
Atune-IL: An Instrumentation Language for
Auto-Tuning Parallel Applications

Christoph A. Schaefer, Victor Pankratius, and Walter F. Tichy

University of Karlsruhe (TH), Am Fasanengarten 5, 76131 Karlsruhe, Germany
{cschaefer, pankratius, tichy}@ipd.uka.de

Abstract. Auto-tuners automate the performance tuning of parallel ap-
plications. Three major drawbacks of current approaches are 1) they
mainly focus on numerical software; 2) they typically do not attempt to
reduce the large search space before search algorithms are applied; 3) the
means to provide an auto-tuner with additional information to improve
tuning are limited.
Our paper tackles these problems in a novel way by focusing on the
interaction between an auto-tuner and a parallel application. In particu-
lar, we introduce Atune-IL, an instrumentation language that uses new
types of code annotations to mark tuning parameters, blocks, permu-
tation regions, and measuring points. Atune-IL allows a more accurate
extraction of meta-information to help an auto-tuner prune the search
space before employing search algorithms. In addition, Atune-IL’s con-
cepts target parallel applications in general, not just numerical programs.
Atune-IL has been successfully evaluated in several case studies with
parallel applications differing in size, programming language, and appli-
cation domain; one case study employed a large commercial application
with nested parallelism. On average, Atune-IL reduced search spaces by
78%. In two corner cases, 99% of the search space could be pruned.

1 Introduction

As multicore platforms become ubiquitous, many software applications have to
be parallelized and tuned for performance. Manual tuning must be automated
to cope with the diversity of application areas for parallelism and the variety of
available platforms [1].

Search-based automatic performance tuning (auto-tuning) [2–4] is a promis-
ing systematic approach for parallel applications. In a repetitive cycle, an auto-
tuner executes a parameterized application, monitors it, and modifies parameter
values to find a configuration that yields the best performance. It is currently a
challenge to specify meta-information for auto-tuning in an efficient and portable
way. As search spaces can be large, this additional information can be used an
auto-tuner for pruning before applying any search algorithms.

In this paper, we introduce Atune-IL, a general-purpose instrumentation lan-
guage for auto-tuning. We describe the features and highlight Atune-IL’s ap-
proach to enrich a program with annotations that allow a more accurate search

space reduction. In several case studies we show how Atune-IL works with dif-
ferent parallel applications and evaluate its effectiveness regarding search space
reduction. Finally, we compare Atune-IL in the context of related work.

2 Requirements for a Tuning Instrumentation Language

A tuning instrumentation language for parallel applications should be able to
instrument performance relevant variables such that their values can be set by
an auto-tuner. It should also allow the demarcation of permutable program
statements and provide the means to define program variants; for tuning, these
variants represent alternatives of the same program that differ in performance-
relevant aspects. Monitoring support is required to give run-time feedback to an
auto-tuner, so that it can calculate and try out a new parameter configuration.
It is desirable that the tuning language is as general as possible and not closely
tied to a particular application domain. We further show that is also important
to design the instrumentation language in a way that helps cut down the search
space of configurations at an early stage.

2.1 Reducing Search Space before Tuning

The search space an auto-tuner explores is defined by the cross-product of the
domains of all parameters within the program. As the search space grows expo-
nentially, even an auto-tuner using a smart search algorithm may need a long
time to find the best – or at least a sufficiently good – parameter configuration.
For example, consider the search space consisting of 24 million parameter config-
urations of our first case study in Section 5. If a sophisticated search algorithm
tests only 1% of the configurations, it will still perform 240,000 tuning iterations.

We therefore propose reducing the search space before any search algorithm is
applied. To do so, our instrumentation language is able to capture the structure
of an application along with characteristics important for tuning, such as parallel
sections and dependencies between tuning parameters.

Analyzing Parallel Sections. Within application code, we define two sec-
tions to be independent of each other if they cannot be executed concurrently in
any of the application’s execution paths. Nested sections always depend on the
enclosing section in that their execution and performance can be influenced by
parameters of the enclosing section.

For illustration, consider a hypothetical program as in Fig. 1 with two paral-
lel sections. The sections are independent and cannot run concurrently. Section
P1 has three tuning parameters, t1, ..., t3, while section P2 contains two tuning
parameters, t4 and t5. An auto-tuner would have to search in the worst case the
cross product of all parameters dom(t1)× ...× dom(t5). However, if the two sec-
tions are known to be independent, the search space can be reduced to the consid-
erably smaller cross products of each section’s parameters dom(t1)×...×dom(t3),
and dom(t4) × dom(t5), respectively. The sections can be modularly tuned one

P1 P2
P1 P2

a) b)

t1 t2 t3 t4 t5

t4 t5

NP1 NP2

t6 t7

t1 t2 t3

NP3

t10

t9

t11

t8

Fig. 1. a) Example of two independent sections with individual tuning parameters; b)
example of two nested sections that come with additional parameters.

after another in separate tuning sessions. The parameters of the section that is
currently not tuned are set to their default values.

Fig. 1 b) extends the previous example and shows P1 and P2, now with
the nested sections NP1, NP2, and NP3. To reduce search space in the case of
nested structures, the following strategy seemed promising in our case studies.
We perform several tuning sessions in which each lowest-level section is tuned
together with all parent sections. In this example, this results in dom(t1)× ...×
dom(t5), dom(t1)× dom(t2)× dom(t3)× dom(t6)× dom(t7), and dom(t8)× ...×
dom(t11). If a section is tuned in more than one tuning session (e.g., P1), its
optimal parameter values may differ depending on the nested section chosen
before (NP1 or NP2). In this case, we tune the parameters of P1 again and set
the parameters of NP1 and NP2 to their best values so far. However, this is just
an illustration that the information provided by our instrumentation language is
useful for an auto-tuner; detailed algorithms are beyond the scope of this paper.

Considering Parameter Dependencies. A tuning parameter often de-
pends on values of another parameter. That is, a particular parameter has to be
tuned only if another parameter has some specific value. As an example, consider
two parameters named sortAlgo and depth. The parameter sortAlgo selects ei-
ther parallel merge sort or heap sort, while depth defines the depth of recursion
within merge sort. Obviously, depth conditionally depends on sortAlgo. This
information is important for an auto-tuner to avoid tuning unnecessary value
combinations, as depth needs not be tuned for heap sort.

In summary, our instrumentation language makes the search space smaller
so that even complex parallel programs can be auto-tuned.

3 Language Features of Atune-IL

This section introduces Atune-IL’s features. We describe how to specify tuning
parameters, statement permutation, blocks, and measuring points to meet the
requirements introduced in the previous section. For a complete list of all lan-
guage features refer to Table 1. Listing 1.1 shows a program instrumented with
Atune-IL. The program basically searches strings in a text, stores them in an

array and sorts it using parallel sorting algorithms. Finally, it counts the total
characters the array contains.

Listing 1.1. C# program instrumented with Atune-IL
List<string> words = new List<string >(3) ;
void main () {

#pragma atune startblock f i l l B l o c k
#pragma atune gauge mySortExecTime

string t ext = ”Auto−tuning has nothing to do with tuning ca r s . ”

#pragma atune startpermutation f i l l O r d e r
#pragma atune nextelem
words .Add(text . Find (” ca r s ”)) ;
#pragma atune nextelem
words .Add(text . Find (”do”)) ;
#pragma atune nextelem
words .Add(text . Find (”Auto−tuning ”)) ;
#pragma atune endpermutation

s o r t P a r a l l e l (words) ;

#pragma atune GAUGE mySortExecTime
#pragma atune ENDBLOCK f i l l B l o c k

countWords (words)
}

// Sorts s t r i n g array
void s o r t P a r a l l e l (L ist<string> words) {

#pragma atune startblock sor tB lock inside f i l l B l o c k

IPa ra l l e l So r t i ngA lgo r i thm sortAlgo = new Para l l e lQu i ckSor t () ;
int depth = 1 ;
#pragma atune setvar sortAlgo type generic

values ”new Para l l e lMergeSor t (depth) ” , ”new Para l l e lQu i ckSor t () ”
scale nominal

#pragma atune setvar depth type int
values 1−4 scale ordinal
depends sortAlgo=’new Para l l e lMergeSor t (depth) ’

sortAlgo .Run(words) ;

#pragma atune endblock so r tB lock
}

// Counts t o t a l characters of s t r i n g array
int countCharacters (List<string> words) {

#pragma atune startblock countBlock
#pragma atune gauge myCountExecTime
int numThreads = 2 ;
#pragma atune setvar numThreads type int

values 2−8 scale ordinal

int t o t a l = coun tPa ra l l e l (words , numThreads) ;

#pragma atune gauge myCountExecTime
return t o t a l ;
#pragma atune endblock countBlock

}

We designed Atune-IL as a pragma-based language for shared-memory mul-
ticore platforms. Direct support for message parsing architectures (such as MPI)
is not included. All Atune-IL statements are preceded by a language-dependent
pragma directive (such as #pragma for C++ and C# or /*@ for Java) followed

by the atune prefix. This approach offers two benefits: 1) tuning information is
separated from program code; 2) the instrumented program is executable even
without auto-tuning, as pragmas and annotations are typically ignored by com-
pilers.

Tuning Parameters. The SETVAR statement is used to mark a variable in the
host language as tunable. Technically, it redefines an assignment of numeric or
non-numeric parameters, and replaces the value by another one from a range
specified as part of the SETVAR statement. Atune-IL generally assumes that the
tuning parameter values are valid. The generic option allows the declaration of
an arbitrary value to be assigned.

The SETVAR statement has a number of optional keywords to define additional
specifications such as scale, weight, or context (see Table 1 for details).

An instrumented variable must be correctly declared in the host language
and initialized with a default value. Atune-IL will modify this value at the point
where the SETVAR instrumentation is located.

Parameter Dependencies. A conditional parameter dependency is defined by
the optional SETVAR keyword depends. This causes a tunable parameter to be
tuned only if the dependency condition evaluates to true. The condition may
include more complex algebraic expressions.

Our program in Listing 1.1 contains the parameter depth that conditionally
depends on parameter sortAlgo. The parameter depth is tuned only if merge
sort is selected.

Permutation Regions. A set of host language statements can be marked to be
permutable. The permutable statements are enclosed by a STARTPERMUTATION
and ENDPERMUTATION statement, representing a permutation region. NEXTELEM
delimits permutation elements; one permutation element may consist of several
host language statements.

The example in Listing 1.1 shows a permutation region consisting of three
permutation elements. Each element consists of a host language statement that
adds an element to a list, so the whole region will generate a differently permuted
list in different runs.

Measuring Points. Measuring points are inserted with the GAUGE statement,
followed by a name to identify the measuring point. Atune-IL currently supports
monitoring either execution times or memory consumption; the type of data to
be collected is declared globally and uniformly for all measuring points. The
developer is responsible for valid placements of measuring points.

The measuring points in Listing 1.1 are used to measure the execution time of
two particular code segments (sorting and counting). For monitoring execution
times, two consecutive measuring points with same name are interpreted as start
and end time.

Blocks. Blocks are used to mark in a block-structured way the program sections
that can be tuned independently (cf. Section 2.1). Such blocks run consecutively

Table 1. Atune-IL language features

Statement Description

Defining Tuning Parameters

SETVAR <identifier>

type

[int|float|bool|string|generic]

values <value list>

Specifies a tuning parameter.
type specifies the parameter’s type.
values specifies a list of numeric or non-
numeric parameter values. Only feasible as-
signments are allowed.

scale? [nominal|ordinal] Optional : Specifies whether parameter is ordi-
nal or nominal scaled.

default? <value> Optional : Specifies the parameters default
value.

context?

[numthreads|lb|general]

Optional : Specifies the parameter’s context to
provide additional information to the auto-
tuner.

weight? [0..10] Optional : Specifies the parameter’s weight re-
garding the overall application performance.

depends? <algebraic expr> Optional : Defines a conditional dependency to
another parameter. Algebraic constraints are
supported.

inside? <block id> Optional : Assigns the parameter logically to
specified application block.

Defining Permutations Regions

STARTPERMUTATION <identifier> Opens a permutation region containing an ar-
bitrary number of target language statements.
The order of the statements can be permuted
by an auto-tuner.

NEXTELEM Separates the code elements in a permutation
region.

ENDPERMUTATION Closes a permutation region. Correspond-
ing STARTPERMUTATION and ENDPERMUTATION

statements must be in the same compound
statement of the host programming language.

Defining Measuring Points

GAUGE <identifier> Specifies a measuring point, e.g., to measure
time.

Defining Blocks

STARTBLOCK <identifier>? Opens a block with an optional identifier.
inside? [<block id>] Optional STARTBLOCK keyword: Nests the

block logically inside specified parent block. A
block can have only one parent block.

ENDBLOCK Closes a block. Corresponding STARTBLOCK

and ENDBLOCK statements must be in the same
compound statement of the host programming
language. A lexically nested block must be de-
clared entirely within its parent block.

in any of the application’s execution paths and their tuning parameters do not
interfere with each other.

The code example in Listing 1.1 shows how to define blocks with Atune-IL.
Basically, a block is enclosed by a STARTBLOCK and ENDBLOCK statement. Blocks
have an optional name that can be referenced by other blocks.

Large parallel applications often contain nested parallel sections (cf. Section
2.1). To represent this structure, blocks support nesting as well – either lexi-
cally or logically. The latter requires the keyword inside after the STARTBLOCK
definition to specify a parent block. A block can have one parent block, but an
arbitrary number of child blocks.

Global parameters and measuring points are automatically bound to an im-
plicit root block that wraps the entire program. Thus, each parameter and each
measuring point belongs to a block (implicitly or explicitly).

In the example in Listing 1.1, sortBlock is logically nested within fillBlock,
while countBlock is considered to be independent from the other blocks. Ac-
cording to our reduction concept mentioned in Section 2.1, the parameters
sortAlgo and depth in sortBlock have to be tuned together with param-
eter stringSearch in fillBlock, as the order of the array elements influ-
ences sorting. This results in two separate search spaces that can be tuned
one after another. These are: dom(fillOrder) × dom(sortAlgo) × dom(depth),
and dom(numThreads) respectively. In addition, the dependency of depth on
sortAlgo can be used to further prune the search space, because invalid combi-
nations can be ignored.

It would be possible to obtain clues about independent program sections
by code analysis. However, such an analysis may require additional program
executions, or may deliver imprecise results. For these reasons, Atune-IL so far
relies on explicit developer annotations.

4 Implementation of the Atune-IL Backend

We now discuss the principles of generating program variants. This is accom-
plished by the Atune-IL backend, consisting of the Atune-IL parser that pre-
processes code to prune the search space, and a code generator. An auto-tuner
connected to Atune-IL’s backend can obtain the values of all tuning parameters
as well as feedback information coming from measuring points. Then, a new
program variant is generated where tuning variables have new values assigned
by the auto-tuner.

4.1 Generating Program Variants

The Atune-IL backend deduces the application’s block structure from STARTBLOCK
and ENDBLOCK statements and analyzes dependencies of tuning parameters. It
creates a data structure containing the corresponding meta-information and the
current search space. If we connect an auto-tuner to the backend, the tuner can
access this meta-information throughout the tuning process.

The generation of program variants is basically a source-to-source program
transformation. Tuning parameter definitions are replaced by language-specific
code (e.g., SETVAR statements are replaced by assignments). Measuring points
introduced by GAUGE statement are replaced by calls to language-specific mon-
itoring libraries. After the Atune-IL backend has generated a program variant,
it compiles the code and returns the autotuner an executable program.

4.2 Templates and Libraries for Language-specific Code

The application of tuning parameter values as well as the calls to monitoring
libraries require the generation of language-specific code. Atune-IL works with
C#, C/C++, and Java, which are widely used general-purpose languages. For
each language, there is a template file storing language specific code snippets,
e.g., for variable assignment or calls to the monitoring library. Supporting a new
host language and monitoring libraries thus becomes straightforward.

5 Experimental Results

In this section, we evaluate Atune-IL based on four case studies and applications.
MID. Our largest case study focuses on our parallelized version of Agilent’s

MetaboliteID (MID) [5, 1], a commercial application for biological data analysis.
The program performs metabolite identification on mass spectrograms, which is
a key method for testing new drugs. Metabolism is the set of chemical reactions
taking place within cells of a living organism. MID compares mass spectrograms
to identify the metabolites caused by a particular drug. The application executes
a series of algorithms that identify and extract the metabolite candidates. The
structure of MID provides nested parallelism on three levels that is exploited
using pipeline, task, and data parallelism.

GrGen. GrGen is currently the fastest graph rewriting system [6]. For this
case study, we parallelized GrGen and simulated the biological gene expression
process on the E.coli DNA [7] as a benchmark. The model of the DNA results
in an input graph representation consisting of more than 9 million graph el-
ements. GrGen exploits task and data parallelism during search, partitioning,
and rewriting of the graph.

BZip. The third case study deals with our parallelized version of the common
BZip compression program [8]. BZip uses a combination of different techniques
to compress data. The data is divided into fixed-sized blocks that are compressed
independently. The blocks are processed by a pipeline of algorithms and stored
in their original order in an output file. The size of the uncompressed input file
we used for the experiments was 20 MB.

Sorting. The last case study focuses on parallel sorting. We implemented
a program providing heap sort and parallel merge sort. To sort data items, the
most appropriate algorithm can be chosen. Our sample array contained over 4
million elements to sort.

Table 2 lists the key characteristics of each application. The programs selected
for our case studies try to cover different characteristics of several application
types and domains. In addition, they reveal common parallelism structures that
are interesting for tuning. For each program, input data is chosen in a way that
represents the program’s common usage in its application domain.

Table 2. Characteristics of the applications used in case studies

MID GrGen BZip Sorting

Host Language C# C# C++ Java
Avg. Running Time (ms) 85,000 45,000 1,400 940
Approx. Size (LOC)1 150,000 100,000 5,500 500
Parallelism Types Pipeline/

Task/Data
Task/

Data
Pipeline/
Task/Data

Task/
Data

Identified Parallel Sections 6 3 2 2

As an additional proof of concept, we developed a sample auto-tuner that
worked with Atune-IL’s backend. The auto-tuner employs a common search al-
gorithm, uses the search space information provided by Atune-IL, generates pa-
rameter configurations, starts the compiled program variants, and processes the
performance results.

5.1 Results of the Case Studies

We instrumented the programs and let our sample auto-tuner iterate through
the search space defined by Atune-IL. We performed all case studies on an Intel
8-Core machine2.

Table 3 summarizes the results of all case studies. Although the programs
may provide more tuning options, we have focused on the most promising pa-
rameters regarding their performance impact. The search space sizes result from
the number of parameter configurations the auto-tuner has to check.

We now explain the parallel structure of the applications and how we used
Atune-IL for instrumentation and search space reduction.

MID. MID has six nested parallel sections wrapped by Atune-IL blocks. The
parent section represents a pipeline. Two of the pipeline stages have indepen-
dent task parallel sections; one of them contains another data parallel section,
while the other has two. In the task and data parallel sections we parameterized
the number of threads and the choice of load balancing strategies. In addition,
we introduced in the data parallel section parameters for block size and parti-
tion size; both depended on the load balancing parameters. Based on the nested

1 LOC without comments or blank lines.
2 2x Intel Xeon E5320 QuadCore CPU, 1.86 GHz/Core, 8 GB RAM

Table 3. Experimental Results of Case Studies

MID GrGen BZip Sorting

Atune-IL Instrumentation Statements

Explicit Blocks 5 3 2 0
Tuning Parameters 13 8 2 2
Parameter Dependencies 3 3 0 1
Measuring Points 2 3 1 1

Reduction of Search Space

Search Space Size w/o Atune-IL 24,576,000 4,849,206 279 30
Search Space Size with Atune-IL 1,600 962 40 15
Reduction 99% 99% 85% 50%

Performance Results of Sample Auto-tuner

Best Obtained Speed-up 3.1 7.7 4.7 3.5
Worst Obtained Speed-up 1.6 1.8 0.7 1.3
Tuning Performance Gain3 193% 427% 671% 269%

structure, Atune-IL’s backend automatically created three separate, but smaller
search spaces instead of a single large one. Considering the parameter dependen-
cies as well, Atune-IL reduced the search space from initially 24,576,000 to 1,600
parameter configurations, that are manageable by common search algorithms.
Our sample auto-tuner generates the necessary variants of the program. The
best configuration obtains a speed-up of 3.1 compared to the sequential version.
The moderate speed-up is caused by I/O operations, as the input data comes
from hard disk and is too large for main memory.

GrGen. We wrapped three large parallel sections (search, partitioning, and
rewriting of the graph) of GrGen by Atune-IL blocks. Due to Atune-IL’s capabil-
ity to handle multiple measuring points within a program, we added a measur-
ing point to each block to allow fine-grained execution time feedback. In several
places, we parameterized the number of threads, the number of graph partitions,
and the choice of partitioning and load balancing strategies. In addition, we de-
fined a permutation region containing 30 permutable statements specifying the
processing order of search rules. Three parameters had conditional dependen-
cies. As the parallel sections are not marked as nested, the Atune-IL backend
considered them as independent and therefore reduced the search space from
4,849,206 to 962 parameter combinations. The best configuration found by the
sample auto-tuner brought a speed-up of 7.7.

BZip. Two performance-relevant parameters of BZip are the block size of
input data (value range set to [100, . . . , 900] bytes with step size of 100) and
the number of threads for one particular algorithm in the processing pipeline

3 The tuning performance gain represents the difference between the worst and the
best configuration of the parallel program. We use it as an indicator for the impact
of tuning.

(value range set to [2, . . . , 32] threads with step size of 1). As the block size does
not influence the optimal number of threads and vice versa, we wrapped each
parameter by a separate block. Thus, Atune-IL reduced the search space from
9 · 31 = 279 to 9 + 31 = 40 parameter combinations. The best configuration
achieved a speed-up of 4.7. Note that the worst configuration was even slower
than the sequential version, which emphasizes the need for automated tuning.

Sorting. Our sorting application provides two tuning parameters, namely
the choice of the sorting algorithm and the depth of the parallel merge sort
that influences the degree of parallelism. As these parameters cannot be tuned
separately, there is only one block. However, the parameter for the merge sort
depth is relevant only if merge sort is selected. Therefore, we specified this as a
conditional dependency, and the Atune-IL backend automatically cut the search
space in half. The best configuration resulted in a speed-up of 3.5.

With our case studies we show 1) Atune-IL works with parallel applications
differing in size, programming language, and application domain; 2) Atune-IL
helps reduce the search space; 3) Atune-IL’s constructs are adequate for express-
ing necessary tuning information within a wide range of parallel applications.

6 Related Work

Specialized languages for auto-tuning have been previously investigated mainly
in approaches for numeric applications, such as ATLAS [9], FFTW [10], or
FIBER [11]. Below, we mention the most relevant approaches.

XLanguage [12] uses annotations to direct a C or C++ pre-processor to per-
form certain code transformations. The language focuses on the compact repre-
sentation of program variants and omits concepts for search space reduction.

POET [13] embeds program code segments in external scripts. This approach
is flexible, but the development of large applications is difficult, as even small
programs require large POET scripts. By contrast, Atune-IL requires only one
line of code to specify a tuning parameter or a measuring point.

SPIRAL [14] focuses on digital signal processing in general. A mathematical
problem is coded in a domain-specific language and tested for performance. It
works for sequential code only.

7 Conclusion

The increasing diversity of multicore platforms will make auto-tuning indispens-
able. Atune-IL supports auto-tuning by providing an efficient way to define tun-
ing information within the source code. Key contributions of Atune-IL are the
extended concepts for search space reduction, the support for measuring points,
as well as the ability to generate program variants. In addition, portability is
improved, since platform-specific performance optimization can now be easily
handed over to an arbitrary auto-tuner. Of course, Atune-IL is in an early stage
and can be improved. We are currently working on an approach to generate

Atune-IL statements automatically for known types of coarse-grained parallel
patterns.

Acknowledgments. We thank Agilent Technologies Inc. for providing the source
code of MID as well as Agilent Technologies Foundation for financial support. We
also appreciate the support of the excellence initiative in the University of Karlsruhe.
Finally, we thank Thomas Karcher for his implementation of the Atune-IL parser [15].

References

1. Pankratius, V. et al.: Software Engineering For Multicore Systems: An Experience
Report. In: Proceedings of 1st IWMSE. (May 2008) 53–60

2. Asanovic, K. et al.: The Landscape of Parallel Computing Research: A View from
Berkeley. Technical report, University of California, Berkeley (December 2006)

3. Tapus, C. et al.: Active Harmony: Towards Automated Performance Tuning. In:
Proceedings of the Supercomputing Conference. (November 2002)

4. Werner-Kytölä, O., Tichy, W.F.: Self-Tuning Parallelism. In: Proceedings of the
8th International Conference on High-Performance Computing and Networking.
(2000) 300–312

5. Agilent Technologies: MassHunter MetaboliteID Software. (2008) http://www.

chem.agilent.com.
6. GeißR. et al.: GrGen.NET. University of Karlsruhe, IPD Prof. Goos. (2008)

http://www.info.uni-karlsruhe.de/software/grgen/.
7. Schimmel, J. et al.: Gene Expression with General Purpose Graph Rewriting

Systems. In: Proceedings of the 8th GT-VMT Workshop. (2009)
8. Pankratius, V. et al.: Parallelizing BZip2. A Case Study in Multicore Software

Engineering. accepted September 2008 for IEEE Software (2009)
9. Whaley, R. C. et al.: Automated Empirical Optimizations of Software and the

ATLAS Project. Journal of Parallel Computing 27 (January 2001) 3–35
10. Frigo, M., Johnson, S.: FFTW: An Adaptive Software Architecture for the FFT.

In: Proceedings of the International Conference on Acoustics, Speech and Signal
Processing. (May 1998) 1381–1384

11. Katagiri, T. et al.: FIBER: A Generalized Framework for Auto-tuning Software.
In: Proceedings of the International Symposium on HPC. (2003) 146–159

12. Donadio, S. et al.: A Language for the Compact Representation of Multiple Pro-
gram Versions. In: Proceedings of the 18th LCPC Workshop. (2006) 136–151

13. Yi, Q. et al.: POET: Parameterized Optimizations for Empirical Tuning. In:
Proceedings of IPDPS. (March 2007) 1–8

14. Püschel, M. et al.: SPIRAL: Code Generation for DSP Transforms. Proceedings
of the IEEE 93 (February 2005) 232–275

15. Karcher, T.: Eine Annotationssprache zur Automatisierbaren Konfguration Par-
alleler Anwendungen. Master’s thesis, University of Karlsruhe (August 2008)

