
A Virtual Test Environment for MPI
Development: Quick Answers to

Many Small Questions

Wolfgang Schnerring, Christian Kauhaus, Dietmar Fey

Lehrstuhl für Rechnerarchitektur und -kommunikation, Institut für Informatik,
Friedrich-Schiller-Universität, 07737 Jena, Germany.

{wosc,kauhaus,fey}@cs.uni-jena.de

Abstract. MPI implementations are faced with growingly complex net-
work configurations containing multiple network interfaces per node,
NAT, or dual stacks. To implement handling logic correctly, thorough
testing is necessary. However, the cost of providing such diverse setups
in real hardware is prohibitively high, resulting in a lack of testing. In
this article, we present a Virtual Test Environment (VTE) that consider-
ably lowers this barrier by providing complex network environments on a
single computer and thus enables testing in situations where it otherwise
would not be feasible.

1 Introduction

As today’s cluster computers become more and more sophisticated, complex net-
work setups are increasingly common. Of course, application writers do not want
to be bothered with network topology and expect their MPI implementation to
cover the details. In consequence, nearly any modern MPI library contains non-
trivial amounts of logic to perform the initial wire-up: starting daemons, querying
addresses, selecting network interfaces, etc.

To implement wire-up logic code properly, frequent and thorough testing
is necessary. During the development of our IPv6 extension to Open MPI [1],
we ran into the problem of verifying correct behaviour on configurations like
clusters with multiple networks, multi-domain clusters using both private and
public IPv4 addressing, mixed IPv4/IPv6 environments, and others. The cost of
providing such setups was prohibitively high, resulting in a lack of testing and,
in consequence, undiscovered bugs.

To remedy this problem, we present a Virtual Test Environment1 that lowers
the testing effort significantly, so that the execution of some classes of functional
tests becomes practicable at all. Additionally, it is lightweight enough to facil-
itate a rapid feedback cycle during development. VTE builds virtual clusters
on the developer’s workstation from high-level descriptions by employing kernel
virtualisation. The Unit Under Test (UUT), e. g., a MPI implementation, is ex-
ercised in a variety of network setups. Although VTE was created to facilitate
1 The software can be obtained from http://www2.informatik.uni-jena.de/cmc/vte/.

http://www2.informatik.uni-jena.de/cmc/vte/

the development of our IPv6 extension to Open MPI, it is not constrained to this
task. In fact, VTE is useful for the development of any distributed application
which interacts with a TCP/IP network environment.

This paper is organised as follows. Section 2 explains the design and imple-
mentation of VTE. Section 3 illustrates the capabilities of VTE using real-world
examples. Section 4 concludes and outlines VTE’s further development.

2 Design and Implementation

The aim of VTE is to lower the cost associated with the testing process. As
VTE has been specifically designed to reflect this goal, we have made several
architectural decisions. We first give an overview over those decisions, and then
present them in more detail.

First, VTE needs a concise description language for test networks. If it is too
difficult to specify the test setup (e. g., spending a day in the machine room in-
stalling cables), the developer is very likely to skip testing. Second, tests should
run quickly. If tests take longer than a few minutes, it is too tedious to test
frequently. Third, the test environment should be transparent to the UUT, re-
quiring no test-specific modifications. But the test environment should not be
transparent to the developer, providing him with effective control and inspection
devices. Fourth, the test environment should be able to model complex network
configurations to be representative of most cluster environments seen today.

Related to our work are MLN [2], an administration tool for virtual machines
that allows a declarative description, and Xen-OSCAR [3], a virtualisation-based
tool to test cluster installation processes. Unfortunately, both are not fit for MPI
implementation testing, since they are not optimised for short running time and
provide no means to reconfigure the network during runtime.

2.1 Concise Description of Network Configurations

To provide the developer with concise means of specifying tests, we designed
a domain-specific language to describe network configurations. The virtual net-
work can be built out of components like host and switch, which model physical
devices, but do more than their real-world counterparts. For example, when
connecting VMs with a switch, they are assigned IP addresses automatically.

To enable for such concise expression, VTE is implemented in Ruby, a lan-
guage that allows to express facts on a very high, abstract level. Configurations
are executable Ruby programs that specify all necessary information to create
virtual machines and networks. While executing a network description, VTE
both builds internal data structures describing the configuration and interacts
with the host system through shell commands to realise those structures.

Thus, specifying

cluster = Cluster.new(16)
switch = Switch.new(”192.168.5.0/24”).connect(cluster.vm)

configures a virtual cluster with 16 nodes that are connected through a switch
and have IP addresses from the subnet 192.168.5.0/24.

This example shows some of the most important language elements. The
Cluster class governs a set of virtual machines. With Cluster.new, virtual machines
are booted and the Cluster.vm accessor provides references to all running VMs.
After startup, VMs do not have a network connection. A virtual network is cre-
ated using Switch.new, which also causes VTE to create the supporting operating
system structures (see 2.4). The Switch.connect method creates network inter-
faces, allocates IP addresses, and creates the connections. More configuration
language elements are documented in the API reference.

We designed the configuration language to use sensible defaults, while al-
lowing exceptions to be specified if desired. If the network above was not given
explicitly but rather just as the type (using Switch.new(:ipv4)), a suitable IPv4
address range would be allocated automatically.

2.2 Fast Execution

To run fast, VTE requires a lightweight virtualisation technology, since the main
overhead stems from running virtual machines. The “smallest” form of virtual-
isation is kernel-based virtualisation [4], which merely creates a compartment
inside the running kernel to isolate processes of one VM from those of other
VMs. We have chosen OpenVZ [5] since it is the most mature of the freely avail-
able kernel-based virtualisers for Linux and offers thorough network support.

Kernel-based virtualisation allows for rapid creation of virtual machines, since
creating a VM mostly consists of spawning another init process and a few required
daemons, for example sshd, reusing the already running kernel. This also means
that VMs are not able to use a different operating system than the one which
is already present, but since VTE focuses on complex network configurations,
heterogeneous operating systems are not a primary concern.

We accelerate the startup process even further by reusing one file system
image for all virtual machines: Instead of setting up separate file systems for
newly created VMs, only one master file system is mounted repeatedly using
copy-on-write semantics. Write operations are diverted to a separate location,
while the master file system stays read-only. With this technique, VTE is able
to create VMs very quickly: Figure 1 shows the total time required for starting
VMs and shutting them down again on an Intel Pentium 4 at 3GHz with 2GB
RAM running kernel version 2.6.18-ovz028test019. Even 50 VMs take only about
a minute, but most tests will not require much more than 10 VMs. Since their
startup and shutdown takes only 16 seconds, this presents practically no barrier
to frequent testing. OpenVZ is also quite efficient: VTE is capable of simulating
a cluster with 300 nodes on the same machine. An MPI ring test then takes
about 3 minutes, plus about 8 minutes VM startup and shutdown time.

To test the UUT with several network configurations, it should not be nec-
essary to stop the VMs and start them again in a different setup. Therefore, we
implemented all virtual network components in a way they can be completely
removed and new ones added while the VMs keep running.

 0

 10

 20

 30

 40

 50

 60

 70

 0 10 20 30 40 50
T

im
e

(s
)

VM count

Fig. 1. Time required for startup and shutdown.

To bring the UUT into the test environment, it is not necessary to copy it onto
all virtual machines. OpenVZ allows to simply mount directories of the host into
a VM, which saves a potentially large amount of data transfers. For example, to
inject a MPI implementation into the test environment, the developer’s working
directory can be mounted, even under the same path as on the host, so the MPI
implementation does not notice any difference.

2.3 Semi-Transparency

VTE is able to run real software, and it appears as a real cluster to the software
running inside it. But the developer has full control over this environment, so
VTE could be imagined as a semi-transparent mirror.

The test environment can be controlled by executing shell commands inside
the virtual machines and examining their output. We implemented running shell
commands using OpenVZ’s vzctl exec mechanism. An alternative would be to
inject commands into VMs using ssh calls via a virtual service network, which
would of course influence the network setup. This way, however, VTE can be
configured exactly as required for the tests—even completely without a network.
Since the virtual machines export their network interfaces to the host, network
sniffers or any other tools can be run on the host to examine traffic on the virtual
network.

VTE provides a self-contained environment. Its only external dependencies
are OpenVZ to provide the virtualisation, and root privileges for operations
concerning the virtual environment, which are encapsulated in sudo calls.

2.4 Complex Network Configuration

To be able to test the behaviour of MPI implementations even for complicated
cases, VTE should model fairly complex network environments. We limited the
network support to TCP/IP though, favouring simplicity and conciseness of the
configuration language over heterogeneous network families.

Fig. 2. Example network configuration.

Figure 2 shows an example setup where two clusters are connected via a
router. VTE constructs this virtual network on the host, since the network in-
terfaces of the virtual machines are easily accessible from there. Switches are
implemented by using standard Linux bridge−utils to create virtual bridges that
connect the network interfaces of the VMs. Since the bridges can serve a dual
purpose and function as network interfaces of the host, the host itself can also be
connected to a virtual switch if desired. We use this to implement a router using
the host’s routing table. Network Address Translation (NAT) is also performed
on the host via iptables. Thus, virtual network components can be combined to
model multi-cluster setups, multi-link connections (e. g. channel bonding), dual
stack (IPv4/IPv6) networks, and other configurations.

3 Examples

To show the ease of use that VTE offers for specifying and running tests, we
examine the behaviour of MPI implementations that occurred to us during our
day-to-day development work to show how VTE can help preventing this kind
of problems by facilitating regular testing.

3.1 Striping

If there are multiple network paths between any two nodes, Open MPI optionally
uses striping to maximise throughput. With striping, Open MPI fragments big
messages and sends them in parallel through several interfaces. VTE allows
for each VM to have multiple network interfaces, for example by specifying an
interface number when connecting VMs with a switch:

cluster = Cluster.new(2)
Switch.new(:ipv4).connect(cluster.vm, 0)
Switch.new(:ipv4).connect(cluster.vm, 1)

In this example, each VM will be configured with two network interfaces,
eth0 and eth1. Running the ping-pong benchmark from the Intel MPI Benchmark

Suite (IMB) 3.0 shows that once the payload is large enough, Open MPI will use
striping to distribute the traffic over all available interfaces. The tcpdump output
shows connections on both switches.

tcpdump −i sw1
IP 1.0.0.2.56003 > 1.0.0.3.33364
IP 1.0.0.3.33364 > 1.0.0.2.56003
tcpdump −i sw2
IP 2.0.0.2.54115 > 2.0.0.3.59036
IP 2.0.0.3.59036 > 2.0.0.2.54115

3.2 NAT

Many clusters use private IPv4 addresses for their nodes, which connect to the
outside world using a NAT gateway. Combining two clusters of this kind to a
multi-cluster is not possible, since the private addresses of one cluster are not
reachable from the other. MPI implementations should detect this erroneous
condition. We examine the behaviour of LAM/MPI and Open MPI using VTE.

Two clusters with 3 nodes each that use private IPv4 addresses and are
connected with NAT (see Figure 2) can be modelled like this:

cluster1 = Cluster.new(3)
cluster2 = Cluster.new(3)
switch1 = Switch.new(”192.168.5.0/24”).connect(cluster1.vm)
switch2 = Switch.new(”192.168.6.0/24”).connect(cluster2.vm)
router = Router.new.connect(switch1, nat=true).connect(switch2, nat=true)

LAM/MPI [6] is started with the lamboot command. The required host file
is automatically constructed by concatenating the host names of all VMs.

hostnames = (cluster1.vm + cluster2.vm).map { |vm| vm.hostname }.join(”\n”)
cluster1.vm[0].cmd(”echo ’#{hostnames}’ > lamhosts”)
cluster1.vm[0].cmd(”lamboot lamhosts”)

lamboot tries to start LAM’s management daemon lamd on all hosts, but since
some hosts use private addresses and are unreachable, it terminates with an error
message:

ERROR: LAM/MPI unexpectedly received the following on stderr:
ssh: connect to host vm3 port 22: Network is unreachable

Open MPI [7] starts its daemon orted implicitly when mpirun is called.

hostnames = (cluster1.vm + cluster2.vm).map { |vm| vm.hostname }.join(”,”)
cluster1.vm[0].cmd(”mpirun −np #{cluster.vm.size} −host #{hostnames} ./ringtest”)

Open MPI also fails to contact some hosts, but instead of terminating it hangs
until VTE’s timeout kills it:

ssh: connect to host vm3 port 22: Network is unreachable
[vm0:21702] ERROR: A daemon on node vm3 failed to start as expected.
[vm0:21702] ERROR: There may be more information available from
[vm0:21702] ERROR: the remote shell (see above).
Timeout: aborting command ”vzctl” with signal 9

The problem is that after Open MPI notices the error, it terminates by telling
orted on all hosts to shut down—including those hosts that it was unable to
connect in the first place. Since these hosts never return a “shutdown successful”
notification, the process keeps waiting for them forever.

3.3 Installation Prefix

If Open MPI is installed below a different path than the prefix specified at com-
pile time, it is unable to find its binaries and libraries. One method of explicitly
specifying installation locations is to use application context files. The manual
page for mpirun states that “[. . .] --prefix can be set on a per-context basis, allow-
ing for different values for different nodes.” With VTE, two nodes with different
Open MPI installation locations can be described as follows:

cluster = Cluster.new(2)
switch = Switch.new(:ipv4).connect(cluster.vm)
cluster.vm[0].mount(”/real/path/to/openmpi”, ”/usr/local/openmpi”)
cluster.vm[1].mount(”/real/path/to/openmpi”, ”/opt/openmpi”)
cluster.vm[0].cmd(”echo ’#{<< EOT }’ > appfile”)
−np 1 −host vm0 −−prefix /usr/local/openmpi hostname
−np 1 −host vm1 −−prefix /opt/openmpi hostname
EOT

cluster.vm[0].cmd(”mpirun −−appfile appfile date”)

Unfortunately, the −−prefix settings does not take effect and mpirun fails with
/usr/local/openmpi/bin/orted: No such file or directory on vm1. Perhaps the writing
of the manual page proceeded a little bit quicker than the writing of the code.

3.4 Dual-stack

When migrating to IPv6 [8], it is quite common to have a dual-stack setup, that
is both address families on a single interface, connected by the same switch. In
VTE an IP subnet is usually represented by a switch, but in this case there is
only one switch but two networks. Therefore we have to configure the second set
of IP addresses explicitly, using the provided helper functions:

cluster = Cluster.new(3)
Switch.new(:ipv6).connect(cluster.vm)
net = Switch.generate network(:ipv4)
cluster.vm.each with index do |v, i|

v.configure ipv4(net.nth(i+1)) unless v.hostname short == ”vm1”
end
Cluster.update hostfile

VTE’s configuration language is plain Ruby, so all normal language constructs
are available to the developer. This makes it easy to describe exceptions like
“every host has IPv4 except vm1.”

Running a ring test and observing the traffic on the switch with tcpdump

shows that Open MPI with our IPv6 extension now opens connections via both

IPv4 and IPv6, depending on the connectivity available. vm0 connects to vm2

via IPv4 (1.0.0.1–1.0.0.3), but to vm1 via IPv6 (aa01::1–aa01::2).

tcpdump −i sw1
IP 1.0.0.1.33126 > 1.0.0.3.52353
IP 1.0.0.3.52353 > 1.0.0.1.33126
[...]
2001:638:906:aa01::1.38252 > 2001:638:906:aa01::2.43756
2001:638:906:aa01::2.43756 > 2001:638:906:aa01::1.38252

These examples show some of the VTE’s possibilities to exercise MPI imple-
mentations in a variety of environments. The configuration language is expressive
enough to formulate even bug-provoking border cases in a compact form.

4 Conclusion

We have presented a Virtual Test Environment that considerably lowers the
barrier to functional testing of distributed applications, thereby enabling testing
in cases where it were not feasible otherwise, since the costs of physical test
setups are too high. VTE has an expressive configuration language for describing
complex network environments and short execution times. Being able to run
networking tests in just a few minutes allows the developer to establish a close
feedback loop, which results in better software quality.

References

1. Kauhaus, C., Knoth, A., Peiselt, T., Fey, D.: Efficient message passing on multi-
clusters: An IPv6 extension to Open MPI. In: Proceedings of KiCC’07, Chemnitzer
Informatik Berichte CSR-07-02. (February 2007)

2. Begnum, K.M.: Managing large networks of virtual machines. In: Proc. LISA’06:
20th Large Installation System Administration Conference, Washington, D.C.,
USENIX Association (December 2006) 205–214

3. Vallée, G., Scott, S.L.: OSCAR testing with Xen. In: Proc. 20th Int. Symp. on High-
Performance Computing in an Advanced Collaborative Environment (HPCS’06),
Washington, DC, IEEE Computer Society (2006) 43–48

4. Soltesz, S., Pötzl, H., Fiuczynski, M., Bavier, A., Peterson, L.: Container-based
operating system virtualization: A scalable, high-performance alternative to hyper-
visors. In: Proceedings of EuroSys 2007, Lisbon, Portugal (March 2007)

5. SWSoft: OpenVZ – server virtualization open source project. http://openvz.org/
Accessed on June 27, 2007.

6. Squyres, J.M., Lumsdaine, A.: A Component Architecture for LAM/MPI. In: Proc.
10th European PVM/MPI Users’ Group Meeting. Number 2840 in LNCS, Springer
(2003) 379–387

7. Gabriel, E., Fagg, G.E., Bosilca, G.: Open MPI: Goals, concept, and design of a
next generation MPI implementation. In: Proceedings, 11th European PVM/MPI
Users’ Group Meeting, Budapest, Hungary (September 2004) 97–104

8. Deering, S., Hinden, R.: Internet Protocol, Version 6 (IPv6) Specification. RFC
2460 (Draft Standard) (December 1998)

http://openvz.org/

	A Virtual Test Environment for MPI Development: Quick Answers to Many Small Questions
	Wolfgang Schnerring, Christian Kauhaus, Dietmar Fey

