
Case Study: Extreme Programming in a University Environment

Matthias M. Müller Walter F. Tichy
Computer Science Department

Universität Karlsruhe
Am Fasanengarten 5

76 128 Karlsruhe, Germanyfmuellermjtichyg@ira.uka.de

Abstract

Extreme Programming (XP) is a new and controver-
sial software process for small teams. A practical training
course at the university of Karlsruhe led to the following ob-
servations about the key practices of XP. First, it is unclear
how to reap the potential benefits of pair programming, al-
though pair programming produces high quality code. Sec-
ond, designing in small increments appears problematic but
ensures rapid feedback about the code. Third, while auto-
mated testing is helpful, writing test cases before coding is
a challenge. And last, it is difficult to implement XP with-
out coaching. This paper also provides some guidelines for
those starting out with XP.

1. Introduction

Extreme Programming (XP) is a lightweight software
development process for small teams dealing with vague or
rapidly changing requirements. XP breaks with a number
of traditional software engineering practices. First, docu-
mentation is almost entirely non-existent. The only ”docu-
mentation” is a set of index cards on which the team mem-
bers scribble planned features of the system. Other than
that, the source code is the only documentation. The ratio-
nale is that writing documentation slows down developers
and is mostly neglected anyway. Second, there is no soft-
ware specification. Executable test cases, written before the
code is developed, serve as a substitute. Third, there is no
separate design or testing phase. Instead, design, imple-
mentation and test are done together, in small increments.
Fourth, there is an explicit prohibition against design for
change; only the simplest possible design satisfying the fea-
ture of the moment should be implemented. Fifth, there
are no formal reviews or inspections. However, XP pre-
scribes a combination of special practices instead. The ma-
jor ones are pair programming (all code is written by two

programmers, working together at one terminal), frequent
integration of changes, automated regression testing, devel-
opment in small increments, and occasional restructuring
(called refactoring). Requirements and the order of feature
development are determined incrementally (called Planning
Game in XP). XP is designed for a team of software engi-
neers to become a productive unit that embraces changes
and incorporates them quickly into an evolving system.

Initial experience reports with XP are enthusiastic. For
instance, Chet Hendrikson of DaimlerChrysler writes:

When [following XP], we have been the best
software development team on the face of the
earth.[1]

Others view Extreme Programming as a fancy name for
hacking [10]. This paper tries to move towards a fair eval-
uation of XP. It reports on the experiences made in an XP
course held at the university of Karlsruhe in the summer
term 2000. Subjects were graduate students. The main pur-
pose of the course was to gather experience with XP in an
unbiased fashion, without having to come up with a pre-
ordained result one way or the other. In general, the expe-
rience with XP was positive, although this paper presents
some caveats, some suggestions for the XP-beginner, and
proposals for thorough, evaluative research.

The study focused on

Pair Programming: All programming tasks are done in
pairs at one display, keyboard, and mouse;

Iteration Planning: Designing and implementing only the
functionality required for a small set of new features.

Testing: Test cases specify the functionality and are rerun
continuously;

Refactoring: Restructuring the code while retaining its
functionality.

Scalability: What is an appropriate team size for XP?



During the course, the students faced several major prob-
lems following XP. First, it was difficult to design in small
increments. The students nicknamed it ”designing with
blinders”. Their designs were both large and good enough
so they never needed to refactor. Another problem was
caused by having to write test cases before coding. This
approach was new to the students and they had problems ac-
cepting and following it, even though they found automatic
regression testing useful. Students learnt from each other
during pair programming, but the benefit leveled off over
time. They also found interesting ways to share work in
pairs, but it remains unclear how to structure pair program-
ming without loss of productivity. The amount of commu-
nication involved in the planning game turned out to be pro-
hibitive for larger teams. This part of XP definitely does not
scale. Finally, without continuous supervision, encourage-
ment and cajoling, students would have followed XP prac-
tices incompletely, if at all.

2. Related Work

To find out more about XP, the authors recommend an
overview written by Kent Beck [1]. A detailed treatment is
given in a book [2].

About the various practices of XP, only pair program-
ming has been evaluated to a certain extent. Bisant and
Lyle [3] investigated the effect of a two-person inspection
method on programmer productivity. They used a pretest-
posttest design with a control group, employing 29 under-
graduate students. The students in the experiment group
performed a design inspection, a code inspection, or both.
During the inspections, two students paired off for 20 min-
utes and tried to find errors. The students in the control
group developed the programs on their own. Bisant and
Lyle reported a significant improvement in the experiment
group as a result of using the two-person inspection method.
The time saving was greater than the time lost in the pair
inspection steps. This result may have more to do with the
benefits of inspections than with pairing.

There are some claims that a pair is more than twice as
productive as an individual. Nosek [7] conducted an ex-
periment about continuous pair programming, but found no
support for this claim. Five pairs and five individual pro-
fessionals solved a challenging problem. The evaluation
of the posttest questionnaire showed that pairs enjoyed the
problem-solving process more and that the pairs were more
confident in their solutions. On average, a single individual
took 41% more time than a pair (though not statistically sig-
nificant at the0:05 level). Put another way, this means that
two individuals, working independently, will be 30% more
productive than a pair. Nosek argues that the loss of produc-
tivity is made up by better quality, but he has no strong data
to support this claim. Williams also reports high confidence

of pairs in the problem-solving process [4, 9]. She observed
a reduction of the number of errors while pair programming
with a significance ofp < 0:01. Williams measured also
a reduction in working time when comparing individuals to
pairs, but she could not give estimates about the productiv-
ity effects of pair programming. Similar to Nosek, Williams
argues that the productivity loss of pairs might be gained
back when debugging. In sum, the real benefits of pair pro-
gramming are unclear.

3. The XP Course

The course was held in the summer term of 2000. Partici-
pants were CS graduate students who needed to take a prac-
tical training course as part of their degree requirements.
Most of the students had experience with team work, but
only one with pair programming. Only one student had de-
veloped moving graphical displays of the sort needed for
the project. Twelve students began the course; one dropped
after the first three weeks because of lack of time; the rest
completed.

In the first three weeks, students solved small program-
ming exercises to familiarize themselves with the program-
ming environment and to learn XP practices. The exercises
introduced jUnit (the testing framework used throughout the
course), pair programming, the test practices of XP (write
test cases before coding, execute them automatically with
jUnit), and refactoring. The remaining eight weeks were
devoted to a project on visual traffic simulation. The course
language was Java. All students had experience with Java
from their early undergraduate courses. Table 1 summarizes
the course details.

Table 1. Summary of course details.
Number of participants 12
Qualification graduate students
Course language Java
Testing tool jUnit
Version control CVS
First exercise Matrix class
Duration 240 - 660 min
Second exercise Visualization tool (VT)
Duration 240 - 630 min
Third exercise Extension of VT with

HTML or text output
Duration 120 - 420 min
Project Traffic simulation
Duration 8 weeks,

about 40h per team total

The first exercise covered the implementation of a ma-
trix class. The second exercise was a small visualization



tool combined with a scanner to read data from a text file.
The third exercise extended the visualization tool with out-
put in HTML or a text format. The remaining eight weeks
were spent with project work. The project was the imple-
mentation of a traffic simulation with cars, traffic lights, and
trains.

The students met weekly for working together in six
pairs. They paired voluntarily with different partners for
each exercise and the project. The loose coupling of pairs
within a team is a common practice in XP. After the first
three programming problems, one student left the course
and one of the instructors (Matthias) filled in, in order to
have six full pairs. However, Matthias tried not give his
team an unfair advantage by providing hints that others
wouldn’t get.

For the project, the students were divided up into two
teams with three pairs each. Each team was tasked with
the full project, including the graphical representation, the
functionality for the moving cars, the right-of-way rules,
and the traffic light control. Figure 1 shows a snapshot of
the traffic simulation with seven cars, a crossroad, and a
railway. The railway was meant as an extension, but never
implemented due to lack of time.

Figure 1. Snapshot of the traffic simulation.

The instructor plaid the role of the customer, telling the
students which features to implemented next. In XP par-
lance, the instructor simulated the planning game.

Students filled out a total of five questionnaires. The first
was handed out at the beginning and asked about education
and practical experience. The others were filled out after
each exercise and at the end of the project. These forms
contained questions about XP practices, what the partici-
pants learnt, where they had difficulties, and suggestions for
improvements. The tables 2-4 at the end of this study sum
up the results.

4. Experiences

This section details the experience with XP in pair pro-
gramming, iteration planning, testing, refactoring, and scal-
ability.

4.1. Pair Programming

The students were asked to pair with different partners
of their own choosing for each exercise and the project.
Students had no problems adapting to pair work. All but
one team enjoyed this style of collaboration and the result-
ing problem solving process. The exception was a team
in which one member wanted to design, while the other
wanted to get the task done. Neither student enjoyed the
experience, which resulted in having an over-design on the
one hand and a bad design on the other. These two students
were later placed into different project teams.

Insights about the productivity of pairs vs. individuals
cannot be expected from a case study such as this. How-
ever, the authors have some observations about the division
of work in pairs. The social rules about pair programming
by Williams [8] do not say enough about how work should
be structured. Students noted that it is a waste of time to
watch a partner during rote coding, such as writing a bunch
of get and set methods. One student suggested that the part-
ner not typing should perform a constant review of the code,
while others suggested different kinds of work such as read-
ing the Java API documentation. One student preferred to
meet only for implementing a complicated algorithm while
others liked to pair permanently.

Most of the pairs used the following two-display tech-
nique: On one display, they implemented while the other
showed the relevant Java documentation. When a pair ran
into difficulties, one team member consulted the documen-
tation while the other studied the code. When asked if a
single display would have been enough, 75% declined. Al-
though this approach was used in a Java environment, it is
an indication to soften the strict rule of pair programming at
asingleterminal.

Another aspect of pair programming is learning from
each other. The students confirmed that they learned some-
thing from their partners. The topics ranged from matrix
algebra to editor commands. 43% of the participants stated
that they had learned something from pair programming,
but this effect declined with the duration of the course.

In summary, pair programming still suffers from some
waste of time and from an unclear division of work. It
is also unclear whether the main benefit of pair program-
ming, higher quality, could be achieved by a less personnel-
intensive approach such as pair inspections.



4.2. Iteration Planning

Given a set of new features to implement, XP’s guide-
lines say to develop the simplest possible solution. The
rationale is that software changes are cheap and no time
should be wasted developing unneeded generality.

This recipe proved problematic. All our students con-
tinuously planned for the future. In order to get students
to focus on just the next set of features, the instructors had
to publicly abandon one speculative feature after another.
For example, at the beginning of the project, a street edi-
tor was mentioned that would simplify the construction of
the traffic scenarios. The students also heard about trains
and level crossings. The instructors made it clear that these
were speculative extensions that would probably not be im-
plemented. But once these ideas were out, our students
would continuously think ahead to accommodate trains,
level crossings, and the street editor. At the end of the
project, it became clear that they had always planned for
these features. Yet the features were never added, because
time ran out. We wonder what would have happened if we
had mentioned overtaking cars.

The authors do not know why thinking about minimal
solutions is hard. Perhaps this is because our students have
been trained to design for the future. They are told in the
software engineering core course that there is one thing
for certain about every useful software, and that is change.
They should plan for likely changes with information hid-
ing, extensible designs, etc. It is quite telling that students
called the XP-approach “design with blinders”. Thinking
ahead may also be a sign of an ingrained (and commend-
able) thoroughness, a desire to a job well and to be dissatis-
fied with shoddy work.

In summary, the authors expect that a fair number of
good software designers will have difficulty with ignor-
ing knowledge about future extensions. At this point, it
is unclear whether minimalistic design is merely a matter
of training, or actually a bad idea. It is clear what must
be done, though, if one wants to practice the XP approach
with somewhat experienced personnel: withhold informa-
tion about future extensions. This is probably the approach
for the next iteration of the XP course. At a later stage,
it may be possible to disclose lots of features and still ask
developers to focus on only one at a time.

4.3. Testing

There are two aspects of testing in XP: first, to write the
test cases before coding, and second, to make them execute
automatically for regression testing.

Writing test cases before coding is a substitute for speci-
fication. What exactly do the methods do, what parameters
do they take, and what are the (testable) results? This ap-

proach was new to most students. Only 25% applied it to
their development prior to the course, see table 4. Most stu-
dents adopted it naturally right from start, some needed our
intervention in the early stage of the project, but one pair
adopted it not until they needed the test cases for restruc-
turing the code. This pair developed the Java class for the
crossroads without having written the accompanying test
class. When asked whether they forgot the test cases they
answered:

No, we didn’t. Why should we implement test
cases if we don’t know exactly what we have to
do? We are still figuring out the desired function-
ality.

The instructor urged them to write the tests. At the next
meeting, they had the test cases written, but they had also
changed both the underlying representation and the inter-
face. They cleaned up the code while establishing the nec-
essary test cases at the same time. The result was that there
was no running program for two weeks. Had they had the
test cases, they could have first concentrated on restructur-
ing and then evolving the interface, while always having a
running system for the rest of the team.

The pairs building the graphical display were unable to
provide fully automated test cases. They wrote the test cases
(traffic scenarios) and watched the display for errors. To
automate these tests would have required storing bit maps
and comparing them, which seemed too much effort under
the circumstances.

At the end of the course, the students were convinced
of the benefits of writing test cases prior to coding. It is
the testing approach that the students considered the best
practice in the final review of the course. 87% stated that
the execution of the test cases strengthened their confidence
in the code and all of them were planning to try out this
practice after the course, see table 4. All students saw jUnit
as a suitable test framework.

Writing tests forces software engineers to distinguish be-
tween the functionality to implement and the base condi-
tions under which the implementation has to work. These
base conditions are specified and written down with XP in
form of test cases. The conditions are verified every time
the test cases are executed.

Re-executing test cases was uniformally seen as positive.
Seeing the benefits of automatic regression tests increased
participants’ motivation to write executable test cases early.
Participants also reported an increase in confidence in their
software, but one participant also noted that regression test-
ing can produce a false sense of confidence.

In summary, there are situations where test cases are dif-
ficult to automate (graphics) or are wasted effort (during
prototyping). But writing test cases early, especially when
there are no specifications, and regression testing were seen
as beneficial.



4.4. Refactoring

The students never got to a point where they needed to
refactor. One team had a complete design that did not need
to be improved, the other team had a situation (the cross-
roads example in the preceding section) where one team
sort of refactored a prototype, but without the benefit of test
cases. Lack of refactoring may be caused by a combination
of several factors: the small size of project and doing full
rather than minimal designs.

4.5. Scaling

Within iteration planning, team members break down the
requirements from the Planning Game into small pieces.
Later, these pieces are processed in pairs. The division of
the requirements requires that the team members agree on a
common terminology. Otherwise, team members lose a lot
of time. The communication problem is one limitation to
the team size of XP because larger teams face much more
communication overhead than smaller ones. This limitation
is a bit relaxed if team members have worked together be-
fore.

During development (after iteration planning), commu-
nication needs are also high. Students initially thought pairs
could work independently but quickly moved to team ses-
sions. XP requires an ongoing information exchange. This
intercommunication aspect is more crucial in the first stages
of a new project, because the software is small and the pairs
are likely to work on the same components. The small
and emerging software also forces the team members to ex-
change vague and changing information [5]. This depen-
dence on informal communication diminishes with project
age but never disappears. The main strategy at the begin-
ning of an XP project is to develop as fast as possible a
small piece of running software which contains many small
classes, as mentioned in [2]. With this software layout, the
whole team can start to work on the project as early as pos-
sible.

In summary, team size is a crucial factor for XP. Small
teams of not more than eight engineers have less communi-
cation overhead and are therefore more efficient than larger
ones. Lorge et al [6] point out that small groups are more ef-
ficient working on abstract problems than larger ones. The
authors expect the optimal group size of XP to be in the
range of six to eight individuals, which is not much larger
than the actual team sizes in the course.

There are two conclusions to draw for the next course.
First, instructors have to insist about team meetings, be-
cause the informal information exchange can not be re-
placed by e-mail or other means of communication. And
second, as a student project in a university course always
suffers from a tremendous lack of time, it is preferable to

provide a software skeleton at the beginning from which
they can start development.

5. Conclusions and Open Questions

This paper presented experiences about XP with Com-
puter Science graduate students. The course included three
simple tasks and a project. All development work was
done in pairs. Project teams consisted of six students (three
pairs). After some initial difficulties, both teams adopted
the XP methods.

The authors made the following observations.

1. Pair programming is adopted easily and an enjoyable
way to code. However, it is unclear what type of work
not to do in pairs and how best to structure pair in-
teraction. Additional research is needed to compare
the effectiveness of pair programming with reviewing
techniques.

2. Design in small increments (“design with blinders”) is
difficult. Holistic design behavior may be difficult to
abandon and more research is needed to test whether
this is actually a good idea. If one wants developers to
design in small increments, at least one pair member
should be trained in it.

3. Writing test cases before coding is not easily adopted
and is sometimes impractical. Is it really essential to
write the test cases first and then the code, or is it pos-
sible to do it the other way around?

4. Due to the communication overhead, XP as is does not
scale well. It is definitely meant for small teams (6-8
members).

5. XP requires coaching until it is fully adopted.

Are these conclusions generalizable to professional soft-
ware developers? The subjects are certainly comparable to
young professionals with an undergraduate degree in Com-
puter Science. Whether more experienced developers are as
willing as students to adopt a new process is questionable.

Observations 4 and 5 will likely hold in general. The
effects of pair programming, small increments, and XP’s
testing practices are subject to future research.

6. Acknowledgments

We thank the students of the XP course: Daniel Hahn,
Daniel Lindner, Gerd Flaig, Hanna Hakala, Jens Lukowski,
Marcus Denker, Olaf Kleine, Paul Schmidt, Thomas Holl,
Tobias Küfner, and Ulf Krum.



References

[1] K. Beck. Embracing change with extreme programming.
IEEE Computer, pages 70–77, Oct. 1999.

[2] K. Beck. Extreme Programming Explained. Addison Wes-
ley, 1999.

[3] D. Bisant and J. Lyle. A two-person inspection method to
improve programming productivity.IEEE Transactions on
Software Engineering, 15(10):1294–1304, Oct. 1989.

[4] A. Cockburn and L. Williams. The costs and benefits of
pair programming. IneXtreme Programming and Flexible
Processes in Software Engineering, XP2000, Cagliari, Italy,
June 2000.

[5] R. Kraut and L. Streeter. Coordination in software devel-
opment. Communications of the ACM, 38(3):69–81, Mar.
1995.

[6] I. Lorge, D. Fox, J. Davitz, and M. Brenner. A survey of
studies contrasting the quality of group performance and in-
dividual permformance.Psychological Bulletin, 55(6):337–
372, Nov. 1958.

[7] J. Nosek. The case for collaborative programming.Commu-
nications of the ACM, 41(3):105–108, Mar. 1998.

[8] L. Williams and R. Kessler. All I really need to know about
pair programming I learned in kindergarten.Communica-
tions of the ACM, 43(5):108–114, May 2000.

[9] L. Williams, R. Kessler, W. Cunningham, and R. Jeffries.
Strengthening the case for pair-programming.IEEE Soft-
ware, pages 19–25, July/Aug. 2000.

[10] N. Wirth, Septmber 1999. personal communication.



Table 2. Description of the students and their experiences p rior to the course.
Topic Answers

Experience in team work
no: 17%
yes: 83%

Experience in pair programming
no: 58%
yes: 42%

Working alone while pair programming
no: 0%
yes: 92%
no answer: 8%

Duration of individual work
phases during pair programming

0-10%: 0%
10-20%: 8%
20-30%: 59%
30-40%: 8%
40-50%: 8%
no answer: 17%

How was quality assured
(several answers allowed)

design review: 25%
code review: 58%
debugging: 67%
assertions: 25%
testing: 67%

Refactoring done prior to the course
no: 0%
yes: 100%

When was refactored
(several answers allowed)

complex: 92%
extension: 92%
duplicate code: 25%
search for errors: 17%

Table 3. Evaluation of the questionnaire for the first three p rogram assignments.
Topic Answers

Knowledge of problem domain
little: 4%
average: 74%
well: 22%

Who typed
partner: 13%
both: 87%

Enjoyment of pair programming
bad: 17%
average: 35%
good: 48%

Support from partner in finding a solution
no: 4%
yes: 96%

Longer discussions during pair programming
no: 9%
yes: 91%



Table 4. Evaluation of the questionnaire after the course.
Topic Answers

Enjoyment of pair programming
bad: 13%
average: 62%
good: 25%

Accept a job in industry with pair programming
no: 25%
yes: 62%
don’t know: 13%

Pair programming wastes time
(several answers allowed)

design: 13%
solving difficult problem: 25%
new environment: 50%
code formatting: 63%
new programming techniques: 0%

Task assignment while pair programming
(several answers allowed)

typing and review: 87%
typing and reading doc: 62%

Two displays better than one?
no: 25%
yes: 75%

Advantages of pair programming
(several answers allowed)

fewer errors: 37%
better problem understanding: 37%
more confidence in solution: 75%
learning from partner: 100%

Requirements for pair partners
(several answers allowed)

friendly: 100%
merry: 25%
communicative: 62%
unhurried: 0%
others: competent

same knowledge

Specification with test cases
prior to the course

no: 75%
yes: 25%

Did the implementation only meet the
specifications of the test cases ...

no: 37%
yes: 63%

... or verified the test cases only the
most necessary parts

no: 50%
yes: 50%

Strengthened test cases confidence
in program

no: 13%
yes: 87%

Trying out XP’s testing practice
after the course

no: 0%
yes: 100%

jUnit well suited
no: 0%
yes: 100%


