

Text Understanding for Programming in Natural Language Control Structures

Mathias Landhäußer, Ronny Hug

IPD Tichy, Fakultät für Informatik

Problem Solved? A Quote from a Textbook

End-user development is

"a set of methods [...] that allow

USERS of software systems [...]

to create, modify, or extend a software artifact."

Lieberman et al., 2006

A Little Bit of History

Problem: Up to now, the language analysis is hard coded and mixed with domain specifics.

Programming in natural language

2000s Program

- 2010s
 - Apple's Siri
 - Jibbigo
 - Google's

translator

stubs from stories but no real code 1979 Natural Language Computer

Different Points of View

- Prior work thinks about *programming* in natural language
 - How would should users express a loop, a condition, etc.?
 - How can we provide "simple" commands?
 - Can we use domain knowledge to **boost** performance?
- Our project thinks about programming in natural language
 - How do users express repetition, alternatives, parallelism, etc.?
 - How can we identify these phenomena in text?
 - How can we map that to programing structures?

Natural Language Command Interpreter (NLCI) General Architecture

Input: Animation script Output: Code to produce that animation

Karlsruher Institut für Technologie

Approach

Same approach for all control structures: Use signal phrases to trigger action search

Configuration

- What's an action? → verbs
- How to find them? → depends on control structure
- What to ignore? \rightarrow action blacklist

Not covered

References to distant parts of the text

Approach

Pre-processing

- Parse the text (Stanford)
- Result: part-of-speech tags & typed dependency graphs
- Processing
 - Traverse graph to identify actions in control structures
 - Check nesting of control structures
 - Remove unnecessary structures
- Record results as annotations in the text

Control Structures

- Sequential blocks
 - *do in order* (first do x then do y)
- Repetition
 - *loop* (do x n times)
 - while (do x until y is finished)
 - for all in order (A, B, and C do x, y, and z)
- Parallelism
 - do together (do x and y simultaneously)
 - for all together
- Alternatives (not yet implemented)
 - If ... else (sub phrases that start with a condition)

Dependency Graph Traversal

- Same idea for all control structures
 - Starting point: signal word/phrase
- Signal phrases: at the same time Goal: Identify actions that are connected to the key phrase
 - Which edges to visit: list of edge types
 - Stopping criterion: all reachable relevant edges visited?

Trace profile for do together

Deps: conj, prep

Ignored words: times

POS tags: VB*

Evaluation What and how?

- Text corpus (with expected solutions)
 - Written by different people, with and without programming knowledge
 - Different animations (i.e. programs)
 - Control structures are known
- Evaluation covers different input sets
 - Erroneous input (with parser errors) → "real world"
 - Corrected input (without parser errors) → "ideal world"
- Evaluation covers different configurations
 - Default configuration (linguistic considerations)
 - Tuned configuration (counteract parser errors)

Evaluation Results

Evaluation	Expected	Correct	Incorrect	Missing	Incorrect
Config	Annotations	Ann.	Ann.	Ann.	Nesting
Erroneous	795	649	77	140	6
Default		82 %	10 %	18 %	1 %
Erroneous	795	705	78	79	11
Tuned		89 %	10 %	10 %	1 %
Corrected	529	513	5	16	0
Default		97 %	1 %	3 %	0 %

Erroneous Test Corpus:52 TextsCorrected Test Corpus:28 Texts

Conclusion

- Control structures are essential for programming
 - Respective phenomena must be identified in text
- We use Stanford's typed dependencies to identify them
 - Approach is sensitive to parser errors
 - We can remedy some of them