#### Ontological Processing of Sound Resources

LAC 2006 April 30, 2006

Jürgen Reuter http://www.ipd.uka.de/~reuter/

#### Composers' Real Hard Life

- "On which synth and in what sound bank was that cool trumpet sound?"
- "I somewhere saved that funny synth pad patch that I created for my last song, but where did I store it?"
- "Give me a list of all the string synth sounds that are scattered across my synths and banks!"

#### What's the problem?

- Too many sounds in too many synths and synth banks
- Sounds mostly not at all sorted or ordered in a musical sense
- No standardized, uniform way of sound browsing or lookup across synths
- No central sound registry for a single lookup of sounds across all synths in a system

#### How to Order Sounds?

Instrument Taxonomies



#### How to Order Sounds? (cont.)

- Acoustic Organ Registers
  - Classify by pitch
    - 16", 8", 4", ...
  - Classify by construction principle of pipes
    - labial / lingual pipes, open / closed pipes, ...
  - Classify by function of sound
    - solo, principal, mixture, ...
  - Classify by similarity to prototype sounds
    - flute, bassoon, trumpet, ...

#### How to Order Sounds? (cont.)

- Grouping, banking
  - 128 GM Level 1 MIDI instruments, 16 groups
  - GM Level 2 banks

|          | Piano    | Chr.Perc. | Organ    | Guitar   | Bass     | Strings  | ••• | EFX       |          |
|----------|----------|-----------|----------|----------|----------|----------|-----|-----------|----------|
| Resonant |          |           |          |          |          |          |     |           | Bank #20 |
| Bright   |          |           |          |          |          |          |     |           | Bank #16 |
| Slow     |          |           |          |          |          |          |     |           | Bank #8  |
| GM       |          |           |          |          |          |          |     |           | Bank #0  |
|          | Group #1 | Group #2  | Group #3 | Group #4 | Group #5 | Group #6 |     | Group #16 |          |

#### How to Order Sounds? (cont.)

- Tagging
  - Generalizes grouping
  - Enables sound to be member of multiple groups
  - Serves for annotating qualities of a sound



#### More on Tagging

- Find (at least) 4 types of tags
  - prototype-driven (similarity to known sound or group of sounds)
    - string, violin, synth, percussive, bright, resonant, ...
  - function-driven (purpose of sound)
    - effect, lead, melodic, drums, ...
  - construction-driven (way of creating)
    - arpeggiator, decay, FM, vocoder, ...
  - user-defined
    - favorites, ...

#### More on Tagging (cont.)

- Tags are deductive
  - violin ⇒ string
  - $-drum \Rightarrow percussive$
  - vocoder  $\Rightarrow$  synth
  - lead  $\Rightarrow$  melodic

**-** . . .

⇒ plain Relational Database Management System (RDBMS) not sufficiently expressive

# Ontology Management System (OMS)

- Builds upon description logics (aka concept languages)
  - represents decidable fragment of first-order logic
  - supports modeling in terms of classes, properties, and individuals
- Recently has become widely supported through OWL standard

#### OMS vs. RDBMS

- Like a RDBMS, can serve as a central repository of information
- Unlike a RDBMS, also provides reasoning support for deducing knowledge



#### Ontologies

- Classes
  - create classes for tags and groups of sounds



- Individuals
  - store actually available sound resources as class members



- Individuals
  - infer inherited class memberships



- Properties
  - associate each sound resource with related info (e.g. MIDI program number, ALSA port)



- Properties
  - associate each sound resource with related info (e.g. MIDI program number, ALSA port)



# Example: Protégé

- Ontology editor and knowledge-base framework
  - Developed at Stanford University
  - Open source (Mozilla Public License)
  - Supports ontology editing, browsing, consistency checking, reasoning, ...
  - Used here to demonstrate feasibility of ontological sound resource processing

• Query: Sound ∏
∃hasQuality.BassQuality ∏
∃hasQuality.SynthQuality ∏
∃livesOn.MU-50 1



Search yields 3 matches:



Result details



More on the "Lead" sound quality



#### 

- Based on this presentation,
  - further elaborate a proper ontology
  - set up OMS that
    - serves as central sound registry
    - tracks available sound resources
  - design a registry management API
- Maybe promote ontological framework as cross-platform standard

### Synth Application Developers

- Announce sounds to central registry
- Annotate sounds with tags
- Announce tags to central registry
- Think about proper tags for standardization
  - Can lead to much cleaner synth design!
- Let synth GUI design be guided by ontology of tags

#### Conclusion

- Management of sound resources is strongly desired.
- It is feasible based on an ontological framework.
- An OMS can serve as central registry.
- Applications should use query and update the OMS database.

#### Questions?