
Streaming Extensions for Object-Oriented Languages

Workshop on Streaming Systems: From Web and Enterprise to Multicore
41st Annual IEEE/ACM International Symposium on Microarchitecture (MICRO)

November 8, 2008, Lake Como, ITALY

Frank Otto
University of Karlsruhe

76131 Karlsruhe, Germany
otto@ipd.uka.de

Victor Pankratius
University of Karlsruhe

76131 Karlsruhe, Germany
pankratius@ipd.uka.de

Walter F. Tichy
University of Karlsruhe

76131 Karlsruhe, Germany
tichy@ipd.uka.de

Abstract

Stream languages provide constructs to express different
types of parallelism, such as pipeline parallelism, in a simple
way. In the past, these languages were mainly used for
the development of signal processing or graphics applica-
tions. We argue that the integration of stream programming
concepts into universal object-oriented languages has great
potential to simplify general-purpose parallel programming
on multicore architectures.

1. Introduction

As clock rates are stagnating and multicore chips become
mainstream, parallel programming becomes a concern for
many developers. Throughout the years, threading has been
dominating the world of parallel programming. However, it is
well-known that this way of programming is error-prone and
difficult on a large scale. Motivated by these developments,
a new search for parallel programming models has begun.

In stream programs, the entire code is written in a sequen-
tial pipe-and-filter style that is amenable to automatic paral-
lelization by a compiler. Existing approaches like StreamIt
[1], [5] have demonstrated the applicability of this model in
specialized domains such as signal processing or graphics.
Several types of parallelism, such as task, data, pipeline,or
nested parallelism, were shown to be easily exploitable.

Despite the narrow focus, streaming concepts are useful
for general-purpose programming as well. For example, a
concise expression of pipeline processing would reduce code
size, limit sources of error, improve understanding, and hide
some details of parallelization. Therefore, it seems promising
to combine the best of both worlds: object-oriented languages
offer universality and address a broad community of devel-
opers, while stream languages simplify the usage of various
types of parallelism.

2. Streaming Extensions for Object-Oriented
Languages

To express parallelism in object-oriented languages, devel-
opers are typically required to think on a low abstraction
level where threads are explicitly created and destroyed. Very
often, this is the only level where parallelization is considered.
Another problem is that even experienced programmers may
produce incorrect parallel code, forget about nondeterministic
execution, and make wrong assumptions about thread inter-
leavings.

Our case studies on the parallelization of real-world ap-
plications [3], [4] show that it is advantageous to exploit
parallelism on several abstraction levels. Figure 1 illustrates
the architecture of an application performing biological data
analysis. On the highest abstraction level, there is a pipeline
structure that is subsequently refined. Inside a pipeline stage,
processing may be controlled by master-worker or producer-
consumer patterns [2]. Continuing the refinement, split-join
mechanisms are used inside lower-level modules to carry out
data-parallel computations.

Many complex applications use such nested parallelism,
but require the flexibility of object orientation. Therefore, it
seems reasonable to integrate streaming concepts into object-
oriented programming. The streaming model simplifies the
expression of pipeline parallelism on high abstraction levels.

2.1. Libraries versus Language Extensions

There are two basic approaches to extending object-
oriented languages by streaming constructs: (1) librariesand
(2) native language extensions (i.e. compiler extensions).

(1) Libraries can be implemented in existing languages.
Compared to a compiler extension, creating a library is a
short-term solution and requires less effort. However, cer-
tain language limitations might prevent composability in the



 

Stage 1 Stage 2 Stage 3 Stage 4

M1

M2

M3

M4

M10

M5

M10

(Instance 1)Input bin 1

Input bin 2

Input bin m

Result 
bin 1

Result 

bin 2

Result 

bin m

M10

(Instance 2)

M10
(Instance m)

R
e
su

lt
 D

a
ta

 
C

o
n
so

lid
a
ti
o
n

D
a
ta

 

P
a
rt

iti
o
n

in
g

P
ip

e
li

n
e

 L
a

y
e
r

M
o

d
u

le
 L

a
y
e

r
D

a
ta

 L
a

y
e

r

Pre-

Processing
Post-

Processing

In
p
u

t 
d
a
ta

R
e
su

lt 
d
a
ta

M7 M8

M6

M9

Figure 1. Conceptual architecture of a parallel applica-
tion for biological data analysis [4].

parallel case. Debugging is difficult as well, because the
compiler has no knowledge about the semantics of streaming
constructs.

(2) Language extensions are more complex to implement,
but also more promising in the long run. In this approach,
streaming constructs can be expressed using an intuitive
syntax, and the compiler is aware of streaming semantics.
A stream computation is basically expressed by a special
fragment (as simple as a Unix pipe) embedded in a general-
purpose program. Compared to explicit threading, we con-
sider this approach to be much more intuitive.

Beyond that, the stream semantics can be used by the
compiler to automatically exploit data parallelism. For ex-
ample, consider a certain stage that is replicable to other
available cores. In a situation with heavy load, this stage
would automatically be cloned and executed in parallel.

As a proof of concept, we started working on language
extensions for Java, which are sketched next. Similar to
filters in stream languages, our Java extension provides atask
construct, which is a special kind of method that can have
a dedicated input and output. A taskt with input typeX
and output typeY is declared astask[X => Y] t(); if
it has no input or output, the corresponding type isvoid.
A work block within a task’s body implements a loop to
process the elements of the input stream. The body of that
loop is executed until no more input elements are available,or
(if the task has no input) as long as a conditional expressionis
true. Finally, apush statement puts an element to the output
stream.

For illustration, consider a file compression application
[3], which hypothetically provides the classesBlock and
File. The algorithm divides an inputFile into fixed-

sizedBlocks, compresses them, and stores the compressed
Blocks in the original order in an outputFile. Using a
pipeline, the stages are expressed as follows:

public task[void => Block] read(File f) {
Iterator i = f.getBlocks();
work(i.hasNext()) { push (Block) i.next(); }

}

public task[Block => Block] compress() {
work(Block b) { push b.compressBlock(); }

}

public task[Block => void] write(File f) {
work(Block b) { f.add(b); }

}

The next code fragment creates the pipeline in Java, handling
pipeline parallelism in a transparent way:

read(inFile) => compress() => write(outFile);

The “=>” operator defines connectors between stages. Similar
operators were implemented for splitting and joining streams.

Even for such a small example, the potential code savings
become evident when compared to explicit threading. Fur-
thermore, no explicit locking or synchronization constructs
were needed.

3. Conclusion

In the multicore era, the scalability of parallel programs is
essential and depends on the exploitation of parallelism on
all fronts. The integration of streaming concepts into object-
oriented languages may improve the state of the art in several
ways: pipeline parallelism and nested parallelism are easier
to express, parallel programs are easier to understand and
maintain, and the potential for errors is reduced. However,
further research is required to explore all details and trade-
offs of our approach; this is ongoing work in our group.

Acknowledgment. We thank the University of Karlsruhe and the Excellence

Initiative for their support.

References

[1] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained
task, data, and pipeline parallelism in stream programs,Proc. ASPLOS-
XII, pp. 151–162. ACM, 2006.

[2] T. Mattson, B. Sanders, and B. Massingill.Patterns for parallel
programming. Addison-Wesley Boston, 2005.

[3] V. Pankratius, A. Jannesari, and W. F. Tichy. Parallelizing bzip2. A case
study in multicore software engineering. Accepted September 2008 for
IEEE Software.

[4] V. Pankratius, C. Schaefer, A. Jannesari, and W. F. Tichy. Software
engineering for multicore systems: an experience report. In Proc.
IWMSE ’08, pp. 53–60. ACM, 2008.

[5] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A language
for streaming applications. In R. N. Horspool, editor,CC, LNCS volume
2304, pp. 179–196. Springer, 2002.


