An Empirical Study about the Feelgood Factor in Pair Programming

Matthias M. Miiller and Frank Padberg
Fakultat fur Informatik
Universitédt Karlsruhe
Am Fasanengarten 5, 76128 Karlsruhe, Germany
{muellerm|padberg} @ipd.uka.de

Abstract

Why are programmer pairs more productive than single
developers ? Using empirical data from two controlled ex-
periments, we find that pair performance is uncorrelated
with programming experience, but shows a significant cor-
relation with how comfortably the developers feel with pair
programming during the session (the “feelgood” factor).

1. Introduction

Pair programming has been the subject of a number of
empirical studies over the last two years. During pair pro-
gramming, all tasks are performed by pairs of developers
using one keyboard, display, and mouse. There is empirical
evidence that pairs are considerably more productive than
single developers; in addition, the code written by program-
mer pairs seems to be of higher quality (see the next section
for references).

Why is a pair of programmers, considered as a “unit,”
more productive than a single developer? Why are some
pairs more productive than others? Can we estimate the
productivity of a pair by measuring certain features of the
pair ? Categories of possible features include:

e features describing the performance of the individual
developers who form the pair, such as their program-
ming experience or productivity;

e features describing the interaction between the de-
velopers when pair programming, for example, how
smoothly they communicate or how comfortably they
feel during the pair sessions (“soft factors™).

In this empirical study, we take a closer look at two or-
thogonal features of a pair which potentially could drive its
productivity. We raise the following two questions:

Q1 Is there empirical evidence that the performance of a
pair is dominated by the programming experience of
the developers ?

Q2 Is there empirical evidence that the performance of a
pair is dominated by how comfortably the developers
feel during the pair session ?

We call the latter feature (how comfortably the developers
feel in a pair session) the feelgood factor of pair program-
ming. We’d like to point out that we view these questions
as research hypotheses and our study as a first contribution
to their empirical investigation.

The data for this study comes from two controlled ex-
periments with 38 subjects [3, 4]. The pre-test questionnaire
asked for various measures for the programming experience
of the subjects (in years and lines of code). The post-test
questionnaire asked for the feelgood factor, see SECTION 3.
Despite being self-reported, these measures carry valuable
information which is hard to measure in an objective way.
We lack data about the productivity of the developers. We
deliberately factored out the code quality aspect by guaran-
teeing a uniform, high quality level for each pair through
external acceptance tests.

On our data-set, we get the following results.

e Pair performance is uncorrelated with the program-
ming experience.

e The feelgood factor is a candidate driver for the per-
formance of a pair.

These results are preliminary due to the small size of our
data set.

For the first result, we studied different measures of the
experience level of the two individuals in a pair, as well as
the corresponding mean value, which we use as a measure
for the experience of the pair. None of these measures cor-
related with the implementation time of the programming
tasks.

The second result is based on a negative statistical cor-
relation between the feelgood factor of a pair and the im-
plementation time for the tasks. From the correlation alone,
one can not decide whether a pair performed well because
the feelgood factor was high, or, whether the developers felt
comfortable with pair programming because they had the
impression that they were performing well. To answer that
question, further empirical studies are necessary. In our ex-
periments, most subjects had no prior experience with pair
programming. All subjects had a positive attitude towards
the technique. This fact might be an indication that the pair
performance depends on the feelgood factor, and not the
other way around.

2. Empirical Results about the Benefit of Pair
Programming

The difference in development speed between a conven-
tional project and a pair programming project is measured
by a special process metric, the PairSpeedAdvantage
(PSA). The PSA is defined as the ratio between the time
required for some task by an average single developer in
a conventional project and the time required by a pair of
programmers. The empirical studies available today indi-
cate that the PSA ranges between 1.0 and 1.7 [1, 6, 7, 9].
For example, Nosek [7] reports that programmer pairs on
average require a 29 percent shorter time to completion for
their tasks than single programmers. Using Nosek’s data,
the speed advantage equals

100
PSA = ——— = 14.

100 — 29

By definition of the pair speed advantage, the produc-
tivity of a pair equals the (average) productivity of single
developer multiplied by the pair speed advantage.

Although pairs are faster than single developers, they in
general are not twice as fast. To analyze the tradeoff be-
tween the cost and benefit of pair programming, we have
presented an economic model for pair programming (and
Extreme Programming) in previous papers [8, 5]. The re-
sults of our economic studies show that pair programming
makes sense economically only if the market pressure is
high. In that case, entering the market faster covers the extra
personnel cost.

Besides an increased productivity, there can be other
good reasons for using pair programming. Potential bene-
fits which are discussed in the literature include higher code
quality [3, 8, 9] and training of developers [2, 10]. The
training aspect is particularly interesting in educating un-
dergraduate computer science students.

3. The Controlled Experiments

The data for this study were collected during two con-
trolled experiments. The experiments were held during the
summer terms 2002 and 2003, and are labeled Exp02 and
Exp03. The original purpose of the experiments was to in-
vestigate whether the average effort of pairs to complete a
programming assignment exceeds the average effort of sin-
gle developers assisted by an additional review phase. That
purpose led to a counterbalanced design of the experiments.
In this paper, we use the experiment data (including the pre-
and post-test questionnaires) to study questions Q1 and Q2
raised in the introduction.

3.1. Environment

Each experiment was part of an extreme programming
course. The courses consisted of four short sessions,
which introduced key Extreme Programming (XP) tech-
niques (pair programming, test-first, refactoring, and the
planning game), and a whole week of project work. The
session introducing pair programming was taught by XP
professionals from industry and took about 1.5 hours. The
experiments took place between the introductory sessions
and the project week. The XP techniques other than pair
programming were not applied in the experiments.

A total of 38 subjects participated in the experiments,
yielding 19 pairs. The subjects subscribed voluntarily to
the XP course. Before signing up for the course, they knew
that they had to take part in an experiment in order to get the
course credits. All subjects were computer science students
after the “Vordiplom” who were on average in their fourth
year of study, see FIGURE 1.

> 13 13
Q -
c
e w 1 2 1
I P B I S R
T T T 1
2 4 6 8
Year of Study

Figure 1. Distribution of year of study of the
subjects.

Java was the programming language for both the experi-
ment and the lab course.

3.2. Tasks

Due to the counterbalanced design of the experiments,
the subjects solved two different tasks:

Polynomial Find the zero positions of an arbitrary polyno-
mial of third degree. The subjects had to implement
the method fi ndZer oPosi ti on of a given class
Pol ynoni al .

Shuffle-Puzzle Find the solution of a given shuffle-puzzle
within a given number of moves and list the moves, if
a solution exists. The subjects had to add a method
fi ndMbves to the basic class Shuf f | ePuzzl e.

The classes Pol ynomi al and Shuf f | ePuzzl e already
contained constructors and methods for 1/O to facilitate im-
plementation and final testing.

The description of the task Pol ynomi al contained a
hint for a possible numeric solution to the problem. How-
ever, the students were not forced to use a special method
to solve the problem; they could use any method which
they considered suitable for the problem. As a special diffi-
culty, the task required careful handling of the floating point
arithmetic. For most students, solving the task involved im-
plementing the suggested method as well as taking care of
special cases. The shuffle-puzzle task required solving a
backtracking problem which the students knew how to solve
from their first computer-sciences courses.

In the experiments, one task was solved alone with an ad-
ditional review phase; for the other task, the subjects paired
off. Therefore, half the pairs worked on Pol ynomi al ,
the other half on Shuf f | e- Puzzl e. The two program-
ming tasks are of similar complexity: FIGURE 2 shows
box plots for the time which the pairs needed for comple-
tion of the tasks (9 pairs for Pol ynomi al , 10 pairs for
Shuf f | e- Puzzl e).

Except for an outlier in Shuffl e-Puzzl e, there
is a large overlap between the Pol ynom al and the
Shuf f | e- Puzzl e completion time distributions. Hence,
it is justified to treat the two tasks as practically equivalent
in this study. This is also supported by a p-value of 0.87 in
the corresponding two-sided Wilcoxon test.

3.3. Plan

The procedure for the pair programming task is outlined
in FIGURE 3. The procedure is divided into a coding and
testing and a quality assurance phase. During coding and
testing, the pairs worked on the assignment until they felt
they were done. Then, they entered quality assurance where
their program had to pass 95 out of 100 test cases of an
external acceptance test. If the program passed, the pair was
done. If the program did not reach the required 95 percent

S 4 —
Te] 1
1
1
= 8 4 |
é < R — [
< ! o
E g °
= - o
B @)
S
£ o 5
o —
N Q
O Se-e
e o0——
T T
Polynomial Shuffle-Puzzle

Figure 2. Implementation times for the two
tasks.

correctness, the pair received the output of the failed tests
and had to fix the errors. The acceptance test and the rework
phase were repeated until the program passed 95 tests.

The aim of the quality assurance phase and the ac-
ceptance test was to guarantee a high and uniform code
quality in the experiment. The individual attitude to-
wards testing and program quality is factored out. How-
ever, the exit criterion of the quality assurance phase still
leaves some room for variation in program reliability. A
comprehensive additional acceptance test with 700,000
test cases for Pol ynomi al and 15,000 test cases for
Shuf f | e- Puzzl e shows that for both tasks a high code
quality was achieved: for Pol ynomi al , the minimum cor-
rectness in the large test was 89 percent with a median of 93
percent; for Shuf f | e- Puzzl e the minimum correctness
was 99 percent.

The pair programming procedure could be done in one
session. For each session, the pairs made an appointment
with the experimenter. If the task could not be finished
in the first run, a subsequent appointment had to be made.
Short breaks were permitted, for example, for smoking or
going to lunch. During the breaks, the clock was stopped.

3.4. Selection of Pairs

The two controlled experiments had counterbalanced de-
signs since we originally wanted to compare pair program-
ming against reviews. This particular design does not really
matter for the present study, though. In the first experiment
(Exp02), 2 out of 20 subjects had prior experience with pair
programming (one and nine months). In the second exper-
iment (Exp03), 6 out of 18 subjects had pair programming
experience between one and six months. The first experi-

Pair Programming

Coding + Testing

Quality Assurance
| | |

Procedure

L |

} }

First Acceptance Test Last Acceptance Test

Figure 3. Procedure for pair programming task.

ment and its results are described in [3]; the results of the
combined experiments are presented in [4].

We have a total of 19 data points. TABLE 1 shows the
number of pair programming data points for each experi-
ment and task.

Table 1. Number of data-points in each exper-
iment (Pol=Polynomial, Shu=Shuffle-Puzzle).

Pol Shu | total
Exp02 5 5 10
Exp03 4 5 9
total 9 10 19

The pairing of the subjects in the experiments was done
according to their overall programming experience in lines
of code, independent of the programming language. The
subjects had reported their programming experience in the
pre-test questionnaire, see the next section. In each experi-
ment, the most skilled subject had to pair off with the low-
est skilled subject, the second best skilled subject with the
second lowest skilled subject, and so on. The aim was to
balance the skill level across the pairs somewhat.

3.5. Measured Data

The data used in this study originate from three different
sources: the pre-test questionnaire; data measured during
development; and the post-test questionnaire.

3.5.1. Pre-Test Questionnaire

Before the subjects paired off, they had to fill out the pre-
test questionnaire. The pre-test questionnaire asked for var-
ious measures of the individual programming experience,
see FIGURE 4.

The data obtained from the questionnaire is subjective.
The programming experience is our only means in this
study for assessing individual programming skills. Individ-
ual productivity figures of the subjects would have been a
better means for quantifying their programming skills. The
productivity could have been measured with an additional
test for each student before the experiment took place. Since
the experiment already meant a considerable overhead for

Pre-Test Questionnaire

How much programming experience do
you have (in years) ?

How many lines of code did you develop ?
O less than 3,000

O less than 10,000

(O less than 40,000

(O more than 40,000

How much Java programming experience do
you have (in years) ?

How much Java programming experience do
you have (in lines of code) ?

Figure 4. Relevant questions in pre-test ques-
tionnaire.

the students, we abstained from such a test to avoid further
overhead. Due to the lack of productivity data, all we can
use in this study are the subjective programming experience
data collected in the pre-test questionnaire.

Based on the pre-test data, we compute the following
measures for the experience of a pair:

e mean overall programming experience of a pair in
years (PairProgExp);

e mean Java programming experience of a pair in years
(PairJavaExp);

e mean Java programming experience of a pair in lines
of code (PairJavalLOQ);

As can be seen from FIGURE 5, the experience level of
the pairs has a large range for each of these metrics, de-
spite our special scheme for pairing the subjects (see SEC-
TION 3.4).

In the box plot for the Java experience of a pair measured
in lines of code, an outlier with a value of 127,000 lines of
code is left out. The outlier corresponds to a pair with self-
reported 250,000 and 4,000 lines of Java code. In addition

10
1

15000
1
o

1
DO

)
8 oo ~ Iy ° o
i o g | 5 0°
< - I . o® bl
I - °e o
o J o3

PairProgExp [years] PairJavaExp [years] PairJavalLOC [loc]

Figure 5. Distribution of pair experience.

to being a graduate student, the experienced subject in this
pair is a developer in his own small software firm.

3.5.2. Implementation Time

For the pair programming task, two different periods of time
were measured, see FIGURE 3: the time spent for coding
and testing (Tor) and the time spent for quality assurance
(Tga). The time for quality assurance consists of all the
rework time until the acceptance test was passed; the exe-
cution time for the acceptance tests is not included. Thus,
the implementation time (ImpTime) for a task equals:

ImpTime =Tor +TQa4.

The implementation time reflects the elapsed time for a
programmer pair to finish the assignment at the prescribed
quality level. For the purpose of this study, we use the im-
plementation time as a measure for the performance of a
pair.

FIGURE 6 shows the distribution of the implementation
time for the combined experiments.

500
|
o

400

300

200
|

ImpTime [minutes]

Figure 6. Distribution of implementation time.

3.5.3. Post-Test Questionnaire

After the pair programming experiment, each student was
handed out the post-test questionnaire, see FIGURE 7. The
post-test questionnaire asked for how comfortable the stu-
dent felt during the pair programming session. The answer
ranges on an ordinal scale.

Post-Test Questionnaire

How did you like pair programming ?
(1=not at all, 5=very much)

O 20 30 4«0 50

Figure 7. Relevant question in post-test ques-
tionnaire.

We call this metric the individual feelgood factor of a
developer. Again, the data obtained from the questionnaire
is subjective.

Since our questionnaire did not ask the pairs to specify
a joint feelgood factor, we took the mean of the individual
assessments as a substitute. We call the resulting metric
the pair feelgood factor. The pair feelgood factor ranges
between 2.5 and 5.0. The following box plot (FIGURE 8)
shows the distribution of the pair feelgood factor.

25 3.0 35 40 45 50

pair feelgood factor

Figure 8. Distribution of pair feelgood factor.

Since the feelgood factor is defined as the mean of the
individual assessments, FIGURE 8 shows that in most cases
there was a close agreement in the assessments given by the
individuals.

In future studies, it is desirable to measure the feelgood
factor more frequently during the experiment than we did in
this study because of the relatively short length of the pair
programming sessions in our experiments.

3.6. Threatsto Validity

Several perils threat the validity of our study. First, our
data base is fairly small. Hence, it is difficult to draw deci-
sive conclusions. Second, the subjects’ individual attitude
may have been biased in favor of pair programming. The
answers to the question in the post-test questionnaire (see
FIGURE 7) are shifted towards the right hand side of the
scale, see FIGURE 9.

Third, subjects participated voluntarily in the course,
so they might have felt more enthusiastic about pair pro-

23

11

Frequency
10 20

1

Figure 9. Histogram for answers on how much
individuals liked pair programming (1=not at
all, 5=very much).

gramming than the average developer would have. Fourth,
our particular selection strategy (see Section 3.4) resulted
in some unbalanced pairs and some more evenly matched
pairs; this might influence the feelgood factor if program-
mers prefers to be matched with a partner of similar experi-
ence. Fifth, the experiments took place in our lab. Thus, the
students could have been aware of the progress of the other
teams during the experiment. Although the pairs started to
work on their assignments at any time, this threat can not be
ignored. And finally, most subjects had no previous expe-
rience with pair programming. Subjects were assigned to a
pair only according to their programming experience, ignor-
ing any existing acquaintanceship with one another which
might have improved their pair programming performance.

4. Results

In the analysis, we first study the correlation between
the implementation time and the programming experience
of the pair, respectively, the feelgood factor of the pair. In
a second step, instead of looking at the pairs, we focus on
the individual programming experience and the individual
feelgood factor.

4.1. Experience of the Pair

To study the impact of the programming experience on
the performance of the pair, we use the metrics PairProgExp,
PairJavaExp, and PairJavaLOC, described in SECTION 3.5.1,
as independent variables. The implementation time, as
computed in SECTION 3.5.2, is the dependent variable.

The following scatter plot (FIGURE 10) shows the rela-
tionship between the experience level of the pairs and the
implementation time needed for the tasks.

Apparently, there is no correlation between the experi-
ence level and the implementation time. This observation
is also supported by a p-value of 0.68 in the Spearman
test. Thus, the hypothesis that the variables PairProgExp and

400
|

ImpTime [min]
!

200
|

PairProgExp

Figure 10. Implementation time and pair pro-
gramming experience in years.

ImpTime are uncorrelated cannot be rejected at any reason-
able significance level.

We get the same result when using the Java program-
ming experience (measured either in years or lines of code)
instead of the overall programming experience, see the scat-
ter plots in FIGURE 11.

_ o - o)
8 A 8 A
o o
N *O ° @ ° N * OOOO o °
o o° 8 9 o © °
Q7 o R° 09 o Q g 00 o 0
T T T T T T T T T T
1 2 3 4 5 0 10000 20000
PairJavaExp PairJavaLOC

Figure 11. Implementation time (in minutes)
and pair Java programming experience (in
years and lines of code). In PairJavaLOC an
outlier at (127000; 172) is omitted

The corresponding p-values in the Spearman test are
0.85and 0.33.

For our data set, these results suggest that a pair’s pro-
gramming experience and pair performance are uncorre-
lated. This gives a negative answer to question Q1 from
the introduction.

4.2. Feelgood Factor of the Pair

The scatter plot in FIGURE 12 shows the relation be-
tween the pair feelgood factor (PairFeelgood) and the im-
plementation time (ImpTime).

1The p-value of 0.33 for the Java experience measured in lines of code
does include the outlier at (127 000; 172).

400
|

ImpTime [min]
|
@O0
00 O

200
|
o
—{amoo

PairFeelgood

Figure 12. Implementation time and pair feel-
good factor.

The scatter plot indicates that the pair performance and
the pair feelgood factor might be correlated. Despite a few
outlying data points, this observation is supported by a p-
value of 0.01 in the corresponding Spearman test.

Thus, the hypothesis that the variables PairFeelgood and
ImpTime are un-correlated can be rejected, for example, at
the 5 percent level.

The fact that a correlation exists is not sufficient to con-
clude that the feelgood factor actually drives the pair per-
formance: it is unclear whether a pair performs well be-
cause the feelgood factor is high, or, whether the developers
feel comfortable because they have the impression that they
are performing well. In particular, we are not yet in the po-
sition to answer question Q2 raised in the introduction. A
valid conclusion is, though, that the pair feelgood factor is
a candidate driver for the performance of a pair.

4.3. Individual Experience

We have seen in subsection 4.1 that the experience level
of a pair does not correlate with the implementation time.
It is natural to ask whether the same holds for the experi-
ence of the individual developers in a pair. To that end, we
focused on the relationship between

o the implementation time and that member of each pair
who had the higher overall experience level in years
(HigherProgExp);

o the implementation time and that member of each pair
who had the lower overall experience level in years
(LowerProgExp).

The scatter plots in FIGURE 13 indicate that there is no
correlation between these individual experience levels and
the implementation time. The plots look similar when using
the Java experience (in years or lines of code) instead of the
overall programming experience.

— o] — o]

8 - 8 -

< o < o

- OoO g - Ooooo °

o o o 9°

o 8g0 o) 7 o ooo

~ 8 o 8 ~ 00 o
T T T T T T T T T T
6 8 10 12 14 0 2 4 6 8

HigherProgExp LowerProgExp

Figure 13. Implementation time (in minutes)
and higher experience level (in years).

Our finding that the individual experience levels and the
pair performance are uncorrelated is also supported by the
p-values of the corresponding Spearman test, see TABLE 2.

Table 2. P-values for correlation between in-
dividual programming experience and imple-
mentation time.

| higher lower
overall experience [years] 0.48 0.31
Java experience [loc] 0.25 0.40
Java experience [years] 0.56 0.74

4.4. Individual Feelgood Factor

We have seen in subsection 4.2 that the performance of a
pair correlates with the feelgood factor of the pair. Thus, it
is worthwhile to study whether this correlation is driven by
one of the individuals in the pair.

We analyzed the relationship between the implemen-
tation time and that member of each pair who felt less
comfortable with the pair programming situation than the
other member (LowerFeelgood), see the left diagram in FIG-
URE 14.

1
o]
O @O O
1
@ O
00 00 O

200
|
200
|

GDOO

1 2 3 4

o

1 2 3 4 5

LowerFeelgood HigherFeelgood

Figure 14. Implementation time (in minutes)
and individual feelgood factor.

The scatter plot and the Spearman test indicate that the
performance of the pair might be driven by the team mem-
ber who feels less comfortable (p-value of 0.01). Again, the
correlation alone is not sufficient to decide which variable
depends on the other. Therefore, the existence of a correla-
tion should be considered as a basis for future research.

We also analyzed the relationship between the imple-
mentation time and that member of each pair who felt more
comfortable with the pair programming situation than the
other member (HigherFeelgood), see the right diagram in
FIGURE 14. The Spearman test indicates that there may
or may not be a correlation, depending on the choice of the
significance level (p-value equals 0.06). However, the feel-
good factor takes on the values 4 and 5 only. Since only
the upper range of the possible values is covered, one might
question whether a correlation analysis really makes sense
here.

5. Conclusions

In this paper, we have analyzed empirical data from two
controlled pair programming experiments. We have stud-
ied to which degree the performance of a pair is correlated
with the programming experience of the pair and the pair
feelgood factor. We found that pair performance is uncorre-
lated with a pair’s programming experience. We also found
that the pair feelgood factor is a candidate driver for the
pair performance. A similar hypothesis holds for the feel-
good factor of that pair member who feels less comfortable
with pair programming.

Some of our results may seem rather obvious; nonethe-
less, in the context of pair programming there still is a se-
vere lack of empirical data. We view our study as a contri-
bution in this direction.

Our findings are preliminary due to the small size of
our data set. Besides measuring other features of the pair
programming process, future studies should seek to include
subjects who have more mixed feelings about pair program-
ming than our students. Subjects also should have some
prior experience with pair programming when participating
in the experiment. The goal is to get a more balanced data
set. In addition, we need metrics which more directly mea-
sure features of a programmer pair, such as a direct measure
for the current condition of a pair. One would also like to
ask several questions from different perspectives about the
feelgood factor in order to get a more differentiated picture.

Based on our empirical results, we would suggest the fol-
lowing guideline: First of all, make your pairs feel good ! It
seems to be important that both developers in a pair feel
comfortable with the pair programming situation and re-
main closely in sync. We’d like to point out that our data
only yields a correlation between the pair performance and
its feelgood factor; therefore, we currently cannot decide

whether a pair performs well because the feelgood factor is
high, or, whether the developers feel comfortable because
they have the impression they are performing well.

We consider it an open question how much the perfor-
mance of a pair suffers from a large gap between the two
individuals in their productivity, experience, or social skills.
In particular, it might be the case that pair performance is
driven by the feelgood factor of the developer who feels
less comfortable with pair programming.

Further research in this area potentially leads to ...

e a better understanding of the (social) mechanisms un-
derlying pair programming;

e management guidelines how to best select the mem-
bers of a pair and train developers in pair program-
ming;

o carly indicators for performance problems in a pair.

References

[1] A. Cockburnand L. Williams. The costs and benefits of pair
programming. In eXtreme Programming and Flexible Pro-
cesses in Software Engineering (XP2000), Cagliari, Italy,
June 2000.

[2] C. McDowell, L. Werner, H. Bullock, and J. Fernald. The
effects of pair-programming on performance in an introduc-
tory programming course. In S GCSE Technical Symposium
on Computer Science Education, pages 38-42, Cincinnati,
Kentucky, USA, 2002.

[3] M. Mdiller. Are reviews an alternative to pair programming ?
In Empirical Assessment In Software Engineering (EASE),
pages 3-14, Keele, UK, Apr. 2003.

[4] M. Mdller. Should we use programmer pairs or single de-
velopers for the next project? Technical Report 2004-8,
Faculty of Informatics, Universitat Karlsruhe, 2004.

[5] M. Mdiller and F. Padberg. On the economic evaluation of
Xp projects. In Joint European Software Engineering Con-
ference and Symposium on the Foundations of Software En-
gineering (ESEC/FSE), pages 168-177, Helsinki, Finland,
Sept. 2003.

[6] J. Nawrocki and A. Wojciechowski. Experimental evalua-
tion of pair programming. In European Software Control
and Metrics (Escom), London, UK, 2001.

[7] J. Nosek. The case for collaborative programming. Commu-

nications of the ACM, 41(3):105-108, Mar. 1998.

[8] F.Padbergand M. Mller. Analyzing the cost and benefit of
pair programming. In International Symposium on Software
Metrics (Metrics), Sydney, Australia, Sept. 2003.

[9] L. Williams, R. Kessler, W. Cunningham, and R. Jeffries.
Strengthening the case for pair-programming. |EEE Soft-
ware, pages 19-25, July/Aug. 2000.

[10] L. Williams, C. McDowell, N. Nagappan, J. Fernald, and
L. Werner. Building pair programming knowledge through
a family of experiments. In International SymposiumEmpir-
ical Software Engineering (I1SESE), pages 143-152, Rome,
Italy, Sept. 2003.

