A Novel Empirical Approach to the Defect Content Estimation Problem for Software Inspections

Frank Padberg
Universität Karlsruhe
Germany

Motivation

- not all defects are detected during an inspection
- total number of defects is not known exactly
- number of defects is an important management tool (cf. prescribed level of defect-freeness)

Motivation

- not all defects are detected during an inspection
- total number of defects is not known exactly
- number of defects is an important management tool (cf. prescribed level of defect-freeness)
- reliably estimate the number of defects in a software document from the outcome of an inspection!

Inspection Outcome

- list of detected defects
- zero-one matrix: shows which reviewer detected which defect
- classification of the defects

Existing Estimation Methods

- capture–recapture methods (Eick ea. ICSE 1992)
- curve-fitting methods (Wohlin ea. ICSE 1998)
- studies show that estimates are far too unreliable to be useful in engineering practice (Briand ea. TSE 2000, Biffl ea. ICSE 2001)

Sample Database

- 16 inspections from controlled experiments at NASA SEL (Basili ea. 1994/1995)
- specification documents of varying size
- between 6 and 8 reviewers
- true number of defects known exactly
- serves as standard benchmark

Input Data for Capture–Recapture

- inspection viewed as a short test series
- number w_k of defects detected by reviewer k
- \bullet total number d of different defects detected
- \bullet example: (9, 7, 6, 13, 9, 6) and d=23

Capture-Recapture Estimates

mean abs. error of 24 percent max error of -67 percent

CR-Estimate versus Number of Reviewers

estimates vary with the number of reviewers; final estimate too low (25 instead of 30)

Cap-Recap Estimate Versus Test Series Length

some test series of length 19 estimate needs some time to stabilize!

Estimates for Detection Profile Method

mean abs. error of 36 percent extremely high variation

Why Capture–Recapture Fails

• mathematics: "test series" is too short

Why Capture—Recapture Fails

- mathematics: "test series" is too short
- only the outcome of the current inspection enters the estimation

Why Capture—Recapture Fails

- mathematics: "test series" is too short
- only the outcome of the current inspection enters the estimation
- in other words: no learning from experience

Machine Learning Approach

- use empirical data about past inspections for estimating
- learn relationship between observable features
 of an inspection and true number of defects
 contained in the document

Machine Learning Approach

- use empirical data about past inspections for estimating
- learn relationship between observable features
 of an inspection and true number of defects
 contained in the document
- view defect content estimation as a regression problem

Required Inspection Data

- zero-one matrix
- document meta-data:
 type, size, complexity,
- inspection meta-data:
 reading technique, number of reviewers,
- true number of defects

Steps to Take

- 1. collect empirical inspection data
- 2. choose features
- 3. choose regression technique
- 4. possibly subdivide database (meta-data)
- 5. do the regression (machine learning)

Building a Database

- collect data from as many inspections as possible (inspection outcome and meta-data)
- trace defects which are detected in later phases (including maintenance) back to the corresponding document
- compute approximate value for true number of defects for each document in the database

Candidate Features

- derived from zero—one matrix
- TDD, AVE, MIN, MAX, STD
- example A1:

(9, 7, 6, 13, 9, 6) and 23 yields

TDD	AVE	MIN	MAX	STD
23	8.3	6	13	2.4

Input Data for Linear Regression

correlation analysis yields ranking

some datapoints:

inspection	TDD	AVE	target
A1	23	8.3	30
B1	20	6.0	28
C1	10	3.2	18
D1	6	1.3	15

Regression Hyperplane

all 16 inspections some points have large distance to hyperplane

Jackknife Validation

- leave out an inspection from the database
- compute the regression hyperplane using the remaining 15 inspections
- compute the regression estimate for the one inspection which was left out
- compare the estimate with the true value

Linear Regression Estimates

jackknife error of 11 percent max error of 40 percent

Linear Regression versus Capture–Recapture

clearly outperforms capture—recapture! (11 percent versus 24)

Non-Linear Regression: Neural Networks

$$logist(x) = \frac{1}{1 + e^{-x}}$$

$$\operatorname{logist}(x) = \frac{1}{1 + e^{-x}} \qquad s_i = \operatorname{logist}\left(\sum_j w_{ji} \cdot s_j\right)$$

Neural Network Topology

- number of inputs
- number of hidden layers
- number of units in hidden layers
- connections between layers

Training a Neural Network

- fit regression function to training data
- non-linear optimization process (choose weights to minimize error on training data)
- no simple formula
- might get caught in local minimum
- train networks with different initial weights

Input Data for Non-Linear Regression

non-linear feature selection yields ranking

- STD instead of AVE
- some training patterns:

inspection	TDD	STD	target
A1	23	2.4	30
B1	20	1.7	28
C1	10	1.5	18
D1	6	1.4	15

Non-Linear Regression Surface

two hidden units in one layer; all 16 inspections surface fits data very well

Neural Network Estimates

jackknife error of 6 percent max error of -17 percent

Neural Networks versus Capture–Recapture

clearly outperforms capture–recapture!

(6 percent versus 24)

Neural Networks versus Linear Regression

outperforms linear regression (6 percent versus 11; smaller variance)

Neural Network Advantages

- much flexibility when fitting to data
- detects non-linearity in the data
- gives guidelines which features to use

Neural Network Advantages

- much flexibility when fitting to data
- detects non-linearity in the data
- gives guidelines which features to use
- worked well with small benchmark dataset
- automatically adapted to different document types and sizes

Result Summary

Method	mean abs. error	max error
Capture–Recapture	24 %	-67 %
Detection Profile	36 %	113 %
Linear Regression	11 %	40 %
Interval Estimates	(7%)	(14%)
Neural Networks	6 %	−17 %

novel approaches are promising! need more empirical data for validation

Own Publications About the Defect Content Estimation Problem

- Empirical Interval Estimates for the Defect Content After an Inspection
 - International Conference on Software Engineering ICSE (2002)
- Applying Machine Learning to Solve an Estimation Problem in Software Inspections
 - International Conference on Artificial Neural Networks ICANN (2002) (with T. Ragg and R. Schoknecht)
 - accepted for Transactions on Software Engineering TSE

Own Publications (cont.)

- A Fast Algorithm to Compute Maximum Likelihood Estimates for the Hypergeometric Software Reliability Model
 Asia-Pacific Conference on Quality Software APAQS (2001)
- Maximum Likelihood Estimates for the Hypergeometric Software Reliability Model
 - International Journal of Reliability, Quality and Safety Engineering IJRQSE (2003)

Thank You!