 4.2) instead of methods, i.e.
we provide a boolean function mhp(b1, b2), where b1 and
b2 are blocks. Since this function also incorporates infor-
mation about monitors, it is more precise than the original
approach.

6. CODE PATTERNS
So far, we have shown how to use the results of the lockset

analysis combined with points-to and MHP information to
retrieve precise information about the constraints and blocks
of a program. On that basis, we use detection algorithms to
search for code patterns that might result in synchronization
defects. This section gives an overview of some patterns that
we defined based on the work of Lea [10] and Farchi et al. [5].
For each pattern, we give example code, briefly describe the
problem, and present detection strategies.

6.1 Cyclic Lock Dependencies
The following two code fragments, which are both part of

a parallel application, acquire locks in different orders:

void foo() { void bar() {

synchronized(o1) { synchronized(p2) {

synchronized(p1) { synchronized(o2) {

// ... // ...

} }

} }

} }

Problem. A cyclic lock dependency is the classical pre-
condition of a deadlock [20]. The existence of cyclic depen-
dencies can be determined by considering the constraints of
the program. The above example consists of two constraints
o1 → p1, p2 → o2, such that there are cyclic dependencies
provided that o1 in foo() and o2 in bar() as well as p1 in
foo() and p2 in bar() may point to the same objects, re-
spectively. In this case, a deadlock may occur when foo()

and bar() are executed in parallel.

43

Detection.
(1) Consider the set C of all constraints of the program.
(2) Build a directed graph G = (V, E). We define vertexes
V := C and edges E := {(c1 → c2, c

′
1 → c′

2) ∈ C × C :
PS(c2) ∩ PS(c′

1) 6= ∅}. That is, each constraint is repre-
sented by a vertex, and an edge between two constraints
says that the second lock of the first constraint may point
to the same object as the first lock of the second constraint.
(3) Find all cycles in G, e.g. by using a depth-first algo-
rithm.
(4) For each cycle, determine the set B of involved blocks.
(5) If mhp(b1, b2) = true for all b1, b2 ∈ B, report the cycle.

6.2 Superfluous Lock
Consider the body of a synchronized block, although it

never accesses shared objects concurrently:

synchronized(o) {

// only non-critical operations

// ...

}

Problem. A superfluous lock is a lock protecting some
code that only performs “non-critical” operations. We define
an operation to be non-critical if it never accesses any shared
object concurrently. A superfluous lock may result in ineffi-
cient synchronization by making other threads unnecessarily
block.

Detection. For each synchronized block b of the pro-
gram:
(1) Consider the set B of blocks that may be executed in
parallel to b, i.e. B := {b′ : mhp(b, b′) = true}.
(2) For each block b′ ∈ B, check if b and b′ might access
shared objects such that there could be read-write- or write-
write-conflicts.
(3) If this is not the case, then b is probably unnecessarily
protected. Report b.

6.3 Missing or Wrong Lock
The following two code fragments access a shared object

x, but they are not protected by the same lock:

void foo() { void bar() {

synchronized(o) { x++;

// ... // ...

x++; }

}

}

Problem. Let F1 and F2 be code fragments. Let F1

be protected by a lock l1 and F2 be protected by either a
different lock l2 or no lock at all. In the first case, we have
a wrong lock for F2, in the second case, we have a missing
lock. If F1 and F2 are executed in parallel, a race condition
may occur since there might be non-exclusive accesses to the
shared object. Thus, F1 and F2 should be protected by the
same lock.

Detection. For each block b of the program:
(1) Consider the set B of blocks that may be executed in
parallel to b, i.e. B := {b′ : mhp(b, b′) = true}.
(2) For each block b′ ∈ B, check if b and b′ might access
shared objects such that there could be read-write- or write-
write-conflicts.
(3) If b and b′ are protected by different locks or not pro-
tected at all, report the pair (b, b′).

6.4 Multiple Stage Access
Consider the following method, which consists of two sep-

arately protected blocks:

void foo() {

synchronized(o) { x = x * 2; }

// ...

synchronized(o) { x++; }

}

Problem. A method may consist of a sequence of oper-
ations which are protected separately. Sometimes the pro-
grammer wrongly assumes that this is safe, although these
operations should be protected altogether. Otherwise there
might be unprotected intermediate results, which can lead
to a race condition.

Detection. For each method m of the program:
(1) Consider all synchronized blocks in m.
(2) If these blocks might share objects (i.e. if there are non-
empty intersections of their variables’ points-to sets), report
m.

6.5 Synchronization Too General
The following class implements at least two synchronized

methods that do not share any objects:

class SomeClass {

//...

synchronized foo() { x++; }

synchronized bar() { y++; }

}

Problem. If two or more methods are protected by the
same lock although they do not share any objects, this can
make other threads unnecessarily block. To prevent ineffi-
cient synchronization, these methods should be protected by
different locks.

Detection. For each class c of the program:
(1) Consider the set S of synchronized methods in c.
(2) Build a graph G = (V, E). We define vertexes V := S
and edges E ⊂ S×S, such that (m1, m2) ∈ E if m1 and m2

might share objects (i.e. if the points-to sets of the variables
accessed within m1 and m2 have non-empty intersections).
(3) If the graph is not connected (i.e. if there are at least
two components), report c, S, and the found components.

7. EXPERIENCES
To implement and evaluate our approach, we developed a

tool called SyncChecker, which is based on the Soot frame-
work [17]. Soot reads Java source or class files and generates
intermediate representations allowing program analysis and
code optimizations. Our tool uses Jimple, a typed 3-address
intermediate representation, to perform data flow analyses.
Points-to information is computed by using SPARK [11],
which is part of the Soot framework.

We applied SyncChecker to small test examples, an open
source web server, and commercial software. We ran all
analyses on a 1.66 GHz processor machine with 1 GB RAM.
Our evaluation focuses on the number of false positives. Ex-
periences will be discussed in this section.

44

Test example Deadlocks SyncChecker JLint
TE-1 0 0 10
TE-2 1 1 10
TE-3 2 2 10
TE-4 1 1 10
TE-5 1 1 10
TE-6 0 0 10
TE-7 1 1 2
TE-8 0 1 2

Table 1: Comparison of SyncChecker and JLint

Classes 13
Thread classes 3
Methods 119
Fields 136
Synchronized blocks 5
Unsynchronized blocks 82
TLOC 1 435

Table 2: Properties of Tornado 0.2.0

7.1 Test Examples
We designed eight small test examples TE-1 to TE-8. All

of them contain locking cycles, but not all of them result
in deadlocks, because monitor names reference different ob-
jects or some methods are never executed in parallel. We
evaluate the accuracy of our analysis, since we know the
actual number and location of synchronization defects. In
addition, we compared the results of our tool with JLint.
All test examples have about 50 to 100 lines of code and
took 1 to 3 seconds to be analyzed.

Table 1 shows the number of deadlock-related warnings
issued by SyncChecker and JLint. Although JLint gener-
ally runs much faster than SyncChecker, it is less precise,
producing numerous false positives, while our tool produces
only one. This difference can be traced back to the impact
of points-to and MHP information.

7.2 Tornado
Tornado [18] is an open source web server providing a full

implementation of HTTP 1.1. It consists of listener and
server threads and a thread manager. Table 2 shows some
properties of Tornado 0.2.0.

Analyzing Tornado took about 20 seconds. SyncChecker
reported three warnings: two “superfluous locks” and one
“synchronization too general”, which were easily confirmed
when looking at the source code.

An interesting warning with respect to the impact of the
MHP analysis refers to the method removeThread() in the
ServerPool class. The warning says that this method (which
is synchronized) probably does not need to be protected be-
cause it does not share any objects with another block pos-
sibly executed in parallel. When looking at the source code,
the programmer wrote the following comment: “This is syn-
chronized so that we never try to kill the same thread twice
– although that should never occur currently”. This assump-
tion was verified by SyncChecker.

7.3 TerminalX
Finally, we applied SyncChecker to a commercial soft-

ware package for embedded systems, which was developed

Classes 101
Runnable classes 12
Methods 1 104
Fields 819
Synchronized blocks 15
Unsynchronized blocks 409
TLOC 32 014

Table 3: Properties of TerminalX

Pattern found confirmed
Deadlock 0 0
Superfluous Lock 6 2
Missing or Wrong Lock 4 4
Multiple stage access 0 0
Synchronization Too General 2 2

Table 4: Warnings for TerminalX

by Siemens. The package, which we call “TerminalX” in the
following, is based on the Mobile Information Device Profile
(MIDP) [13] of the Java 2 Micro Edition [8] and heavily uses
multi-threading.

TerminalX consists of a coprocessor component for man-
aging the communication between a user and external appli-
cations (e.g. for reading sensor data). The communication
is implemented as a dedicated connector component, which
is serially connected to the coprocessor. For this software,
some bugs were already known by previous code inspections,
which allowed for examining the precision of our analysis.
Some properties of TerminalX are shown in Table 3.

Analyzing TerminalX took about 2 minutes. The numbers
of reported and confirmed warnings for this software package
are shown in Table 4. Our tool emitted twelve warnings, of
which six could be confirmed by the code reviewers. Two
warnings had not been noticed but could be confirmed as
well. Only four were false positives.

7.4 Summary and Discussion
We applied SyncChecker to small test examples, an open

source web server, and a commercial software package. Our
tool reported possible defects in all of them. Most of these
warnings were correct.

Our evaluation focuses on the number of false positives
and does not discuss escapes, i.e. defects that go undetected.
For our approach, we consider the problem of false positives
more important than escapes. Our tool does not report de-
fects itself but code patterns which could produce undesir-
able runtime behavior. That is, if there exist code patterns
corresponding to the definitions in Section 6, our tool will
report all of them. Thus, there might be undetected defects,
but no undetected patterns. To detect additional defects, it
will be necessary to investigate and develop corresponding
detection strategies for new code patterns as suggested in
the next section.

8. CONCLUSIONS AND FUTURE WORK
We presented a new method for detecting code patterns

that may result in deadlocks or race conditions or indicate
inefficient synchronization in Java programs. Our approach
is based on the Soot framework and uses static analysis tech-
niques combined with points-to and MHP analysis. The

45

combined analysis extracts precise information about the
program in form of constraints and blocks. This informa-
tion allows for searching for code patterns that might result
in runtime errors such as deadlocks or data races. While
other approaches suffer from a high number of false posi-
tives, the hit rate of our tool is excellent. We applied it to
small test examples, an open source web server, and finally
to commercial software and found synchronization defects
in all of them. However, there are some open questions and
aspects for future work as described in the following.

Undetected defects and new code patterns. Since
our tool does not report defects itself but code patterns
which might result in those, there still might be undetected
defects. To detect additional types of defects, new code
patterns have to be developed as well as corresponding de-
tection strategies. An example are deadlocks caused by the
improper use of wait() or notify() statements. More pat-
terns could be developed and examined based on Lea’s de-
sign principles for concurrent programming [10] or experi-
ences from software inspection, for example.

Ranking errors. Our tool only supports a rather sim-
ple ranking of the detected errors. The development and
evaluation of more complex metrics could be of special in-
terest. Especially for large systems, it is necessary to bring
the most severe or most likely problems to the programmer’s
attention first.

Performance studies. Generally, the runtime of an
analysis depends on its accuracy. Our analysis is rather
precise since we include points-to and MHP information. It
would be interesting to examine the runtime behavior for
analyzing larger systems. Since our tool uses the flexible
points-to analysis framework SPARK, studies could try to
find a balance between accuracy and runtime performance
by means of modifying the parameters of the points-to anal-
ysis.

Visualization. So far, we provide a basic, yet functional,
implementation with textured output. Our tool could be in-
tegrated into a development environments such as Eclipse [2].
Problematic code could be highlighted accordingly.

9. ACKNOWLEDGMENTS
This work was funded by Siemens Corporate Technology,

Munich, Germany. We are especially grateful for the com-
ments and help of Dr. Marcus Oestreicher. We also thank
the anonymous reviewers of this paper as well as the Code
Quality Management Group of Siemens for providing their
code.

10. REFERENCES
[1] C. Artho and A. Biere. Applying static analysis to

large-scale, multi-threaded Java programs. In ASWEC
’01: Proceedings of the 13th Australian Conference on
Software Engineering, pages 68–75, Washington, DC,
USA, 2001. IEEE Computer Society.

[2] Eclipse. http://www.eclipse.org/.

[3] O. Edelstein, E. Farchi, E. Goldin, Y. Nir, G. Ratsaby,
and S. Ur. Framework for testing multi-threaded Java
programs. Concurrency and Computation: Practice
and Experience, 15(3-5):485–499, 2003.

[4] D. Engler and K. Ashcraft. Racerx: effective, static
detection of race conditions and deadlocks. SIGOPS
Oper. Syst. Rev., 37(5):237–252, 2003.

[5] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns
and how to test them. In IPDPS ’03: Proceedings of
the 17th International Symposium on Parallel and
Distributed Processing, page 286.2, Washington, DC,
USA, 2003. IEEE Computer Society.

[6] Findbugs. http://findbugs.sourceforge.net/.

[7] C. Flanagan, K. R. M. Leino, M. Lillibridge,
G. Nelson, J. B. Saxe, and R. Stata. Extended static
checking for Java. In PLDI ’02: Proceedings of the
ACM SIGPLAN 2002 Conference on Programming
language design and implementation, pages 234–245,
New York, NY, USA, 2002. ACM.

[8] The Java ME Platform.
http://java.sun.com/javame/.

[9] Java Technology. http://java.sun.com/.

[10] D. Lea. Concurrent Programming in Java. Second
Edition: Design Principles and Patterns.
Addison-Wesley, Boston, MA, USA, 2000.

[11] O. Lhoták and L. Hendren. Scaling Java points-to
analysis using Spark. In Compiler Construction, 12th
International Conference, volume 2622 of LNCS,
pages 153–169, Warsaw, Poland, April 2003. Springer.

[12] L. Li and C. Verbrugge. A practical MHP information
analysis for concurrent Java programs. In LCPC,
pages 194–208, 2004.

[13] Mobile Information Device Profile (MIDP).
http://java.sun.com/products/midp/.

[14] G. Naumovich, G. S. Avrunin, and L. A. Clarke. An
efficient algorithm for computing MHP information for
concurrent Java programs. In ESEC / SIGSOFT FSE,
pages 338–354, 1999.

[15] F. Nielson, H. R. Nielson, and C. Hankin. Principles
of Program Analysis. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA, 1999.

[16] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: a dynamic data race detector for
multi-threaded programs. In SOSP ’97: Proceedings of
the sixteenth ACM symposium on Operating systems
principles, pages 27–37, New York, NY, USA, 1997.
ACM.

[17] Soot: a Java Optimization Framework.
http://www.sable.mcgill.ca/soot/.

[18] Tornado. http://tornado.sourceforge.net/.

[19] W. Visser, K. Havelund, G. Brat, and S. Park. Model
checking programs. In ASE ’00: Proceedings of the
15th IEEE international conference on Automated
software engineering, page 3, Washington, DC, USA,
2000. IEEE Computer Society.

[20] C. von Praun. Detecting Synchronization Defects in
Multi-Threaded Object-Oriented Programs. PhD thesis,
Swiss Federal Institute of Technology, Zurich,
Switzerland, 2004.

46

