
Ontological Processing of Sound Resources

Jürgen Reuter
Karlsruhe, Germany,

http://www.ipd.uka.de/˜reuter/

Abstract

Modern music production systems provide a
plethora of sound resources, e.g. hundreds or thou-
sands of sound patches on a synthesizer. The more
the number of available sounds grows, the more dif-
ficult it becomes for the user to find the desired
sound resource for a particular purpose, thus de-
manding for advanced retrieval techniques based on
sound classification. This paper gives a short survey
of existing approaches on classification and retrieval
of sound resources, discusses them and presents an
advanced approach based on ontological knowledge
processing.

Keywords

classification of sounds, sound resource lookup, on-
tologies, OWL

1 Introduction

State-of-the-art music production systems con-
sist of a computer-centered, heterogeneous net-
work of hardware and software modules with
typically huge banks of sound resources. Mod-
ern hardware synthesizers or tone modules of-
ten have banks with hundreds or thousands
of different sounds. Producing electronic mu-
sic therefore means to select among synthesizer
or tone modules, as well as to select sounds
from each module. Modules not only (if at
all) provide factory presettings, but typically
also reserve much memory space for lots of
user patches that may be tweaked manually or
loaded via MIDI, thereby even increasing the
number of available sounds. The music pro-
ducer’s task of selecting a sound thus becomes
an increasingly complex challenge.

For example, imagine a composer who has al-
ready in mind a vague idea of the electronic
sounds that should be used for a new piece
of music. In an older piece a couple of years
back in time, there was a bass line with a
bass sound that also should fit well for the new
piece. But what synthesizer was used to pro-
duce this sound? Even if the synthesizer is

known, which one of the hundreds or thousands
of sound patches was used? If it was a user
patch, where was the patch stored? Even if
the sound can be located, over which specific
MIDI port and channel can the sound be ad-
dressed? Unfortunately, on many synthesizers,
sound patches are ordered in a fairly chaotic
fashion, especially, if they do not fit into the GM
sound map. In the worst case, the composer has
to scan through thousands of sound patches to
find the desired one. What is required, is the
possibility to search for a particular sound.

Searching for a file in a file system is concep-
tually fairly straight forward, given the name
of the file (or part of it), or the file type, or
some content that is known to appear in the
file. In contrast, searching for a sound is much
more challenging. First of all, while all files
in a file system can be iteratively accessed by
browsing through the directory hierarchy, there
is, as of this writing, no central registry for all
sound resources that are available on the sys-
tem. Rather, every synthesizer has its own ap-
proach of managing sound patches. Secondly,
while files can be searched for by their name or
type or content, defining useful search criteria
for sounds is difficult. Finally, searching for near
matches means to have a system that allows for
defining proper metrics of sound comparison.

In the above example of looking for a bass
sound, listing all available bass sounds would
already fairly reduce the number of sound re-
sources that have to be further checked. If the
bass sound can be qualified even more specific,
the search could be even more effective. In this
article, we examine and discuss multiple ap-
proaches for classifying and describing sounds.
We present a prototype design and implemen-
tation of a sound classification and description
framework based upon ontological technology.
We show how this framework enables us to
search for specific sounds. Finally, we discuss
the impact of further pursuing this approach on



Linux audio development.

1.1 Preliminaries

There is a mismatch between the classical,
rather mathematical notion of the term sound
and the common conception of sound as viewed
by most musicians and music listeners. While
the classical definition solely focuses on the core
wave shape of a periodic signal, most people
perceive aperiodic characteristics also as part
of a sound. Among such aperiodic characteris-
tics are vibrato, noise content, reverb or echo
content, but also irregularities of the harmonic
spectrum such as non-equidistant partials or
partials that vary in pitch or amplitude. For
the remainder of this article, we therefore ex-
tend the classical definition by also incorporat-
ing such aperiodic properties into the notion of
sound.

1.2 Paper Outline

We start with a short survey of how various sys-
tems currently address, if at all, the sound selec-
tion problem (Section 2). Then we discuss the
approaches in order to reveal commonly used
strategies (Section 3). Based upon this discus-
sion, we develop an ontological framework in
order to solve the sound selection problem in a
unified way (Section 4). We demonstrate the
usefulness of our system by giving some exam-
ples of how the user can benefit from the sys-
tem (Section 5). The work presented here has a
significant impact on Linux audio development
in general and on construction of software syn-
thesizers in particular, which is left for further
investigation (Section 6). We complete our jour-
ney with a concluding summary of our results
(Section 7).

2 Related Work

We give a short survey on the history of sound
classification, from acoustic instrument tax-
onomies and organ disposition over grouped cat-
egories in the MIDI standard to what recent
synthesizers provide. This survey is not at all
meant to be complete, but establishes some cen-
tral ideas for sound classification that we will
discuss and further develop in the subsequent
sections.

2.1 Instrument Taxonomies

Classification of acoustic instruments has a long
tradition. Figure 1 shows an example taxon-
omy of selected acoustic instruments as it can

be found in this or similar form in standard mu-
sic literature. Note that such taxonomies are
typically based on how an instrument techni-
cally works rather than how it sounds. Still,
if two instruments work similarly, they often
sound similarly. Eventually, however, a small
change in construction may result in a tremen-
dous change in sound.

Figure 1: A Taxonomy of Selected Acoustic In-
struments

Also note, that, traditionally, the realization
of the sound source of the instrument is more
important for classification than e.g. that of the
body. For example, a saxophone has a reed
mouthpiece and therefore is considered to be a
reed instrument regardless of its metallic body,
while the so-called Indonesian trumpet is blown
like a trumpet and therefore considered as brass
instrument, regardless of its wooden body.

2.1.1 Dispositional Approach

The situation is slightly different for the (acous-
tic or electric) organ, which has the ambition
of uniting many instruments (organ registers)
into a single apparatus. While, at least for
the acoustic organ, there is also a technical
classification of pipes based on how they work
(e.g. labial or stopped pipes), organ registers
are often named after well-known acoustic in-
struments (e.g. flute, trumpet, saxophone), i.e.
how they sound. Indeed, the organ’s naming
of registers is maybe the oldest example for a
categorization of sounds: it assists the organ
player in looking up a sound. This is especially
important since each organ has an individual,
more or less rich set of sounds, and that way,
a guest organ player can quickly get familiar
with a foreign organ. Remarkably, already Sup-
per(Supper, 1950) notes that the rules, which
underly the disposition of an organ, are of hier-
archical kind. We will resume this idea, when
presenting a framework for describing and look-



ing up sounds (cp. Section 4).

2.2 Grouping

The instrument patch map of the General MIDI
(GM) Level 1 Standard(MIDI Manufacturers
Association, 2005) defines 128 instruments that
are partitioned into sixteen categories (cp. Fig.
2).

Program Family

1-8 Piano
9-16 Chromatic Percussion
17-24 Organ
25-32 Guitar
33-40 Bass
41-48 Strings
49-56 Ensemble
57-64 Brass
65-72 Reed
73-80 Pipe
81-88 Synth Lead
89-96 Synth Pad
97-104 Synth Effects
105-112 Ethnic
113-120 Percussive
121-128 Sound Effects

Figure 2: GM Level 1 Sound Categories

Originally, the motivation for specifying an
instrument patch map was driven by the ob-
servation that a MIDI file which was produced
on some MIDI device sounded totally different
when reproduced on a different MIDI device
because of incompatible mappings from MIDI
program numbers to sounds. Therefore, in the
early days, MIDI files could not be easily ex-
changed without patching program change com-
mands. Hence, the main purpose of the GM in-
strument patch map was to specify a fixed map-
ping from MIDI program numbers to sounds.
Given the existing MIDI devices of the time
when the GM standard was created, a set of 128
prototype sounds, so-called instruments, was
specified and assigned to the 128 MIDI program
numbers. A GM compatible device has accord-
ingly to provide sounds that match these pro-
totype sounds. Still, the GM standard explic-
itly leaves the specification of prototype sounds
fuzzy and thus encourages device implementors
to take advantage of space for variations of an
actual MIDI device. Hence, when playing a
MIDI file among different GM compatible de-
vices, there will be typically an audible differ-
ence in quality or style, but the overall impres-

sion of the performance is expected to remain.

The GM instrument patch map specifies pro-
totype sounds that were popular on mainstream
MIDI devices at that time. Remarkably, most
sounds in the map represent acoustic or electro-
acoustic instruments as used in classical or pop-
ular music. They are grouped roughly following
the classical taxonomies of instruments (cf. Sec-
tion 2.1).

Only the four categories Synth Lead, Synth
Pad, Synth Effects and Sound Effects contain
a collection of sounds that allude to specific
sounds that had evolved in electronic music and
were widely used since then. The former two al-
lude to a qualitative categorization (lead, pad),
while the latter two (effects) allude to the in-
tended purpose of use.

Due to the extraordinary relevance of drum
sounds in temporary music, the GM standard
also defines a drum map that assigns basically
fixed-pitch drum sounds to MIDI pitch num-
bers. Having a fixed pitch (unless pitch-bended
or otherwise tuned), drums constitute a sepa-
rate category of their own. Within this cat-
egory of drums, however, there is no further
categorization perceivable, except, maybe, that
those drums that represent a standard drum-
mer’s hardware are grouped together in the
lower part of the map, while Latin percussion
and ethnic drums are mostly assigned to up-
per pitches. In this sense, the drum map itself
maybe considered to be ordered according to
the style (i.e. intended use or purpose) of the
drums.

2.3 Banking

More recent MIDI devices break the limit of 128
program numbers by introducing sound banks:
with the bank select MSB/LSB controller chan-
nel messages, a MIDI channel can be directed
to switch to a different bank of sounds. In
order to remain GM compatible, each bank
should itself conform to the GM instrument
patch map, but may provide a different style
of sounds (e.g. “bright”, “resonant”, “slow”,
“fast decay”). Unfortunately, some manufac-
turers added this way also such sounds, that
do not really fit to the GM instrument patch
map. (Not only) therefore, the GM Level 1
Guidelines(Lehrman and Massey, 1998) discour-
age the use of banks at all on GM Level 1 com-
patible devices. We put on record that adding
new sounds to an existing system of fixed cate-
gories may lead to difficulties.



2.4 Tagging

The Virus TI synthesizer(Access Music, 2004)
has a function for tagging each sound patch with
up to two values of a predefined set of 21 group
identifier. These identifiers are:

Acid Arpeggiator Bass Classic Decay
Digital Drums EFX FM Input Lead
Organ Pad Percussion Piano Pluck
String Vocoder
Favorites 1 Favorites 2 Favorites 3

Figure 3: Supported Tags of the Virus TI

By tagging a sound with one of these iden-
tifiers, the sound is declared to be a member
of a respective group of sounds. Interestingly,
if we look at the group names, we can identify
exactly the same categorization principles that
we already met before:

• Identifiers like Acid, Bass, Classic, Digital,
Drums, Lead, Organ, Pad, Percussion, Pi-
ano, Pluck and String suggest groups based
upon similarity to sounds that the user is
assumed to already know. Note that some
of the identifiers such as Drums or Percus-
sion denote a rather wide field of sounds.

• The identifier EFX (for sound effects) pre-
sumably denotes a group of sounds classi-
fied by its typical purpose (namely a sound
effect rather than e.g. a musical instru-
ment).

• Identifiers such as Arpeggiator, Decay, FM,
Input and Vocoder allude to how the sound
is created.

• The three Favorites groups finally can be
considered as generic groups for which the
user individually specifies the exact seman-
tics.

2.5 Parametric Categorization

State-of-the-art sound hardware provides sets
of parameters that are used to define sound
patches by mainly specifying how to create the
sound. This approach suggests to categorize
sounds based on the values of such parameter
sets. However, the size and structure of the
parameter sets differs widely across particular
devices.

The MIDI specification defines a few con-
trollers for controlling e.g. vibrato, envelope and
a selected set of filters. Most of these controllers
have post-processing characteristics, which is of

interest in particular for sample-based tone gen-
erators. In contrast, the parameter sets of syn-
thesizers are typically much bigger and broader
than those of tone generators, since they affect
also the core generation of sound. For example,
synthesizers often provide complex networks of
oscillators, filters, and controllers with numer-
ous possibilities of parameterization. Unfortu-
nately, most synthesizers have sound parame-
ters that are specific for each device individ-
ually. Even worse, a categorization based on
large and complex parameter sets makes the
categorization itself complex.

Due to the plethora of existing methods of
synthesis, it seems doubtful that there will
ever be agreement on a comprehensive stan-
dard set of sound parameters. Yet, more re-
cent scientific work suggests new parameters
that look like candidates for standardization.
Maier et. al.(Maier et al., 2005) characterize
sounds by quantitative properties that can be
directly computed from the acoustic signal. To
describe sounds, they compute for example the
amount of disharmonic spectrum peaks. Con-
ceptually somewhat related is the observation of
Nasca(Nasca, 2005), that in his software synthe-
sizer ZynAddSubFX, controlling the bandwidth
of each harmonic offers a powerful approach to
create realistic, warm sounds. Observations like
those of Maier and Nasca suggest that such pa-
rameters are good candidates for providing a
proper model of the way sounds are perceived
by human beings.

3 Discussion

From the survey in the previous section, we may
conclude the following observations:

Sounds may be categorized by

• their similarity to a prior known set of
sounds. This approach complies with a
composer’s way of thinking, if the composer
qualitatively specifies sounds (e.g. a soft,
bright, crystal sound).

• their purpose of use. This approach com-
plies with a producer’s way of thinking if
the producer has a targeted application of
sound (e.g. a phone ring).

• the way they are created. This approach
complies with a sound engineer’s way of
thinking when creating a new sound patch
with his or her favorite synthesizer (e.g. a
square wave vibrato modulated sawtooth
sound with flanger).



Regarding the structure of categorization, we
may note:

• Categories may have a hierarchical struc-
ture, thus creating a taxonomy.

• It is difficult to specify orthogonal cate-
gories. That means, in general a sound may
be a member of multiple categories.

• Since there are most likely always sounds
remaining that do not fall into any existing
category, it is useful to have generic cate-
gories to be specified by the user that cap-
ture the remaining sounds.

The Virus’ tagging approach may be used to
associate a sound to (at most two) categories.
However, tagging does not at all consider cate-
gories as a hierarchy, unless we support deduc-
tive tags: Assume, that we consider all drum
sounds to be percussive. Then, if a sound
is tagged “drum”, it should implicitly also be
tagged “percussive”. This way, we may specify
a hierarchy of tags. The hierarchical taxonomy
of acoustic instruments is a good candidate for
creating a hierarchy of tags.

4 The Sound Resources Ontology

Similar to the Virus TI, we follow the approach
of tagging sounds with tags that aim to charac-
terize qualitative attributes of the sound. For
a tagging-only description and looking up of
sounds, a simple relational database approach
is sufficient. However, we would like to group
sounds in a hierarchical manner and potentially
give tags a deductive semantics as described in
the previous section. Therefore, we prefer a
framework with deductive capabilities based on
ontological technologies.

4.1 OWL Knowledge Bases

Ontologies are an appropriate means for de-
scribing hierarchical structures of classes of in-
dividuals (also called concepts) in a flexible way,
based on description logic. The Web Ontol-
ogy Language OWL(Miller and Hendler, 2004)
with its three sub-languages OWL-Full, OWL-
DL and OWL-Lite has emerged as the maybe
most important standard for description logic
languages. For the remainder of this article, we
consider OWL-DL, which specifies description
logic semantics that is a decidable fragment of
first-order logic. In contrast to rule-based logic
such as Prolog or Datalog, the description logic

of OWL-DL focuses on features such as hierar-
chical concepts, properties (i.e. binary relations
between pairs of individuals or an individual
and a data value), and property and cardinality
restrictions. OWL can be expressed in XML-
based RDF (Miller et al., 2004) syntax, which
we use as source file format. The entire onto-
logical description, regardless whether stored in
memory or on disk, and regardless in which lan-
guage specified, is usually referred to as the so-
called knowledge base. Similar to a database, a
knowledge base typically may be updated, and
its current content may be queried (cp. Fig. 4).

Base
Knowlege

OWL

Knowledge

Updates
Base

Queries
Base

Knowledge

Figure 4: Updating and Querying an OWL
Knowledge Base

The initial knowledge base is cre-
ated from a file specified in RDF.
The current version is available at:
http://www.ipd.uka.de/~reuter/
ontologies/lad/sound/sound-registry.owl

4.2 Ontology Design

Following the discussion in Section 3, our on-
tology contains a concept Sound that serves as
common super class for all particular sounds.
Respecting the categories of GM Level 1 de-
vices, our ontology defines a subclass GMSound

that disjointly divides into the 16 GM cate-
gories, each represented by a concept of its
own. At the same time, GMSound also divides
into (generally overlapping) groups that corre-
spond to the different SoundQuality individu-
als. Each SoundQuality individual represents
a tag of those in Fig. 3 or of a few others,
that have deliberately been added, inspired by
the GM categories. That way, we basically
have two independent hierarchies of sounds,
thus giving the user more choices in querying
or browsing for a particular sound. The on-
tology also features a concept SoundResource.
Each individual of this class represents a re-
source that hosts Sound individuals. An exam-
ple for a SoundResource individual is a par-
ticular MIDI synthesizer. The ontology also
models a SoundPort concept with the subclass
ALSAPort such that for each SoundResource in-



dividual, a port can be looked up in order to
access the resource. A SoundSubscriber finally
may allocate any number of Sound individuals,
such that the number of available sounds left
can be tracked. Property constraints are de-
ployed to bind GM sounds to MIDI program
numbers.

5 Evaluation

To demonstrate the usefulness of our approach,
we walk through a short sample tour on explor-
ing the space of sounds, using The Protégé On-
tology Editor and Knowledge Acquisition Sys-
tem(Crubézy et al., 2005) for visualization (cp.
Fig. 5). This free, open source application
from Stanford University provides a graphical
user interface for viewing and editing ontolo-
gies. Note that there are a lot of OWL related
tools on the net(Miller and Hendler, 2004); in
this section, we just use Protégé for illustra-
tion purposes. One could also take some OWL
reasoner with API, for example Jena (Hewlett-
Packard Development Company, LP, 2005), and
develop appropriate command line tools or ded-
icated interactive applications for exploring the
space of sounds. However, in this section we
chose Protégé for the purpose of illustrative vi-
sualization.

Figure 5: The Sound Registry Ontology viewed
with Protégé

5.1 Querying for a Sound

We start querying for a sound by specifying
properties that the sound must fulfill. In the
illustrated example (Fig. 6), we ask for a sound
that fulfills the two sound qualities “Synth” and
“Bass” and, additionally, lives on the “MU-
50” sound resource. Note that properties have

a well-defined domain and range, such that
Protégé lets us select e.g. the sound quality only
from the actual list of available sound qualities
(rather than accepting any arbitrary individual
or data value).

Figure 6: Querying for a Sound on the MU-50
with “Synth” and “Bass” Qualities

Protégé returns a result consisting of three
sounds that match our constraints (Fig. 7).
We find the “Generic-GM-BassAndLead” sound
most interesting and double-click on it to find
out more about it.

Figure 7: The Search Results

A proper window pops up (cp. Fig. 8). In this
window we can see that the sound indeed ful-
fills our three constraints. Moreover, we learn
to know that this sound maps to MIDI program
88. Imagine that we were not using Protégé,
but a dedicated application embedded e.g. into
a sequencer software; then the software could
exploit the MIDI channel value to, for exam-
ple, set the MIDI program of the currently se-
lected track. We also notice the rdfs:comment
field with a detailed annotation regarding this
sound. Finally, in the field hasQuality, we
can see, that this sound not only fulfills the
qualities “Synth” and “Bass” as required in our
query, but also the quality “Lead”. In order to
look, what this quality means, we double-click
on “LeadQuality”.

Again, a proper window pops up (cp. Fig. 9).
This window shows a description of the “Lead”
quality in the field rdfs:comment, such that we
learn to know even more characteristics of the
sound than what we actually required in our
query.



Figure 8: Viewing the Generic GM “Bass And
Lead” Sound Properties

Figure 9: Viewing the “Lead” Sound Quality
Properties

5.2 Browsing the Hierarchy of Sounds

Searching for sounds is also possible by
just browsing through the concept hierarchy.
Protégé displays the concept hierarchy as a tree
that can be expanded or collapsed at your choice
(cp. Fig. 10). Note that, due to possible multi-
ple inheritance of concepts in OWL, a concept
may appear multiple times in the tree. For ex-
ample, the GMOrganSound concept appears two
times in the tree, once as subclass of GMSound,
and another time as subclass of OrganSound.
Individuals of the concept Sound appear on the
leaf nodes of the tree and can be viewed in more
detail when selecting the appropriate leaf.

6 Future Work

Our prototype ontology focuses on the descrip-
tion of a generic GM Level 1 device as an exam-
ple sound resource. While we provide a general
ontological framework for virtually any kind of
sound resource, we currently do not provide a

Figure 10: Browsing through the Concept Hier-
archy of Sounds

description of any specific sound resource. The
task of providing ontological descriptions for in-
dividual sound resources remains open for dis-
cussion. After all, ontological descriptions are
desired for both, external hardware synthesizers
as well as software synthesizers running under
Linux. This work is in particular meant to initi-
ate discussion on and fostering the development
of proper standards.

6.1 Impact on ALSA Developers

The ontological description should be accessible
to virtually all users of the audio infrastructure.
Since ALSA(Jaroslav Kysela et al., 2006) has
established as the default sound architecture
on most current Linux distributions, responsi-
bility for provision and maintenance of the on-
tological description as well as a for providing
a query and management API should probably
fall to ALSA. ALSA developers may want to
develop and establish a proper infrastructure
and API. In fact, ALSA developers could try to
standardize the ontological framework as well as
the query and management API in an interop-
erable manner. Ontological descriptions could
then be provided independently of a particu-
lar operating system. This way, ALSA devel-
opers could pave the way for manufacturers of



external hardware starting to provide ontolog-
ical descriptions of their hardware’s sound re-
sources by themselves. All operating systems
would greatly benefit from such a development.

6.2 Impact on Linux Audio Application

Developers

Just like external hardware providers, develop-
ers of software synthesizers under Linux should
provide ontological descriptions of their synthe-
sizers’ sound resources, following the standards
to be provided by ALSA developers.

Editing sound patches typically will affect the
ontological description. For example, given a
software synthesizer that lets the user create
new sounds, the software could enable the user
to describe the sound with tags, e.g. by dis-
playing check-boxes or a multiple selection list
with items for each tag. ALSA developers may
want to standardize a default set of tags. Given
such tags and other user settings, the software
synthesizer should be capable of generating on
the fly a corresponding ontological description
of the sound.

If Linux audio developers feel that it is of too
much burden for software synthesizers to create
ontologies, ALSA developers may alternatively
develop a sound resource query API, that each
software synthesizer should implement. The on-
tological description of all software synthesizers
could then be created and managed completely
by ALSA.

7 Conclusion

We showed that in complex systems with
a plethora of sound resources, characterizing
sounds e.g. by classification is an essential task
in order to efficiently look up a particular sound.
Our historical survey on sound classification elu-
cidated the importance of this task.

We have demonstrated the feasibility of de-
ploying ontological technology for describing
and looking up sounds and sound resources. We
developed a terminological knowledge base that
serves as an ontological framework, and we cre-
ated a generic GM Level 1 device as facts knowl-
edge that serves as an example on how to use
our framework.

While we focus on the technical realization
of the OWL-DL based framework, so far we
leave open how to integrate this framework into
the operating system. If Linux audio develop-
ers feel that looking up sounds and sound re-
sources is worth being solved in a uniform way

under Linux, further discussion on the integra-
tion with applications, ALSA and maybe other
parts of the operating system will be required.

References

Access Music. 2004. Virus TI To-
tally Integrated Synthesizer. URL:
http://www.access-music.de/events/11-
2004/virusti basics.php4.

Monica Crubézy, Mark Musen, Natasha
Noy, and Timothy Redmond et.al. 2005.
The Protégé Ontology Editor and Knowl-
edge Acquisition System, August. URL:
http://protege.stanford.edu/.

Hewlett-Packard Development Company, LP.
2005. Jena Semantic Web Framework, Oc-
tober. URL: http://jena.sourceforge.net/.

Jaroslav Kysela et al. 2006. Advanced
Linux Sound Architecture – ALSA. URL:
http://www.alsa-project.org/.

Paul D. Lehrman and Howard Massey.
1998. General MIDI System Level 1
Developer Guidelines. MIDI Manufactur-
ers Association, Los Angeles, CA, USA,
July. URL: http://www.midi.org/about-
midi/gm/gmguide2.pdf.

Hans-Christof Maier, Franz Bachmann, Michael
Bernhard, Geri Bollinger, and Adrian
Brown. 2005. Prisma - music. URL:
http://www.prisma-music.ch/.

MIDI Manufacturers Associa-
tion. 2005. MIDI Specifications.
URL: http://www.midi.org/about-
midi/specshome.shtml.

Eric Miller and Jim Hendler. 2004. Web On-
tology Language (OWL), February. URL:
http://www.w3.org/2004/OWL/.

Eric Miller, Ralph Swick, and Dan
Brickley. 2004. Resource Description
Framework (RDF), February. URL:
http://www.w3.org/RDF/.

Paul O. Nasca. 2005. Zynaddsubfx – an
open source software synthesizer. In Pro-
ceedings of the 3rd International Linux Au-
dio Conference (LAC2005), pages 131–135,
Karlsruhe, Germany, April. Zentrum für
Kunst und Medientechnologie (ZKM). URL:
http://lac.zkm.de/2005/papers/
lac2005 proceedings.pdf.

Walter Supper. 1950. Die Orgeldisposition.
Bärenreiter-Verlag, Kassel und Basel.


