
Using Process Simulation to Compare

Scheduling Strategies for Software Projects

Frank Padberg
Fakultät für Informatik

Universität Karlsruhe, Germany
padberg@ira.uka.de

Abstract

We present a discrete simulation model for software
projects which explicitly takes a scheduling strategy as input.
The model represents varying staff skill levels, component
coupling, rework caused by design changes, and changing
task assignments. The simulation model is implemented
in the ���� language of the general-purpose graphical
simulation tool �����	
 The simulations provide quick
feedback about the impact which the scheduling strategy
will have on the progress and completion time of a given
software project. Using the model, a manager can compare
different strategies and choose the one which is best for his
next project.

As an illustration how to apply the simulation model, we
systematically study the performance of various list policies
for a small sample project. We provide a detailed analysis
of the task assignments which actually occur in the simula-
tions. In addition, the example provides clear evidence that
strategies which are more adaptive to the current project
state than list policies will yield improved schedules. This
result suggests to apply dynamic optimization techniques
when scheduling software projects.

1. Introduction

To cut development cost and meet tight deadlines in short
staffed software projects, it is essential that managers plan
and schedule their projects best possible. Good software
project scheduling is a hard task in practice. The time needed
to complete a software development activity is difficult to
estimate since it depends not only on technical factors, but
also on human factors such as the experience of the devel-
opers. Even worse, it is typical for software projects that
the completion of tasks is delayed because of unanticipated
rework which was caused by feedback in the development
process.

In this paper, we show how to useprocess simulation
to evaluate scheduling strategies for software projects. We
present a discrete-time stochastic simulation model which is
tailored to software projects and explicitly takes a scheduling
strategy (orpolicy ) as input. A strategy specifies for each
possible state of the project which action to take, such as
reassigning some task. In each simulation run, one possible
full path of the project is simulated. The output of a series
of simulation runs can be used to measure the performance
of a given policy. For example, the output of the simula-
tions for the fixed policy can be combined into a probability
distribution for the project completion time.

The simulation model is animplementation of the prob-
abilistic scheduling model for software projects which we
have presented earlier [7] . In the scheduling model, teams
work in parallel on the software’s components. Unplanned
changes in the system design can occur at any time and lead
to rework. Since the components are coupled, for example,
through common interfaces, changes which originate in one
part of the system can propagate to other parts of the sys-
tem. As input to the model, statistical data collected during
past projects and high-level design data about the current
project are required, see subsection 2.5. By modelling in-
dividual components, our model is more fine-grained than
system dynamics models [1, 4, 9]. The way in which our
model describes feedback between the activities is novel in
scheduling [5, 6, 8].

The simulation model facilitates experimentation. For
example, a manager can see quickly how the completion
time of his project changes when he changes some of the in-
put parameters. In particular, the simulations provide quick
feedback about the impact which a particular scheduling
strategy will have on the progress of the project. This way,
a manager can evaluate and compare different strategies and
choose the one which he thinks is best for his next project.

As an application, we use simulation to systematically
study all possiblelist policies for a small sample project. A
list policy prescribes an order in which the components must



be worked on, but the actual assignment of the components
to the teams depends on the progress of the project: the
next team to finish must work on the next component in the
list. List policies are a commonly used class of scheduling
strategies. The sample project consists of four components
and two teams. Although the project is small, it is not clear
aforehand which list policy the manager should prefer be-
cause of the probabilistic nature of the process. Based on
a detailed analysis of the performance of the task assign-
ments which actually occur in the simulations, we are able
to identify three completely different ways to achieve a good
average completion time for the sample project. In addition,
we find that the performance of a particular task assign-
ment is sensitive to the project context in which it occurs.
These results provide clear evidence that scheduling strate-
gies which are more adaptive to the current project state than
list policies will on average yield much better schedules for
software projects.

2. Simulation Model

2.1. Project dynamics

The simulation model is an implementation of the
stochastic scheduling model for software projects which we
have presented earlier [7] . The model captures much of the
dynamics of software projects, representing varying staff
skill levels, design changes, component coupling, rework,
and changing task assignments.

The software product is developed by severalteams.
Based on some early high-level design, the software is di-
vided intocomponents. At any time during the project, each
team works on at most one component, and, vice versa, each
component is being worked on by at most one team. The
assignment of the components to the teams may change dur-
ing the project. It is not required that a team has completed
its current component before it is allocated to some other
component; a team may beinterrupted andre-allocated to
another component by the manager.

The teams do not work independently. From time to time
a team might detect a problem with the software’s high-level
design. Since the components are coupled, for example,
through common interfaces, such a problem is likely to
affect other components and teams as well. To eliminate
the problem, the high-level design gets revised. Some of the
components will have to bereworked because of the design
changes while other components are not affected. This way,
the progress that a team makes developing its component
depends on the progress of the other teams (feedback).

2.2. Scheduling actions

In the model, a project advances through a sequence of
phases. By definition, a phase ends when staff becomes
available or when the software’s high-level design must be
changed. Staff becomes available when some team com-
pletes its component. Staff also becomes available when
some team completes all rework on a component which al-
ready had been completed earlier in the project but had to
be reworked because of a design change. Each phase lasts
for some number of discretetime slices.

Scheduling actions take place only at the end of a phase.
Possible scheduling actions are: assigning a component to
a team, starting a team, and stopping a team. Scheduling
at arbitrary points in (discrete) time is not modelled. The
rationale behind this restriction is that is does not make sense
to re-schedule a project as long as nothing unusual happens.
At the end of a phase though, staff is available again for
allocation, or re-scheduling the project might be appropriate
because of some design changes. At that time, the manager
may also interrupt some of the teams and re-allocate them
to other components.

2.3. Project state

The state of a project changes at the end of each phase.
The state of a project by definition includes : a progress
vector, a rework vector, and a countdown.

The progress vector has one entry for each component.
The progress of a component is defined as thenet develop-
ment time that has been spent working on the component.
The net development time is obtained from the total de-
velopment time by substracting all rework times spent for
adapting the component to high-level design changes.

The rework vector has one entry for each component,
too. The rework time for a component is the time that yet
must be spent with adapting the component to high-level
design changes. As soon as a component’s rework time
has been counted down to zero, "normal" development of
the component can proceed. Once a component has been
completed, only rework may occur for the component in the
sequel.

Thecountdown is the time left until the project’sdeadline
will be reached. If the deadline is exceeded, the project will
be cancelled as a failure. For more details on the definitions,
please refer to [7].

2.4. Probabilities

The scheduling model is probabilistic. That is, events
will occur only with a certain probability at a particular
point in time. In particular, the point in time at which some



component is completed, the points in time at which design
changes occur, the set of components which are affected
by a design change, and the amount of rework caused by a
design change are subject to chance.

Given a project state� and a scheduling action� , the
state of the project at the end of the next phase will be equal
to � only with a certain probability, called thetransition
probability P� � � � ; � �� The transition probability does
not depend on any information about the project’s history
except its current state and the scheduling action chosen.
The resulting process

� � 0� � � � 0� � � � 1� � � � 1� � � � �

is a Markov decision process [2]. To compute the trans-
ition probabilities, statistical data about past projects and
high-level design data are required as input, see the next
subsection.

2.5. Input data

The input data for the simulation model are:

� the base probabilities,

� the probabilities of rework times,

� the dependency degrees,

� the scheduling strategy.

The scheduling strategy specifies for each possible state of
the project which scheduling action to take. The other input
data are required to compute the transition probabilities in
the scheduling model, respectively, determine the next step
in a simulation run (see the next subsection).

Thebase probabilities are a measure for the pace at which
the teams have made progress in previous projects. For each
team and component, there is a separate set of base probabil-
ities which specify how likely it is that the team will finish
the component, or report a high-level design problem, after
a specific amount of time. The base probabilities depend
upon various human and technical factors, for example, the
software process employed by the team, the complexity of
the component to be developed, and the skills of the team.
The base probabilities are computed from empirical data
collected during past projects and reflect the specific devel-
opment environment in a company. In addition, for each
component there is a probability distribution which speci-
fies the amount ofrework time required if the component
has to be reworked because of a design change.

Thedependency degrees are a probabilistic measure for
the strength of the coupling between the components. The
stronger the coupling is the more likely it is that high-level
design problems which originate in one component will
propagate to other components, leading to rework. The

dependency degree�
�
�� �

�
by definition is the proba-

bility that changes in the software’s design will extend over
exactly the set� of components given that the problems
causing the redesign were detected in the set� of com-
ponents. The dependency degrees are computed from the
high-level design of the software. Thus, the model explicitly
takes the design of the software as input.

2.6. Implementation

The simulation model is a discrete-time simulation writ-
ten in theModL language of the general-purpose graphical
simulation toolEXTEND [3] . The scheduling strategy is
implemented as a separate block in the simulation and thus
can be easily exchanged.

For a given scheduling strategy and project state, the
simulation model determines which step the project will
take next (that is, whether some component will be finished
in the next step or whether a design change will occur)
by "throwing a dice". The dice behaves according to the
base probability distributions, taking into account the current
state of the project.

Similarly, if a design change occurs in the project the
simulation determines the set of components which are af-
fected by the design change by throwing another dice which
behaves according to the dependency degrees. Afterwards,
the amount of rework time required for each of the affected
components is determined using yet another dice which be-
haves according to the probabilities of rework time. This
way, in each simulation run one possible full path of the
project is simulated.

Figure 1 is a screenshot showing a simulation in progress.
The window on the right half of the screen shows the block
of the simulation model where the simulation setup and the
current state of the project are displayed. The state of the
project includes the net development time spent on each
component so far, the project duration up to this point, the
amount of rework left for each component, and the current
task assignment. The window on the left half of the screen
shows a plotter which observes the project completion time
for all simulation runs.

3. Sample Project

3.1. Architecture

The sample project may be thought of as a client-server
system which consists of four components. The client con-
tains a front-end, componentA, and a large application part,
componentC, which does some pre-processing. The server
contains an administrator front-end, componentB, and a
large application kernel, componentD. The client and the



Figure 1. A simulation in progress.

�������
�������
�������
�������
�������
server are coupled only through the application components
C andD. In particular, there is no direct link between the
two front-end components.

3.2. Base probabilities

There are two teams in the project, teamOne and team
Two. The complexity of the components and the productiv-
ity of the teams are reflected in the probability distributions
which are used as input for the simulations. For each team
and component, we must specify two base distributions:
one distribution describes the net development time, the
other distribution describes the problem reporting time. We
assume that a time slice corresponds to one week.

For the sample project, the distributions were generated
from binomial distributions with suitablelength (number
of non-zero bars) andskewness. The parameters chosen
for the binomial distributions are listed in Table 1. The

distributions were rounded to one decimal digit and scaled
such that for a fixed team and component the probabilities of
the net development times and problem reporting times sum
up to 100 percent. From the x-values where the distributions
assume theirpeak value one can see thaton average

� teamTwo has a 30 percent lower productivity than team
One,

� the net development times for the front-end components
A andB are about the same for a given team,

� the net development times for the core application com-
ponentsC andD are much longer than for the front-end
components,

� the risk that high-level design changes will occur is
much higher for the application components than for
the front-end components,

� design changes can be expected to occur mainly after
two thirds of the net development time of a component,



Table 1. Base probabilities.

comp team distrib length skew peak scale
A One net dev 8 0.7 6 80%

report 7 0.5 4 20%
A Two net dev 11 0.7 8 80%

report 10 0.5 6 20%
B One net dev 8 0.8 7 80%

report 7 0.55 4 20%
B Two net dev 11 0.8 9 80%

report 10 0.55 7 20%
C One net dev 13 0.75 10 60%

report 12 0.45 7 40%
C Two net dev 17 0.75 13 60%

report 16 0.45 10 40%
D One net dev 15 0.75 12 40%

report 14 0.45 8 60%
D Two net dev 21 0.75 16 40%

report 20 0.45 13 60%

Table 2. Rework time probabilities.

comp length skew peak
A 2 0.25 1
B 2 0.25 1
C 5 0.5 3
D 5 0.55 3

� componentD has the largest expected effort and is a
high risk component.

In addition to the base probabilities, we must specify for
each component a distribution which describes the amount
of rework time required if that component is affected by a
design change. Again, we use binomial distributions, see
Table 2.

3.3. Dependency degrees

The strength of the coupling between the components is
reflected by the dependency degrees. For the sample project,
the values are chosen in such a way that

� the core componentsC andD are strongly coupled,

� each front-end is strongly coupled to its application
component,

� changes must propagate along the interfaces between
the components,

� there is only a limited risk that a design change which
originates in a front-end, say componentA, will prop-
agate to theother application component, in this case
componentD,

� design changes in one front-end can have an impact on
the other front-end only if the intermediate components
C andD are affected.

The dependency degrees are listed in Table 3. Blank entries
correspond to zero.

3.4. List policies

A list policy uses a fixed priority list for the components to
prescribe an order in which the components must be devel-
oped. When a team finishes its current task, it is allocated
to the next unprocessed component in the list. Since we
have four components, there are fac� 4� � 24 different
list policies for the sample project.

In a probabilistic setting, the task completion times are
not known in advance. Thus, the priority list does not com-
pletely pre-determine to which team a particular component
will actually get assigned. The actual schedule (task as-
signments and their timing) depends on the order in which
the teams finish their tasks, which is subject to chance. An
exception are the components which are assigned right at
the beginning of the project. For example, the list policy
CDAB will initially assign componentC to teamOne and
componentD to teamTwo. Whichever team finishes its task
first will work on componentA. Finally, the next team to
finish will work on componentB.

Usually, a team works on its component until completion
without interruption. An exception is when the team has to
rework one of its previously completed components because
of a design change. After having finished the rework, the
team resumes working on the uncompleted component.

3.5. Simulation results

Even for such a small sample project it isnot obvious
which list policy a manager should prefer because of the
probabilistic nature of the development process and the feed-
back between activities. To find the best list policy for the
sample project, we run 500 project simulations for each
of the 24 possible lists. For each list, we then compute
a histogram for the project completion time from the 500
observed project completion times. Table 4 summarizes the
observed performance of each list policy.

For example, the mean development time (fourth column)
for list policy BCDA is about 16 percent shorter than for
list policy CBAD. Even more important to a manager in
practice is the fact that withBCDA the project has a 75
percent chance (second column) to finish after 28 weeks,
whereas withCBAD the manager must plan for 34 weeks
(or 21 percent more time) to reach the 75 percent threshold.
A similar result holds for a threshold of 90 percent (third
column).



Table 3. Dependency degrees.

A B C D AB AC AD BC BD CD ABC ABD ACD BCD ABCD
A 20 60 15 5
B 20 60 15 5
C 10 15 35 20 10 10
D 10 15 35 10 20 10

AB 20 20 20 40
AC 30 55 15
AD 10 10 50 30
BC 10 10 50 30
BD 30 55 15
CD 40 20 20 20

ABC 10 90
ABD 10 90
ACD 40 60
BCD 40 60

ABCD 100

Table 4. Performance of the list policies.

list policy 75% 90 % mean
ABCD 32 37 29.8
ABDC 29 33 27.1
ACBD 33 37 30.4
ACDB 28 31 26.2
ADBC 30 35 28.0
ADCB 29 32 26.8
BACD 31 36 29.2
BADC 29 33 27.2
BCAD 33 37 30.7
BCDA 28 31 25.7
BDAC 30 34 27.9
BDCA 29 33 26.9
CABD 34 40 30.7
CADB 32 36 29.3
CBAD 34 40 30.9
CBDA 32 37 29.3
CDAB 30 33 27.4
CDBA 29 33 27.4
DABC 33 38 29.7
DACB 28 32 26.0
DBAC 32 37 29.3
DBCA 29 33 26.8
DCAB 28 32 26.6
DCBA 28 32 26.2

On average, the project completion times are longer than
might be expected when looking at the binomial distribu-
tions for the development times of the individual compo-
nents. Recall that these distributions model just thenet
development times; the actual development times observed
in the simulations are longer due to the rework caused by
design changes.

We can make a number of interesting observations about
the simulation results:

1. The list policies which assign the large componentsC
and D first (CDAB, CDBA, DCAB, and DCBA) all
perform well. Yet, some lists which assign the small
front-end components first also perform well (ABDC
andBADC).

2. Making sure that the faster teamOne starts with the
largest componentD does not automatically lead to a
good schedule; the listsDABC andDBAC on average
take much longer to complete than the other lists which
assign componentD first.

3. The lists where teamOne starts with componentC all
perform worse than their counterparts where teamOne
starts with componentD.

4. The lists where teamTwo, which has the lower produc-
tivity, starts with the largest componentD rank in the
middle of the field.

5. The lists which assign the largest component last all are
a bad choice.

6. The list policies which assign the front-end components
second and third (CABD, CBAD, DABC, andDBAC)
all are a bad choice.



Again, these results refer to theaverage performance of
the list policies. The results are analysed and explained in
detail in the next section.

4. Analysis

4.1. Actual assignments

In order to understand why a particular list policy shows
the performance observed in the simulations, the task assign-
ments whichactually occur during the simulated projects
are of key importance. Therefore, we observe for each simu-
lation run and each component which team was allocated to
the component. To specify an assignment, we use a 4-digit
notation. The first digit is the number of the team which
was allocated to componentA, the second digit is the num-
ber of the team which was allocated to componentB, and
so on. For example, to specify that teamOne was allocated
to componentsB and D, while teamTwo was allocated to
componentsA and C, we use the notation2121.

Table 5 shows for each list policy the task assignments
and the relative frequency with which they have occured
among the 500 simulation runs for that list policy. Only
those assignments which occured in more than 10 percent
of the runs are listed. For each assignment, the table also
shows the average performance of the assignment using the
same measures as were used in the preceding section for the
list policy as a whole.

For example, the list policyADCB resulted in the task
assignment1112 in 57 percent of the 500 simulations for
that policy, or 286 simulations. The mean development
time was 25.6 weeks for these 286 projects, and there was
a 75 percent chance to finish the project after 27 weeks.
On the other hand, in 43 percent of the simulations policy
ADCB resulted in the task assignment1212. The mean
development time for these projects was longer, namely,
28.4 weeks. The average performance of list policyADCB
is a mixture of the peformance for the two assignments1112
and1212.

4.2. Good and bad policies

PolicyBCDA in almost all cases leads to the assignment
2121. With that assignment, each team works on one large
application component and one small front-end component.
Such an assignment is called abalanced assignment. In
addition, the faster teamOne works on the more difficult
application componentD. This seems to be a favorable task
assignment. PolicyACDB in most cases leads to the similar
assignment1221 (where just the front-end components are
switched) and also shows a good performance. The same
reasoning applies to the policiesDACB, DCBA, DCAB,
DBCA, ABDC, andBADC.

Table 5. Actual assignments and their perfor-
mance.

policy assign freq 75 % 90% mean
ABCD 1212 0.95 32 37 29.9
ABDC 1221 0.96 29 33 27.1
ACBD 1121 0.78 33 38 30.2

1122 0.22 33 35 31.3
ACDB 1221 0.91 28 31 26.2
ADBC 1112 0.97 30 35 28.0
ADCB 1112 0.57 27 31 25.6

1212 0.43 31 34 28.4
BACD 2112 0.82 31 35 29.5

2121 0.18 30 37 27.5
BADC 2121 0.84 29 33 27.2

2112 0.16 30 33 27.2
BCAD 1121 0.77 32 37 30.0

1122 0.23 34 39 32.7
BCDA 2121 0.95 28 31 25.7
BDAC 1112 0.97 30 34 27.9
BDCA 1112 0.56 28 32 26.6

2112 0.44 29 33 27.3
CABD 2211 0.82 34 39 30.6

2112 0.14 31 34 28.6
CADB 2112 0.85 33 37 29.8

2211 0.15 28 33 26.1
CBAD 2211 0.68 34 40 30.3

1212 0.28 31 39 30.7
CBDA 1212 0.74 33 38 30.3

2211 0.26 28 34 26.2
CDAB 1112 0.57 29 33 26.5

1212 0.41 30 33 28.5
CDBA 1112 0.50 29 33 26.8

2112 0.48 30 33 27.9
DABC 2211 0.79 32 36 28.5

2221 0.16 40 45 36.7
DACB 2121 0.93 28 32 26.1
DBAC 2211 0.80 31 35 28.0

2221 0.15 39 44 36.7
DBCA 1221 0.93 29 33 27.1
DCAB 1221 0.59 28 32 26.6

2121 0.32 28 31 26.3
DCBA 2121 0.62 28 32 25.9

1221 0.31 29 33 27.0



A balanced assignment where the slower teamTwo works
on the difficult componentD in general is much less prefer-
able. For example, policyBACD in the majority of the
projects leads to the assignment2112 and on average re-
quires a much longer development time (29 weeks). The
same holds for the policiesCADB, CBDA, andABCD.

A surprising alternative to a balanced assignment with
componentD assigned to the faster teamOne is revealed
by the policyADCB. In about half of the projects, policy
ADCB leads to the assignment1112. With that assignment,
the slower teamTwo works on the difficult application com-
ponentD, but all the remaining components are assigned
to the other, fast team. Such an assignment yields a good
performance for the policiesADCB, BDCA, CDBA, and
CDAB. The reason why these policies do not rank as high
as, for example, policyBCDA, is that they have a more than
40 percent chance of leading to one of the less favorable
balanced assignments1212 and2112.

As opposed to policies such asADCB, the policiesADBC
andBDAC almost always lead to the assignment1112, but
do not exhibit as good a performance (28 weeks completion
time on average). We shall discuss this observation in detail
in the next subsection.

Policies which assignboth large components to the same
team in general are not a good choice. PoliciesDBAC,
DABC,CABD, andCBAD in about three out of four projects
lead to the assignment2211. The average completion time
in this case ranges between 28 and 31 weeks. Assigning
the large application components to the slower teamTwo is
even worse, of course; this assignment occurs in about 20
percent of the projects for the policiesACBD andBCAD,
and results in an average project completion time of 31 and
33 weeks, respectively. There are some exceptional projects
for policiesCADB andCBDA where the assignment2211
shows a good performance; again, we shall discuss that in
the next subsection.

Finally, policies which assign the two front-end compo-
nents and the difficult application componentD to the same
team also lead to a long project completion time. The as-
signment1121 occurs in about 80 percent of the projects for
the policiesACBD andBCAD with an average completion
time of 30 weeks. The assignment2212, which occurs in
about 15 percent of the projects for the policiesDBAC and
DABC, causes an extremely long completion time of almost
37 weeks.

Table 6 gives a ranking of the possible assignments,
ranked according to their performance averaged over all
12,000 simulation runs of this study.

Table 6. Global ranking of assignments.

assign 75% 90 % mean
2121 28 32 26.3
1221 29 32 26.8
1112 29 33 27.1
2112 31 35 28.8
2211 32 36 28.8
1212 32 36 29.6
1121 32 37 29.5
1122 33 37 31.7
2221 40 45 36.5

4.3. Context sensitivity

The average project completion time for some task as-
signment frequently depends on theproject context in which
that assignment arises. For example, in most cases the as-
signment2211, which assigns both large application com-
ponents to teamOne, yields a long project completion time.
Yet, there are two exceptions: if the assignment occurs for
the policyCADB or CBDA, the average completion time
is as good as with the best balanced assignment, namely,
about 26 weeks. The reason is that for the policiesCADB
andCBDA the assignment2211 can only occur if teamOne
finishes the large componentC faster than teamTwo is done
with its first front-end component (A or B). Such a project
context is not very likely to occur, but points to a fast project
completion.

Other task assignments exhibit a similar sensitivity of
their performance to the project context. Table 7 shows
for each task assignment under which list policies the as-
signment occurs and what its performance is for that policy.
The table shows that the assignments2211, 2121, 1112,
2112, and1212 are sensitive to the project context. In the
remainder of this subsection, we take a closer look at some
examples.

The policiesADBC andBDAC almost always lead to the
assignment1112, but do not exhibit as good a performance
as, say,ADCB does with that assignment. The obvious
difference is that forADBC teamOne works on the large
componentC after both small front-end components. This
holds also forBDAC, but not forADCB and the other poli-
cies which lead to assignment1112. In fact, assignment
1112 can occur for policies such asADCB only if team
One finishes componentC and one front-end component
more quickly than teamTwo finishes componentD. This
setting points to a fast project completion. ForADBC and
BDAC, componentC is assigned to teamOne in any case.

Assignment2112 shows a much better project comple-
tion time for the policiesBDCA andBADC than forBACD



Table 7. Context sensitivity of assignments.

assign policy 75 % 90 % mean
2121 BCDA 28 31 25.7

DCAB 28 31 26.3
DCBA 28 32 25.9
DACB 28 32 26.1
BADC 29 33 27.2
BACD 30 37 27.5

1221 ACDB 28 31 26.2
DCAB 28 32 26.6
DCBA 29 33 27.0
DBCA 29 33 27.1
ABDC 29 33 27.1

1112 ADCB 27 31 25.6
BDCA 28 32 26.6
CDAB 29 33 26.5
CDBA 29 33 26.8
BDAC 30 34 27.9
ADBC 30 35 28.0

2112 BDCA 29 33 27.3
BADC 30 33 27.2
CDBA 30 33 27.9
CABD 31 34 28.6
BACD 31 35 29.5
CADB 33 37 29.8

2211 CADB 28 33 26.1
CBDA 28 34 26.2
DBAC 31 35 28.0
DABC 32 36 28.5
CABD 34 39 30.6
CBAD 34 40 30.3

1212 CDAB 30 33 28.5
ADCB 31 34 28.4
CBAD 31 39 30.7
ABCD 32 37 29.9
CBDA 33 38 30.3

1121 BCAD 32 37 30.0
ACBD 33 38 30.2

1122 ACBD 33 35 31.3
BCAD 34 39 32.7

2221 DBAC 39 44 36.7
DABC 40 45 36.7

or CADB. ForBACD andCADB, assignment2112 occurs
in about 80 percent of the projects. ForBDCA, there is a
more than 50 percent chance for the alternative assignment
1112 to occur, which in this context leads to a short average
completion time of the project. The assignments2112 and
1112 are in a race condition for policyBDCA, which might
explain why the performance of2112 is closer to the perfor-
mance of1112 for policyBDCA than to the performance of
2112 for policy BACD. The same holds for policyBADC,
where the alternative assignment2121 is highly likely and
also has a short average completion time.

Some questions remain open. For example, it is not clear
yet why assignment2211 performs better for the policies
DABC andDBAC than forCABD andCBAD. Similarly,
it is not clear why the good balanced assignment2121
performs not as well with the policiesBADC andBACD
as it does with other policies such asDCBA. In order to
understand such observations and to confirm some of our
findings in this subsection, we need a more detailed analysis
of the simulated projects, including an analysis of the net
development times and change propagation. This is work in
progress.

4.4. Previous observations

We can use the analysis of the task assignments which
actually occur for the list policies to explain the observations
made in subsection 3.5:

1. The policies which assign the large components first all
perform well, but for various reasons. PoliciesDCAB
andDCBA lead to good balanced assignments where
teamOne works on componentD. PoliciesCDAB and
CDBA lead to the assignment1112 or to a balanced as-
signment where teamTwo works on componentD; both
assignments show a good performance in this context.
PoliciesABDC andBADC lead to the same favorable
balanced assignment asDCAB andDCBA.

2. PoliciesDABC andDBAC take much longer to com-
plete than the other listpolicies which assign component
D first, becauseDABC and DBAC assign both large
components to the same team, or, the large component
C and both front-end components to the slower team
Two.

3. For various reasons, the list policies where teamOne
starts with componentC perform worse than their coun-
terparts where teamOne starts with componentD. The
policies CABD, CBAD, DABC, and DBAC in most
cases lead to assignment2211, which shows a better
performance if componentD is worked on first instead
of componentC (although it is not yet clear, why).
PoliciesCADB, CBDA, DACB, andDBCA lead to bal-
anced assignments, butDACB andDBCA assign the



large componentD to the faster teamOne. Policies
DCAB andDCBA lead to balanced assignments with
componentD assigned to teamOne. On the other hand,
policiesCDAB andCDBA in about half of the projects
lead to the assignment1112, which has a good perfor-
mance in this context; but for the other projects, policies
CDAB andCDBA lead to a less favorable balanced as-
signment where componentD is assigned to the slower
teamTwo.

4. The list policies where teamTwo starts with the largest
componentD can all lead to the assignment1112. For
ADBC andBDAC, this assignment occurs in almost all
projects and requires on average about 28 weeks be-
fore the project is finished. ForADCB, BDCA, CDAB,
andCDBA, the assignment1112 occurs in half of the
projects, now requiringonly about 26 weeks of develop-
ment time. This advantage is outweighted thoughby the
other half of the projects which require 27 or 28 weeks
to finish, because they lead to a balanced assignment
where componentD is assigned to teamTwo.

5. The policies which assign the largest componentD last
are not a good choice. PoliciesBACD andABCD lead
to a balanced assignment, but with teamTwo working on
the large application componentD. PoliciesACBD and
BCAD assign componentD and both front-end com-
ponents to the same team. PoliciesCABD andCBAD
assign both application components to the same team,
which yields a weak performance in this context.

6. The policies which assign the front-end components
second and third are a bad choice. PoliciesCABD,
CBAD, DABC, and DBAC in most projects lead to
assignment2211, which shows a weak performance in
those project contexts.

5. Conclusions

For a list policy, the scheduling actions are based on
the given priority list. In addition, a list policy uses data
about which components are completed and which previ-
ously completed components must be reworked. No other
information is used. One might ask whether it is possible to
achieve a better average project completion time when re-
placing the list policies by moredynamic scheduling strate-
gies. A dynamic strategy would base its scheduling decision
at the end of a phase on the full data about the current state
of the project, including such data as the current net devel-
opment times. In addition, the project input data could be
utilized, such as data about the coupling between the com-
ponents or the expected net development times computed
from the base probabilities.

In fact, several results of this paper provide clear evidence
that strategies which are more adaptive than list policies will

yield improved schedules:

� The performance of a task assignment often depends on
the project context in which the assignment occurs.

� For a number of list policies which can lead to different
task assignments, the performance of the policy varies
considerably with the actual assignment. Examples are
the list policiesADCB, CADB, CBDA, CDAB, DABC,
andDBAC.

� For the sample project, there are three completely differ-
ent task assignments which show the best performance,
namely,2121, 1112, and2211. The assignments1112
and 2211 give a good performance only in a certain
project context.

Our scheduling model (as well as our simulation model) is
not limited to list policies; any scheduling action can be
chosen based on the current project state. Thus, it is promis-
ing to apply dynamic schedule optimization techniques to
our software project scheduling model, as we have proposed
earlier [7] . This is future work.

References

[1] Abdel-Hamid, Madnick :Software Project Dynamics. Prentice Hall,
1991

[2] Bertsekas :Dynamic Programming and Optimal Control. Athena
Scientific, 1995

[3] EXTEND, http://www.imaginethatinc.com/

[4] Madachy: "System Dynamics Modeling of an Inspection-Based
Process", Proceedings of the International Conference on Software
Engineering ICSE 18 (1996) 376-386

[5] Möhring : "Scheduling under Uncertainty: Optimizing Against a
Randomizing Adversary", Proceedings 3rd International Workshop
on Approximation Algorithms for Combinatorial Optimization Prob-
lems, Springer LNCS 1913 (2000) 15-26

[6] Neumann: "Scheduling of Projects with Stochastic Evolution
Structure", see [10] 309-332

[7] Padberg : "Scheduling Software Projects to Minimize the
Development Time and Cost with a Given Staff ", Proceedings of
the Asia-Pacific Software Engineering Conference APSEC 8 (2001)
187–194

[8] Padberg : " A Stochastic Scheduling Model for Software Projects ",
Dagstuhl Seminar on Scheduling in Computer and Manufacturing
Systems, June 2002, Dagstuhl Report No. 343

[9] Tvedt, Collofello : "Evaluating the Effectiveness of Process Improve-
ments on Software Development Cycle Time via System Dynamics
Modeling", Proceedings of the International Computer Software and
Applications Conference COMPSAC 19 (1995) 318-325

[10] Weglarz : Project Scheduling. Recent Models, Algorithms, and
Applications. Kluwer, 1999


