
A Discrete Simulation Model for Assessing

Software Project Scheduling Policies

Frank Padberg
Fakultät für Informatik

Universität Karlsruhe, Germany
padberg@ira.uka.de

Abstract

Good project scheduling is an essential, but extremely
hard task in software management practice. In a soft-
ware project, the time needed to complete some devel-
opment activity is difficult to estimate. Often, the com-
pletion of activities is delayed due to unanticipated re-
work which is caused by feedback in the process.

In this paper, we show how process simulation can be
used to support managers in finding good schedules for
their software projects. We present a novel, stochas-
tic simulation model which is tailored to the special dy-
namics of software projects, and which explicitly takes a
scheduling strategy as input. The model represents task
assignments, staff skill levels, component coupling, and
rework caused by design changes. The simulation model
is implemented in the ModL language of the general-
purpose graphical simulation tool EXTEND.

As an illustration of our simulation model, we study
the performance of various list policies for a small sam-
ple project. The simulations quickly show the impact
that the choice of the list policy will have on the progress
and completion time of the sample project. To explain
the performance difference between the list policies, we
use the simulation traces to provide a detailed analy-
sis of the task assignments which actually occur in the
simulations.

Keywords. Process Simulation, Project Schedul-
ing, Rework Modeling, Stochastic Process Modeling.

1. Introduction

To cut development cost and meet tight deadlines in
short staffed software projects, it is essential that man-
agers optimize the project plan and schedule. Good
software project scheduling is an extremely hard task

in practice, though. The time needed to complete a
software development activity is difficult to estimate
since it depends not only on technical factors, but also
on human factors such as the experience of the devel-
opers. Even worse, it is typical for software projects
that the completion of tasks is delayed because of un-
anticipated rework; such rework is caused by feedback
in the development process.

In this paper, we show how to apply software process
simulation to the scheduling problem. We present a
discrete-time, stochastic simulation model which is tai-
lored to the special dynamics of software development
projects. The model explicitly takes a scheduling strat-
egy (also called a policy) as input. A strategy specifies
for each possible state of the project which action to
take, such as reassigning or stopping some task. The
model is stochastic in order to account for the uncer-
tainty inherent to the software process with respect to
the duration of activities and the occurence of events.

The simulation model is an implementation of the
probabilistic scheduling model for software projects
which we have presented earlier [14] . In the schedul-
ing model, teams work in parallel on the software’s
components. Unplanned changes in the system design
can occur at any time and lead to rework. Since the
components are coupled, for example, through com-
mon interfaces, changes which originate in one part of
the system can propagate to other parts of the system.
As input to the model, statistical data collected dur-
ing past projects and high-level design data about the
current project are required.

In each simulation, one possible full path of the soft-
ware project is simulated. When the policy is fixed, the
output of a series of simulations can be used to mea-
sure the performance of that policy. For example, the
output of the simulations for a fixed policy can be used
to compute and display the probability distribution for
the project completion time, as well as the correspond-

ing expected value. In addition to the project com-
pletion time, other project features can be observed in
the simulations, such as the total amount of rework in
the project or the development times of the individual
components.

The simulation model makes it easy to experiment
with different scheduling strategies for a given project.
A manager can see quickly how the expected comple-
tion time of his project changes when he changes the
strategy or some other part of the project setting, such
as the number of available teams. This way, a man-
ager can evaluate and compare different strategies and
choose the one which he can expect to work best for
his next project.

As a sample application of our simulation model, we
study all possible list policies for a small hypothetical
project. A list policy prescribes an order in which the
components must be worked on, but the final schedule
depends on which path the project actually takes: the
next team to finish must work on the next component
in the list. List policies are commonly used and reflect
management practice.

The sample project consists of four components and
two teams. Although the project is small, it is not clear
aforehand which list policy the manager should prefer
because of the probabilistic nature of the development
process. Based on a detailed analysis of the perfor-
mance of the task assignments which actually occur in
the simulations, we are able to identify three different
ways to achieve a good average completion time for
the sample project. In addition, we find that the per-
formance of a task assignment can be sensitive to the
project context in which the assignment occurs.

Software engineering currently offers little help to
software project managers as far as scheduling is con-
cerned. The existing effort estimation models do not
support scheduling; they only provide an estimate for
the total effort required for a project, expressed in
man-days. Some models also provide a distribution
over time of the manpower needed for a project. Both
the classical curve-fitting models and the more recent
models [19, 20, 23] do not show individual tasks and
developers. Thus, deriving a detailed schedule is not
possible.

Process-centered software engineering environments
[2, 4, 7] guide project managers and developers during
real software projects, but they do not support find-
ing good schedules. Each environment comes with a
process modeling language (often more than one) to
formally describe the software development process in
detail, capturing the activities to be carried out, the
staff involved, the products to be developed, and the

tools available. Managers and developers use a process
model by ”enacting” it; that means, they step through
the model in accordance with the progress of the real
project, using an interpreter for the process modeling
language. Although a manager can explicitly assign
tasks to developers, the environments do not assist the
manager in making that assignment best possible with
respect to meeting a given deadline and budget. The
manager also can specify a fixed duration (and cost)
for each activity, but the strong impact of feedback in
the software process on the duration of the activities is
not modeled.

An exceptional stochastic simulation model for part
of the software process is presented in [17] . The model
uses statecharts to describe the code error detection
and correction loop. The duration of the activities in
the loop is stochastic and depends on the number of
residual errors in the code. With each iteration through
the loop, the number of residual errors decreases ac-
cording to some probability distribution. The process
iterates until a prescribed quality level is reached. Al-
though this model does not aim at scheduling, it is sim-
ilar to our model in that it shows individual activities
and allows feedback in the process to have an impact
on the stochastic activity durations of the tasks.

Operations research provides stochastic scheduling
models, but these models are not appropriate for de-
scribing the software process. Closest to the dynamics
of software engineering projects are ”stochastic project
networks” [10, 11] . A stochastic project network can
model parallel execution of activities and repeated ex-
ecution of activities. Yet, the duration of an activity
must not depend on any other activity which runs at
the same time, nor on the duration of an activity which
was performed earlier. In other words, in a stochas-
tic project network different threads of execution are
stochastically independent, as are different activities
belonging to the same thread. These assumptions do
not hold for software projects. The particular way in
which our own model describes the feedback between
activities is novel in scheduling [9, 11, 15] .

Our scheduling model describes the software process
at a high level of abstraction. Classical process phases
such as coding or testing are not modeled. Still, the
scheduling model captures much of the dynamics of
software projects, representing varying staff skill levels,
rework caused by design changes, component coupling,
and changing task assignments. By explicitly model-
ing individual components and individual scheduling
actions, our model is more fine-grained than system
dynamics models which operate at the level of total
workforce and overall schedule length [1, 3, 8, 21] .

This paper is a largely revised and extended version
of a conference paper [16] .

2. Scheduling Model

2.1. Project dynamics

The simulation model is an implementation of the
stochastic scheduling model for software projects which
we have presented earlier [14] . The scheduling model
captures much of the dynamics of software projects,
representing varying staff skill levels, design changes,
component coupling, rework, and changing task assign-
ments.

In the model, the software product is developed by
several teams. The teams work in parallel. Based on
some early high-level design, the software is divided
into components. At any time during the project, each
team works on at most one component, and, vice versa,
each component is being worked on by at most one
team. It is not required that there are enough teams to
work simultaneously on all uncompleted components.
The assignment of the components to the teams may
change during the project.

The teams do not work independently. From time to
time some team might detect a problem with the soft-
ware’s high-level design. To eliminate the problem, the
high-level design gets revised. Since the components
are coupled, for example, through common interfaces,
such a design change is likely to affect more than one
component and team. This is the way how feedback
between the different activities in the project occurs in
the model : all components which are affected by the
design change will have to be reworked, not only the
component where the problem was detected.

2.2. Scheduling actions

In the model, a software project advances through a
sequence of phases. By definition, a phase ends when
staff becomes available, or, when the software’s high-
level design changes. Staff becomes available when
some team completes its component. Staff also be-
comes available when a team completes all rework on
a component which already had been completed ear-
lier in the project but had to be reworked because of
a design change. Note that our definition of phases is
different from classical waterfall models.

Scheduling actions take place only at the end of the
phases. Possible scheduling actions are: assigning a
component to a team; starting a team; stopping a
team. Scheduling at arbitrary points in (discrete) time

is not modeled. The rationale behind this restriction
is that is does not make sense to re-schedule a project
as long as nothing unusual happens. At the end of a
phase though, staff is available again for allocation, or
re-scheduling the project might be appropriate because
of some design change.

At the end of a phase, the manager may also inter-
rupt some of the teams and re-allocate them to other
components. It is not required that a team has com-
pleted its current component before being re-allocated.
The decision which team to allocate to which compo-
nent at the end of a particular phase is based on the
manager’s scheduling strategy or policy.

2.3. Probabilities

The scheduling model is probabilistic: events will
occur only with a certain probability at a particular
point in time. In particular, the following events are
subject to chance:

• the point in time at which some component is
completed;

• the points in time at which design changes occur;

• the set of components which must be reworked due
to a design change;

• the amount of rework caused by a design change.

Mathematically, the scheduling model is a Markov
decision process [18] . For more details and the explicit
formulas see [12, 14] .

2.4. Input data

In order to compute the probabilities in the schedul-
ing model, respectively, simulate a project path, the
model requires the following input data: the base prob-
abilities, the dependency degrees, and the scheduling
strategy. We explain the input data in detail in the
next section and give examples.

3. Sample Project

3.1. Architecture

We use the following small, hypothetical project as
a running example throughout this paper.

The sample project is a client-server system which
has four components. The client contains a front-end,
component A, and a large application part which does
some pre-processing, component C. The server con-
tains an administrator front-end, component B, and

a large application kernel, component D. The client
and the server are coupled only through the applica-
tion components C and D. In particular, there is no
direct link between the two front-end components.

There are two teams in the project, team One and
team Two. The teams work in parallel. The complexity
of the components and the productivity of the teams
are reflected in the probability distributions which are
used as input for the simulations, see below.

3.2. Base probabilities

The base probabilities are a measure for the pace
at which the teams have made progress in previ-
ous projects. For each team and component, there
is a separate set of base probabilities. Probability
P (D i

k (t)) specifies how likely it is that team i will
finish component k after having worked on it for t
time units. These probabilities refer to the net devel-
opment times, excluding any rework. Similarly, prob-
ability P (E i

k (t)) specifies how likely it is that team
i will report a design problem after having worked on
component k for t time units. By definition, the base
probabilities for a given team and component must add
up to one.

The base probabilities must be discrete distributions
with finite support. Therefore, we use skewed binomial
distributions as the base probabilities for the sample
project. The parameters n and p for the binomial
distributions are listed in Table 1. The distributions
were rounded to one decimal digit and shifted to the
right by one (the simulations need at least one time
unit to do anything). Then, the distributions were
scaled (see the scale factors given in Table 1) in order
to achieve that for a fixed team and component the base
probabilities sum up to one. The binomial distributions
are similar in shape to Rayleigh distributions which
have been shifted to the right and whose (otherwise
infinite) tail has been compressed, see Figure 1.

Figure 1. The base probabilities P (D One
C (t)) for

team One completing component C after t units.

0.0

0.16

1 6 10 13

The larger the scale factor used with P (D i
k (t))

Table 1. Base probabilities for the sample project.

distribution n p peak scale

P(D One
A (t)) 7 0.7 6 0.8

P (E One
A (t)) 6 0.5 4 0.2

P(D Two
A (t)) 10 0.7 8 0.8

P (E Two
A (t)) 10 0.5 6 0.2

P(D One
B (t)) 7 0.8 7 0.8

P (E One
B (t)) 6 0.55 4 0.2

P(D Two
B (t)) 10 0.8 9 0.8

P (E Two
B (t)) 10 0.55 7 0.2

P(D One
C (t)) 12 0.75 10 0.6

P (E One
C (t)) 13 0.45 7 0.4

P(D Two
C (t)) 16 0.75 13 0.6

P (E Two
C (t)) 20 0.45 10 0.4

P(D One
D (t)) 14 0.75 12 0.4

P (E One
D (t)) 15 0.45 8 0.6

P(D Two
D (t)) 20 0.75 16 0.4

P (E Two
D (t)) 26 0.45 13 0.6

the less likely it is that component k will trigger a
design change during the project. For example, if com-
ponent C is assigned to team One, the probability that
the component will be completed without triggering
a design change is 60 percent, see the entry for the
scale factor of P (D One

C (t)) in Table 1. Note that
the scale factors in Table 1 depend only on the com-
ponent, not on the team which is allocated to the com-
ponent.

The parameters for the binomial distributions are
chosen in such a way that on average

• team Two has a 30 percent lower productivity than
team One ;

• the net development times for the front-end com-
ponents A and B are about the same for a given
team;

• the net development times for the core application
components C and D are much longer than for the
front-end components;

• the risk that high-level design problems will occur
is much higher for the application components than
for the front-end components;

• design problems can be expected to occur mainly

after two thirds of the net development time of a
component;

• component D has the largest expected effort and
has the highest risk of triggering design changes.

In addition, for each component k there is a prob-
ability distribution P (Rk (t)) which specifies the
amount of rework time t required if that compo-
nent has to be reworked because of a design change.
Again, we use skewed binomial distributions which
were shifted to the right by one, see Table 2.

Table 2. Rework time probabilities for the sample
project.

distribution n p peak

P (RA (t)) 1 0.25 1

P (RB (t)) 1 0.25 1

P(RC (t)) 4 0.5 3

P (RD (t)) 4 0.55 3

3.3. Dependency degrees

The dependency degrees are a probabilistic measure
for the strength of the coupling between the compo-
nents. The stronger the coupling is the more likely it is
that high-level design problems which originate in one
component will propagate to other components, lead-
ing to rework. The dependency degree α

(
K, X

)
by

definition is the probability that changes in the soft-
ware’s design will extend over exactly the set X of
components given that the problems causing the re-
design were detected in the set K of components.

The dependency degrees for the sample project are
listed in Table 3. Blank entries correspond to zero.
For example, the entry in row C and column CD of
Table 3 corresponds to α

(
C, CD

)
and specifies that

there is a 35 percent probability that design problems
detected in component C will lead to design changes
which affect the components C and D, but no other
components.

For the sample project, the dependency degrees are
chosen in such a way that

• the core components C and D are strongly coupled;
• each front-end is strongly coupled to its application

component;
• changes must propagate along the interfaces be-

tween the components;

• there is only a limited risk that a design change
which originates in a front-end, say component A,
will propagate to the other application component,
in this case component D ;

• design changes in one front-end can have an im-
pact on the other front-end only if the intermediate
components C and D are affected.

3.4. List policies

The scheduling strategy specifies for each possible
state of the project which scheduling action to take.
There is a huge number of possible different strategies
that can be applied to a project. The scheduling model
and, hence, the simulation model make no assumptions
about the strategy, except that the information used by
the strategy when choosing a scheduling action must be
contained in the project state (refer to section 4 for the
definition) and the model input data.

In this paper, we focus on a well-known class of
scheduling strategies, list policies. A list policy uses
a fixed priority list for the components to prescribe
an order in which the components must be developed.
When a team finishes its current component, it is al-
located to the next unprocessed component in the list.
If several teams become available at the same time,
the team with the smallest id is allocated to the first
unprocessed component in the list, the team with the
second-smallest id is allocated to the second unpro-
cessed component in the list, and so on.

A list policy keeps all teams busy all the time. As
opposed to policies which prescribe for each component
which team exactly must work on this component, a list
policy does not have to wait for ”the right” team to
become available before development of the next com-
ponent can start.

In a probabilistic setting, the task completion times
are not known in advance. Thus, a priority list does
not completely pre-determine to which team a partic-
ular component will actually get assigned; the actual
schedule (task assignments and their timing) depends
on the order in which the teams finish their tasks, which
is subject to chance.

Since the sample project has four components, there
are fac (4) = 24 different list policies for the sample
project. For example, the list policy CDAB initially
assigns component C to team One and component D
to team Two. Whichever team finishes its task first
will work on component A. Finally, the next team to
finish will work on component B.

With list policies, a team works on its component
until completion without interruption. An exception

Table 3. Dependency degrees for the sample project (in percentages).

A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD

A 20 60 15 5
B 20 60 15 5
C 10 15 35 20 10 10
D 10 15 35 10 20 10

AB 20 20 20 40
AC 30 55 15
AD 10 10 50 30
BC 10 10 50 30
BD 30 55 15
CD 40 20 20 20

ABC 10 90
ABD 10 90
ACD 40 60
BCD 40 60
ABCD 100

occurs when a component must be reworked which al-
ready had been finished earlier in the project. In such
a case, the team which had finished that particular
component is interrupted, reworks the component, and
then resumes its current task. Recall that the schedul-
ing model allows interrupting and re-allocating teams
at the end of the phases.

4. Implementation

The simulation model is a discrete-time simulation
written in the ModL language of the general-purpose,
graphical simulation tool EXTEND [6] . We have cho-
sen EXTEND because it is in widespread use, well-
documented, and offers a free runtime system which
allows to run pre-compiled models. ModL is a C-like
language which allows to develop continuous and dis-
crete models from scratch.

EXTEND models are subdivided into blocks. The
scheduling strategy is implemented as a separate block
in the simulation and hence can be easily replaced.
Other blocks allow to enter or read from file the base
probabilities and dependency degrees. The current
state of the project is visible in another block. The
state of the project includes the net development time
spent on each component so far, the amount of rework
left for each component, the project duration up to this
point, and the current task assignment (that is, which
team is working on which component).

The simulation determines which step the project
will take next by throwing dice. There is a separate
die for each currently active component. Suppose that
team i is working on component k, the net develop-
ment time for component k equals ζ time units, and

there is no rework left for component k. The die for a
component throws one of three events: complete, de-
sign problem, continue. The die behaves according to
the base probabilities. For example, event complete for
component k is thrown with probability

P (D i
k (ζ + 1))

1 − ∑ ζ
t = 1 {P (D i

k (t)) + P (E i
k (t)) }

.

After having thrown the die, the net progress for com-
ponent k is incremented by one.

The simulation handles an active component which
has some rework left differently. Instead of throwing a
die, the rework is decremented for each simulation step.
In particular, components under rework can not throw
design problem events. As soon as a component’s re-
work time has been counted down to zero, net progress
can be achieved again. Once a component has been
completed, only rework may occur for the component
in the sequel.

If one or more of the components’ dice have thrown
a design problem, the simulation determines the set of
those components which are affected by the resulting
design change by throwing another die. Suppose that
a design problem was detected simultaneously by each
component listed in the set K. According to the depen-
dency degrees, the additional die throws X as the set
of affected components with probability α

(
K, X

)
.

Any component can be affected by a design change,
including inactive components and components which
have been completed earlier in the simulation.

After a design problem event, the amount of rework
time required for each of the affected components is

determined using yet another die which behaves ac-
cording to the probabilities of rework time. The re-
work added to the affected component k equals � with
probability P (Rk (�)).

The current project phase ends if throwing the com-
ponents’ dice results in at least one design problem or
complete event. The simulation then asks the block
containing the scheduling strategy for the task assign-
ment to be used in the next phase.

5. Simulation Results

5.1. List policy performance

Even for the small sample project it is not obvious
which list policy a manager should prefer because of
the probabilistic nature of the development process.
In particular, the amount of rework caused by design
changes is subject to chance, which leads to additional
uncertainty about the task completion times.

To find the best list policy for the sample project,
we ran 1000 full project simulations for each of the
24 possible lists. For each simulation, we observed the
project completion time. Table 4 gives a ranking of
the list policies based on the mean project completion
times observed in the simulations.

Table 4. Mean simulated project completion time
for the sample project with different list policies.

policy mean σ rank

ABCD 31.5 6.1 21
ABDC 28.4 5.4 12
ACBD 32.2 6.3 24
ACDB 27.4 4.9 3
ADBC 28.7 5.5 13
ADCB 28.4 4.9 11

BACD 30.1 6.0 15
BADC 28.2 5.4 9
BCAD 31.8 6.2 22
BCDA 27.4 5.0 4
BDAC 29.0 5.5 14
BDCA 27.8 5.0 7

CABD 31.3 7.5 20
CADB 30.3 5.8 16
CBAD 31.9 7.5 23
CBDA 30.4 6.0 17
CDAB 28.3 5.2 10
CDBA 28.1 5.1 8

DABC 30.8 7.0 19
DACB 27.1 5.0 2
DBAC 30.7 7.1 18
DBCA 27.6 5.0 6
DCAB 27.6 4.8 5
DCBA 26.9 4.5 1

There is a considerable performance gap between the
best policies, which have a mean project completion
time of 27 time units, and the worst policies, which
have a mean of over 31 time units. In particular, the
mean for the best policy DCBA is about 16 percent
shorter than for the worst policy ACBD.

From the 1000 simulated project completion times
for each list policy, we can compute a histogram for the
project completion time. Figures 2 and 3 show the
histogram for the worst policy ACBD, respectively, the
best policy DCBA.

Figure 2. Histogram of simulated project completion
times for policy ACBD.

0.0

0.02

0.04

0.06

0.08

20 30 40 50

ACBD

0.0

0.02

0.04

0.06

0.08

20 30 40

DCBA

Figure 3. Histogram of simulated project completion
times for policy DCBA.

The histograms make the difference in performance
between the two list policies apparent. From the histo-
grams, a manager can also compute the risk that a
given deadline will be missed. For example, with policy
DCBA the risk of not completing the project within 30
time units equals 22 percent; with policy ACBD, this
risk is much higher, namely, 57 percent.

5.2. Statistical significance

To show that the differences in the mean simulated
project completion times really are significant, we ran
for each pair of list policies a two-sample Wilcoxon
test with the simulated completion times as the sam-
ples. This amounts to 276 pairwise tests. We use the
Wilcoxon test instead of the t-test because the project
completion times are not normally distributed. The
Wilcoxon tests show that the results of our simulations
indeed are significant:

• Most importantly, the performance advantage of
the best policy DCBA over the other list policies is
highly significant at the 0.1 percent level (p-value
of 0.001 or smaller) except for a few cases, see the
upper part of Table 5. Only policy DACB has
a performance similar to DCBA, which is reflected
in the small diff of 0.2 for the means and a large
p-value of 0.73. In the other cases, the difference
is clearly significant.

• A difference in the mean project completion time
of 0.6 or larger is statistically significant at the
5 percent level (p-value of 0.05) except for some
cases, see the middle part of Table 5. The dif-
ference between policies BACD and DABC clearly
is significant. The other cases are not important,
since the mean project completion times are larger
than 30 time units.

• A difference of 0.5 or 0.4 is statistically significant
at the 15 percent level (p-value of 0.15) except for
some cases, see the lower part of Table 5. The
difference between ADBC and CDAB, respectively,
BADC and BDCA, still has some significance. The
other cases are not important, because the mean
completion times are larger than 30 time units.

• We consider a difference of up to 0.3 too small to
be meaningful, though in a number of these cases
the difference is statistically significant.

5.3. Actual task assignments

To gain some understanding why a particular list
policy shows the performance observed in the simula-
tions, the task assignments which actually occur in the
simulated projects are of central importance. Recall
that the actual schedule in a simulation depends on
the order in which the teams finish their tasks, which
is subject to chance. Therefore, we observed for each
simulation and component which team was allocated
to that component.

To specify an assignment for the sample project, we
use a 4-digit notation. The first digit is the number

Table 5. Special cases from Wilcoxon tests.
compared policies diff p-val

DCBA ACDB 0.5 0.11

DCBA BCDA 0.5 0.07

DCBA DACB 0.2 0.73

DCBA DBCA 0.7 0.007

DCBA DCAB 0.7 0.003

BACD DABC 0.7 0.06

CABD CADB 1.0 0.20

CABD CBDA 0.9 0.24

BACD DBAC 0.6 0.29

CABD DBAC 0.6 0.19

CABD DABC 0.5 0.54

CADB DABC 0.5 0.48

ABCD CBAD 0.4 0.55

ADBC CDAB 0.4 0.38

BADC BDCA 0.4 0.19

CADB DBAC 0.4 0.99

CBDA DABC 0.4 0.53

of the team which was allocated to component A, the
second digit is the number of the team which was al-
located to component B, and so on. For example, to
specify that team One was allocated to components B
and D, while team Two was allocated to components
A and C, we use the notation 2121.

Table 6 shows for each list policy the actual task
assignments and the relative frequency with which the
assignments have occured among the 1000 simulations
for that list policy. Only assignments with a frequency
of more than 10 percent are listed. For each policy
and assignment, Table 6 also shows the mean sim-
ulated project completion time corresponding to that
assignment.

For example, list policy CDAB results in the assign-
ment 1112 in 56 percent of the simulated projects,
with a mean project completion time of 27.2 units.
In 43 percent of the simulations, policy CDAB results
in the assignment 1212, with a longer mean project
completion time of 29.8 units. The performance of
policy CDAB is a mixture of the peformance for the
two assignments 1112 and 1212.

The performance difference between the assignments
for a given policy (as listed in Table 6) is statistically
significant (Wilcoxon test) at the 0.1 percent level,
with the following exceptions: policy DCBA (diff = 0.1,
not significant); policy DCAB (diff = 0.3, significant
at the 10 percent level); and policy CABD (diff = 0.9,
not significant due to the small sample size for 2112).

Table 6. Actual assignments, mean net component development times, and mean component rework times.
project time mean net develop time mean rework time

policy assign freq mean σ A B C D A B C D

ABCD 1212 0.91 31.9 6 5.9 9.2 10.4 16.7 0.8 0.9 4.3 4.8
ABDC 1221 0.92 28.3 5.5 5.9 9.2 13.5 12.1 0.8 0.9 4.2 4.8
ACBD 1121 0.71 31.2 6.2 5.8 6.5 14 12.2 0.9 0.9 4.9 5.2

1122 0.29 34.7 6.1 6.4 7.1 12 17.1 0.6 1.1 2.7 4.3
ACDB 1221 0.94 27.4 4.9 6.1 9.1 13.2 11.9 0.8 0.9 3.9 4.7
ADBC 1112 0.95 28.5 5.4 6 6.6 10.3 16.7 0.7 0.8 4 4.7
ADCB 1112 0.50 27.4 4.8 5.7 6.7 9.8 17.5 0.5 1 3.4 5.6

1212 0.50 29.4 4.9 6.4 9.2 10.7 15.8 1 0.8 4.6 3.9

BACD 2112 0.76 31 5.7 8.6 6.5 10.3 16.8 0.9 0.8 4.2 4.4
2121 0.24 27.1 5.7 6.7 7.4 13.7 12.3 0.6 1.2 3.8 5

BADC 2112 0.22 29.5 5.3 6.8 7.3 10.5 16.8 0.6 1.3 4 5.5
2121 0.78 27.9 5.4 8.6 6.4 13.6 12.3 0.9 0.8 4.1 4.3

BCAD 1121 0.69 30.8 6.1 5.8 6.5 13.9 12.1 0.8 0.8 4.5 5
1122 0.31 34.1 6 6.6 7 12 17 0.6 0.9 2.8 3.9

BCDA 2121 0.95 27.4 5.1 8.2 6.7 13.3 12.2 0.9 1 4.1 4.9
BDAC 1112 0.95 28.9 5.5 6 6.5 10.2 16.9 0.8 0.9 4.4 4.9
BDCA 1112 0.49 27.2 4.9 6.2 6.4 9.7 17.7 0.7 0.9 3.5 5.3

2112 0.51 28.4 5 8 6.9 10.7 15.9 0.9 0.8 4.4 3.6

CABD 2112 0.12 29.8 4.7 9.2 6.8 8.2 16.3 0.6 0.8 2.3 3.3
2211 0.83 30.7 7.2 8.1 9.1 10.4 12.6 0.8 0.9 4.3 4.9

CADB 2112 0.88 30.9 5.5 8.1 6.7 10.4 16.7 0.8 1 4.6 5.3
2211 0.12 25.6 5.2 9.3 9.2 8.4 12.9 0.6 0.9 2.5 3.5

CBAD 1212 0.23 32.9 6 6.5 10 8.9 16.7 0.6 1.1 3.2 4.6
2211 0.72 31 7.4 8.3 8.9 10.5 12.7 0.8 0.9 4.3 4.9

CBDA 1212 0.76 31.4 5.6 6 8.8 10.7 16.8 0.9 0.9 4.7 5
2211 0.24 27.3 6.1 8.6 10 8.9 12.8 0.6 1.1 3.1 4.5

CDAB 1112 0.56 27.2 4.9 5.9 6.6 9.8 17.5 0.6 1 3.6 5.2
1212 0.43 29.8 5.2 6.5 9.2 10.7 16.1 1 0.8 4.5 4

CDBA 1112 0.51 27.4 4.8 6.3 6.6 9.6 17.7 0.7 0.9 3.6 5.4
2112 0.47 28.8 5.4 8.1 6.9 10.7 16 0.8 0.9 4.5 3.9

DABC 2211 0.78 29.4 6.2 8.3 9.2 10.7 11.7 0.7 0.9 3.8 4
2221 0.18 38 6.5 7.4 8.7 13.6 12.8 0.8 1.3 6.3 9

DACB 2121 0.95 27.1 4.9 8 6.8 13.3 12 0.7 0.9 4.1 4.7
DBAC 2211 0.76 29.2 6.3 8.3 9.2 10.6 11.7 0.8 0.8 3.8 3.8

2221 0.19 37.7 6.3 7.4 8.6 13.6 12.8 0.9 1.3 6 8.6
DBCA 1221 0.96 27.8 4.9 6 9.1 13.3 12 0.8 0.9 4.2 4.8
DCAB 1221 0.56 27.6 4.5 6.2 9 13.7 11.4 0.8 0.8 4.1 3.9

2121 0.35 27.3 5.1 8.3 7 12.4 12.6 0.7 1.1 3.7 6.1
DCBA 1221 0.36 26.8 4.5 6.3 9.1 12.4 12.6 0.7 1 3.5 5.5

2121 0.58 26.9 4.6 8.3 6.9 13.8 11.4 0.7 0.8 4 3.7

5.4. Average schedules

For a given list policy, each actual assignment corres-
ponds to a typical path of the project, or scenario. A
project scenario can be visualized using an ”average
schedule,” that is, a Gantt chart computed from the
mean net development times and mean rework times
for each component. These numbers are computed
from the simulation traces for the policy and are listed
in Table 6 for the sample project.

For example, when applying list policy CDAB, the
sample project can proceed in two different ways. At
the project start, component C is assigned to team
One and component D is assigned to team Two. Since
team One is faster than team Two and component C is

smaller than component D, in both scenarios compo-
nent C is completed faster than component D . Thus,
component A (which is next on the list) gets assigned
to team One.

The two scenarios for policy CDAB differ in the next
scheduling action, as is shown by the average schedules
in Figures 4 and 5. The numbers below the bars
are the mean development times for the components,
including all rework. The shaded area of each bar is
proportional to the rework spent on the component.

In Figure 4, the mean development time includ-
ing rework for component C (9.8 + 3.6 = 13.4) plus
component A (5.9 + 0.6 = 6.5) is shorter than for
component D (17.5 + 5.2 = 22.7). Therefore, com-
ponent B also gets assigned to the fast team One.

Figure 4. Average schedule for policy CDAB with
assignment 1112.

One C

13.4

A

6.5

B

7.6

Two D

22.7

Figure 5. Average schedule for policy CDAB with
assignment 1212.

One C

15.2

A

7.5

Two D

20.1

B

10.0

In Figure 5, component D is completed earlier than
component A. Thus, component B gets assigned to the
slow team Two, and the project takes longer.

5.5. Good and bad policies

The best policy DCBA in many simulated projects
leads to the assignment 2121, see Figure 6. With
this assignment, the fast team works on the largest
component and the slow team on the second largest
component; furthermore, each team works on one of
the remaining small components. Such an assignment
is called balanced, because the size of the components
is balanced by the productivity of the teams. The other
balanced assignment for the sample project is 1221, see
Figure 7. Balanced assignments are favorable, as can
be seen from the average schedules for other list policies
as well, such as ACDB and BCDA.

An assignment where each team works on one large
and one small component, but where the slow team
works on the largest component, in general is much less
preferable, see for example the average schedules for
policy ABCD with assignment 1212 and policy CADB
with assignment 2112. There are some exceptional
scenarios where the assignment 2112 shows a better
performance; we shall discuss this case in the next sub-
section.

An alternative to a balanced assignment is revealed

Figure 6. Average schedule for best policy DCBA
with balanced assignment 2121.

One D

15.1

B

7.7

Two C

17.8

A

9.0

Figure 7. Average schedule for best policy DCBA
with balanced assignment 1221.

One D

18.1

A

7.0

Two C

15.9

B

10.1

by policy CDAB. In about half of the projects, CDAB
leads to the assignment 1112, see Figure 4. With this
assignment, the slow team works on the largest com-
ponent, but all the remaining components are assigned
to the fast team. The assignment 1112 yields a good
performance for the policies ADCB, BDCA, CDAB, and
CDBA. These policies do not rank as high as the best
policy DCBA, though, since in the other half of the
projects they lead to the less favorable assignments
1212 or 2112.

The assignment 2221 is similar to the assignment
1112, but with the roles of the two teams switched.
Hence, this assignment shows a poor performance, see
for example policy DABC.

Policies which assign both large components to the
fast team in general are a bad choice, see for example
policy CABD with assignment 2211. Assigning both
large components to the slow team is even worse, see
for example policy ACBD with assignment 1122. There
are some exceptional scenarios where the assignment
2211 shows a good performance; we shall discuss this
case in the next subsection.

Finally, policies which assign the largest component
and both small components to the same team lead to
a long project completion time, see the policies ACBD
and BCAD with the assignment 1121.

5.6. Context sensitivity

For some assignments, the mean project completion
time depends on the project context in which that as-
signment arises. For example, in most cases the assign-
ment 2211, which assigns both large components to the
fast team, yields a long project completion time. Yet,
there are two exceptions: if the assignment occurs for
policy CADB or CBDA, the performance is as good as
for the best balanced assignment. The reason is that
for policies CADB and CBDA the assignment 2211 can
only occur if team One finishes the large component C
faster than team Two finishes its first small component
(A or B). Such a project context is not very likely to
occur, but points to a fast project completion.

Other assignments exhibit a similar sensitivity of
their performance to the project context. The policies
ADBC and BDAC almost always lead to the assignment
1112, but do not show as good a performance as, for
example, ADCB does with this assignment. The differ-
ence is that for ADBC and BDAC team One works on
the large component C after both small components.
This does not hold for ADCB and the other policies
which lead to assignment 1112. The assignment 1112
can occur for policies such as ADCB only if team One
finishes component C and one small component more
quickly than team Two finishes component D, which
points to a fast project completion. For ADBC and
BDAC, component C is always assigned to team One,
independent of the project’s progress.

6. Conclusions

We have presented a stochastic scheduling model for
software projects and its implementation as a EXTEND
simulation model. Using a small hypothetical project
and list policies as an example, we have shown how to
apply the simulation model to analyze the performance
of scheduling strategies for software projects.

A stochastic model is more realistic for software
projects than a deterministic model which assumes
that the task durations are all known at the project
start. In a stochastic setting, the duration of the
project cannot be forecast exactly; we must rely on
probability distributions and expected values instead.
As a consequence, the best we can achieve is a policy
which minimizes the expected project duration.

Besides a scheduling strategy, we must specify the
base probabilities and the dependency degrees of the
project as input to the simulations. The base proba-
bilities for a component depend upon various human
and technical factors, for example, the software pro-
cess employed, the complexity of the component, and

the skills of the team working on the component. For
real projects, the base probabilities must be computed
from empirical data collected during past projects and
will reflect the specific development environment in a
company; see [13] for an example. The dependency de-
grees reflect the strength of the coupling between the
components and must be computed from the high-level
design of the software.

The base probabilities for a component just model
its net development time; they do not include rework
caused by design changes. The amount of rework in
the project is subject to chance and depends on the
strength of the coupling between the components. The
development time for some component is the sum of
the net development time and all the rework time for
that component. As a result, the expected completion
time of a project cannot be computed from the base
probabilities alone.

In a stochastic project setting, the final schedule of
the project is subject to chance. Thus, we have used
the average schedule for each task assignment which
actually occurs for a given policy as a tool for analyzing
the performance of the policy. The average schedule for
some assignment gets computed from the simulation
traces. Since an average schedule combines the mean
values for the net development time and rework time of
each component, it gives only an approximate picture
of the corresponding project scenario.

The performance of a task assignment for the sample
project often depends on the project context in which
the assignment occurs. This result provides evidence
that strategies which are more adaptive to the cur-
rent state of the project than list policies might yield
improved schedules. Recall that for a list policy, the
scheduling actions take only into account which com-
ponents are completed and which previously completed
components must be reworked. No other information
about the project’s current state is used. In contrast,
a dynamic strategy would base its scheduling decision
at the end of a phase on the full data about the cur-
rent state of the project, including such data as the
current net development times of the components. In
addition, the project input data would be utilized, such
as the expected remaining net development times for
the components, which can be computed from the base
probabilities. For example, a dynamic strategy could
allocate most of the staff to those tasks which are ex-
pected to be closest to completion.

Our stochastic scheduling model is not limited to
list policies. The scheduling strategy is implemented
as a separate block in our EXTEND simulation model.
Therefore, the list policies used in this paper can be

easily replaced by other, more dynamic strategies. The
performance of the dynamic strategies then can be an-
alyzed using the same simulation techniques as were
used for list policies. This is work in progress.

7. Acknowledgments

This research has been supported by the Deutsche
Forschungsgemeinschaft DFG (project title: OASE).

References

[1] Abdel-Hamid, Madnick : Software Project Dynamics .
Prentice Hall, 1991

[2] Ambriola, Conradi, Fuggetta: ”Assessing Process-Centered
Software Engineering Environments”, ACM Transactions
on Software Engineering and Methodology TOSEM 6:3
(1997) 283–328

[3] Collofello, Houston, e.a. : ”A System Dynamics Simulator
for Staffing Policies Decision Support” , Proceedings of the
Annual Hawaii InternationalConference on System Sciences
31 (1998) 103–111

[4] Derniame, Ali Kaba, Wastell : Software Process : Princi-
ples, Methodology, and Technology. Lecture Notes in Com-
puter Science 1500, Springer 1999

[5] El Emam, Madhavji : Elements of Software Process
Assessment and Improvement . IEEE Computer Society
Press 1999

[6] EXTEND, http://www.imaginethatinc.com/

[7] Finkelstein, Kramer, Nuseibeh : Software Process Modelling
and Technology. Research Studies Press 1994

[8] Madachy : ”System Dynamics Modeling of an Inspection-
Based Process” , Proceedings of the International Confer-
ence on Software Engineering ICSE 18 (1996) 376–386

[9] Möhring : ”Scheduling under Uncertainty: Optimizing
Against a Randomizing Adversary” , Proceedings of the
3rd International Workshop on Approximation Algorithms
for Combinatorial Optimization Problems, Springer LNCS
1913 (2000) 15–26

[10] Neumann : Stochastic Project Networks . Lecture Notes in
Economics and Mathematical Systems 344, Springer 1990

[11] Neumann : ”Scheduling of Projects with Stochastic Evol-
ution Structure”, see [22] 309–332

[12] Padberg : ”Towards Optimizing the Schedule of Software
Projects with Respect to Development Time and Cost” ,
Proceedings of the International Software Process Simula-
tion Modeling Workshop PROSIM 2000

[13] Padberg : ”Estimating the Impact of the Programming Lan-
guage on the Development Time of a Software Project” ,
Proceedings of the International Software Development and
Management Conference ISDM/AP-SEPG (2000) 287–298

[14] Padberg : ”Scheduling Software Projects to Minimize
the Development Time and Cost with a Given Staff” ,
Proceedings of the Asia-Pacific Software Engineering Con-
ference APSEC 8 (2001) 187–194

[15] Padberg: ” A Stochastic Scheduling Model for Software
Projects”, Dagstuhl Seminar on Scheduling in Computer
and Manufacturing Systems, June 2002, Dagstuhl Report
No. 343

[16] Padberg: ”Using Process Simulation to Compare Schedul-
ing Strategies for Software Projects” , Proceedings of the
Asia-Pacific Software Engineering Conference APSEC 9
(2002) 581–590

[17] Raffo, Kellner : ”Modeling Software Processes Quan-
titatively and Evaluating the Performance of Process
Alternatives”, see [5] 297–341

[18] Ross : Introduction to Stochastic Dynamic Programming.
Academic Press 1983

[19] Shepperd, Schofield, Kitchenham: ”Effort Estimation
Using Analogy” , Proceedings of the International Confer-
ence on Software Engineering ICSE 18 (1996) 170–178

[20] Srinivasan, Fisher : ”Machine Learning Approaches to Esti-
mating Software Development Effort” , IEEE Transactions
on Software Engineering TSE 21:2 (1995) 126–137

[21] Tvedt, Collofello: ”Evaluating the Effectiveness of Pro-
cess Improvements on Software Development Cycle Time
via System Dynamics Modeling” , Proceedings of the Inter-
national Computer Software and Applications Conference
COMPSAC 19 (1995) 318–325

[22] Weglarz : Project Scheduling. Recent Models, Algorithms,
and Applications . Kluwer, 1999

[23] Wittig, Finnie : ”Using Artificial Neural Networks and
Function Points to Estimate 4GL Software Development
Effort” , Australian Journal of Information Systems 1
(1994) 87–94

