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Abstract
Concurrency errors, like data races and deadlocks, are diffi-
cult to find due to the large number of possible interleavings in
a parallel program. Dynamic tools analyze a single observed
execution of a program, and even with multiple executions
they can not reveal possible errors in other reorderings. This
work takes a single program observation and produces a set
of alternative orderings of the synchronization primitives that
lead to a concurrency error. The new reorderings are enforced
under a happens-before detector to discard reorderings that
are infeasible or do not produce any error report. We evaluate
our approach against multiple repetitions of a state of the
art happens-before detector. The results show that through
interleaving inference more errors are found and the coun-
terexamples enable easier reproducibility by the developer.

Categories and Subject Descriptors D.2.3 [Software Engi-
neering]: Testing and Debugging—Debugging aids

General Terms Reliability, Verification

Keywords Data race, deadlock, concurrent programs, de-
bug, replay, CSP

1. Introduction
Concurrent programming is complex, and finding and de-
bugging data races and deadlocks is time consuming. A data
race is a simultaneous unordered access by two threads to
the same memory location, where at least one performs a
write operation. A deadlock is a circular dependency of re-
sources where no thread can make any further progress. Both
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errors are very complicated to detect, especially due to the
non-deterministic nature of parallel programs.

For example, the program in Listing 1 is a simplification
of a common problem in race detection. The main thread (t1)
executes the main function, it will spawn a new thread (t2),
which executes the task function in parallel. The program
uses two shared variables x and y, which both threads
are updating concurrently. The expected final value after
execution should be x = 2 and y = 3, but depending on the
executed interleaving a race on y can happen producing the
unexpected result of y = 2.

1y = 0 ; x= 0
2
3main ( ) {
4y++
5t 1 = f o r k ( t a s k )
6y++
7l o c k (m)
8x++
9u n l oc k (m)
10j o i n ( t 1 )
11}
12
13t a s k ( ) {
14l o c k (m)
15x++
16u n l oc k (m)
17y++
18}

Listing 1. Racy program

Depending on the scheduling, the race will either be de-
tected by a dynamic happens-before based tool (based on the
Lamports relation [12]) or not. If the program executes line
7 before line 14, then the main thread locks the mutex, and
the unlocking at 9 followed by the corresponding lock at 14
creates a happens-before order between the two instructions
hiding the possible data race between 6 and 17. Only if line



14 is executed before line 7 will a happens-before tool detect
the possible race, as both accesses to y will not be ordered.

This timing dependency means that the developer must
re-execute the application multiple times with the hope of
catching different interleavings and see if there is any kind
of error. And in the case that in one repetition a report with
a race warning is found, nothing ensures that the developer
will be able to reproduce the erroneous interleaving. Even
more complicated is the case when the developer wants to
attach a debugger and observe the trace, as the debugger,
breakpoints and user interaction will influence the scheduling
of the program under test. One solution is to record each re-
execution of the program under the race detector, and discard
all recordings that do not produce any error report; but this
does not ensure to observe any interleaving that leads to a
possible error, the same could be observed the whole time.

This work presents an approach that, after a first trace
step, generates a set of suspicious interleavings, which could
lead to a concurrency error. The trace is modeled with
specific semantic models for synchronization instructions and
searched for data race and deadlock patterns. The candidate
schedulings -counterexamples- are enforced in the program,
and discarded if they do not produce any error.

This work is an extension of our preliminary CSP model-
ing of traces [3]. Here we support additional synchronization
constructs like signal-wait and barriers, introduce explicit
confirmation through reproduction and a more complete eval-
uation with 11 real-world programs.

2. Interleavings generation
The core of this approach consists of collecting a trace
with the minimal amount of memory and synchronization
events. The trace is the recording of events of a single
program execution under a concrete input. Then we build
a predictive model based on the trace and search it for data
races and deadlocks. The model generates a set of alternative
synchronization reorderings that could lead to an error. We
replay each error sequence to prune false positives and
provide localization information to the user.

2.1 Trace model
We define a trace as the sequence of performed events
observed in a single execution of the multithreaded program
since the beginning of its execution. The events are the
following:

• start(t): first event of thread t
• end(t): last event of thread t
• fork(t,t’): thread t spawns a child thread t’
• join(t,t’): thread t blocks until t’ ends its execution
• read(t,o): thread t reads object o
• write(t,o): thread t writes object o
• lock(t,m) : thread t acquires mutex m

• unlock(t,m) : thread t releases mutex m
• signal(t,ci): thread t wakes a thread waiting on condition

instance ci
• broadcast(t,ci): thread t wakes all threads waiting on

condition instance ci
• wait(t,ci) : thread blocks until another thread executes a

signal or broadcast on condition instance ci
• barrier enter(t,bi): thread t blocks at the barrier instance

bi
• barrier exit(t,bi): thread t leaves the barrier instance bi

An object is an identifier for a contiguous memory region.
An object is shared if two or more different threads realize
a read or write operation on the element, and at least one
is a write; we ignore the read-only shared objects as races
cannot happen there. The read and write events are memory
operations, the rest are synchronization operations. A thread
segment is the set of consecutive events of a particular
thread between two synchronization events, with no other
synchronization events in the middle. A condition instance
ci and barrier instance bi, represent each unique use of a
condition variable or barrier; i.e. a condition variable (for a
signal-wait synchronization) can be reused multiple times,
each time in the model is treated as a single instance and
differentiated from the others.

Finally, a race-pair candidate is any pair of events from
different threads where at least one is a write on the same
shared object.

2.2 Modeling and detection
The captured trace is modeled using the Communicating Se-
quential Processes [8] (CSP) process algebra. We extended
our preliminary CSP modeling of traces [3] to support addi-
tional synchronization constructs like signal-wait and barri-
ers. The resulting encoded formula represents the captured
interleavings as well as alternative ones. In CSP, indepen-
dent processes (in upper case) execute and communicate
synchronously through events (in lower case). Processes
can be composed into more complex processes through a
set of formal described operators, i.e: alternatives, interrup-
tions, synchronized parallel execution or interleaving (non-
synchronized parallel execution).

Figure 1 represents the corresponding model for a trace of
the program at Listing 1. Each thread from the original trace is
modeled independently as a single CSP process: THREAD1

and THREAD2. The events are mapped one-to-one from
the trace to CSP events. Each CSP event carries, separated
by dots, a thread identifier and the identifier of the action
target. Each process defines a total order of the events it
composes. All thread processes are combined using the |||
interleaving operator, this mixes all their events freely. The
combination has no total order, but the partial orders of the
composing processes are respected. To further restrict the



THREAD1 =fork.t1.t2 → write.t1.y → lock.t1.m→ write.t1.x→ unlock.t1.m→ join.t1.t2 → SKIP

THREAD2 =start.t2 → lock.t2.m→ write.t2.x→ unlock.t2.m→ write.t2.y → end.t2 → SKIP

MUTEXm =lock.t1.m→ unlock.t1.m→MUTEXm

2 lock.t2.m→ unlock.t2.m→MUTEXm

FORK2 =fork.t1.t2 → start.t2 → STOP

JOIN2 =end.t1.t2 → join.t1.t2 → STOP

PROGRAM =(THREAD1 ||| THREAD2) ‖
{|lock,unlock,fork,start,join,end|}

(MUTEXm ||| FORK2 ||| JOIN2)

Figure 1: CSP model

resulting process, we add synchronization processes for each
synchronization construct found in the trace, so it does not
contain infeasible event orderings due to the synchronization
restrictions.

Each synchronization mechanism is represented with a
process. In the example, the MUTEX process instantiated
as MUTEXm, represents the only mutex m in the trace. The
MUTEXm process allows any thread to execute the lock
event if the process is at the beginning (using alternative
operator 2), or only the unlock event to the thread that
has executed the corresponding lock event. Afterwards the
MUTEX process returns to the initial state. Similarly the
FORK and JOIN processes represents the thread creation
and joining respectively. All synchronization mechanisms
are combined with the ||| operator as they are disjoint. These
processes are combined with the interleaved threads with
the synchronized parallel operator ‖

X

, forming the process

PROGRAM . This operator specifies that each time an event
on set X is performed in one of the two sides of the operator,
it must be ratified (executed simultaneously too) by the other
side. The behavior of the process PROGRAM contains
all possible interleavings of both threads’ events with the
exception of simultaneous access to the lock protected events.

Other synchronization primitives appear in Figure 2. For
condition variables and barriers a process is created for each
instantiation of the condition variable or barrier, this is a
difference from a mutex, where a single process is enough.

Errors in the model are discovered by defining them as
patterns and applying a refinement relationship to the CSP
model of the generalized trace. A refinement relationship
(S v I) holds if the behavior of the process I is a subset of
the behavior of process S. CSP supports multiple definitions
-semantic models- of the behavior of a process. For each type
of error we define a specific pattern process and a refinement
relationship under a semantic model. When the relationship
does not hold, the resulting counterexample is the sequence
of events in the model that lead to the erroneous state.

2.2.1 Race detection
The processes RACE and RACE ERR in Figure 3 model
all possible race event combinations. The process RACE
performs the race event when any combination of read and
write events (except read − read) happens without any
other event in between. The process RACE can derive again
into process RACE through the interrupt operator 4, this
disallow that the process blocks itself when confronted with
any other event, effectively reseting the pattern.

In the CSP trace model T describes the behavior of a
process by only the different set of sequences of events the
process produces. A race in process PROGRAM on object
p is found if the relationship in Equation 3 in Figure 3 does
not hold.

The RACE process follows all memory and synchro-
nization operations of the process PROGRAM . And all
events that this parallel composition produces are hidden,
with the exception of the race event, by the hiding opera-
tor: \ Σ− {race}. By definition, the STOP process has an
empty behavior (does not produce any trace); if the parallel
composition shows the race event then the relationship does
not hold, and a data race on p exists.

Then the sequence of events performed by the process
PROGRAM alone is extracted. We only keep the synchro-
nization operations in this sequence, which define the schedul-
ing needed to reach a state where two thread segments are in
a race situation. For the given example if we instantiate the
refinement of Equation 3 with variable y as the parameter for
process RACE the refinement does not hold and we obtain
the scheduling:

fork.t1.t2, start.t2, lock.t2.m, unlock.t2.m

It is noteworthy that we do not check each race-pair, but
instead we check if there exists a data race on the target
shared object. If there is more than one race-pair for object p,
a single refinement check for p is done; reducing the number
of model checks from one per race-pair to one per shared
object. When the refinement does not hold, there is at least
one counterexample identifying the first race. If there are



BARRIERb0 =barrier enter.t1.b0 → barrier enter.t2.b0 → barrier exit.t1.b0 → barrier exit.t1.b0 → STOP

SIGNALc0 =signal.t1.c0 → wait.t1.c0 → STOP

Figure 2: Other synchronization constructs

RACE(v) =RACE ERR(v) 4
(2 x : {|read,write, lock, unlock, fork, start, join, end|}@x→ RACE(v)) (1)

RACE ERR(v) =read?ta!v → write?tb : Threads \ {ta}!v → race→ SKIP (2)

2 write?ta!v → read?tb : Threads \ {ta}!v → race→ SKIP

2 write?ta!v → write?tb : Threads \ {ta}!v → race→ SKIP

STOP vT(PROGRAM ‖
{|read,write|}∪{|lock,unlock,fork,start,join,end|}

RACE(p)) \ Σ− {race} (3)

Figure 3: Race pattern process and refinement

multiple counterexamples, then there exists more than one
state in the model (with its associate trace) that leads to a
race situation. The number of counterexamples extracted can
be bounded during the model checking process to reduce the
time cost, at the expense of having false negatives on the
same variable but in different locations and interleaving.

When a trace contains multiple events from a repeating
code section, some race-pairs are redundant. For example if
the events of function task, executed by thread t2 in Listing 1
where inside a loop with N iterations, for variable y instead
of a single race-pair candidate we will have N race-pair
candidates: one for each combination between thread t1 and
each access from t2 in each loop iteration. The same situation
happens if instead of a loop there were N instances of the
thread t2 not a single one. In these cases it is enough to
detect a single race-pair. If the counterexample generation is
bounded to one, at least one race for each variable will be
found; and all other redundant race-pairs are ignored. After
fixing the program, new checks can reveal new races but they
will affect different code localizations.

2.2.2 Deadlock detection
CSP contains support for deadlock detection through the
failure model F . This model is an extension of the trace
model T where to each specific observable trace a set of
refusals is added. Each refusals is a set of events in the
system that the process cannot execute.

The following refinement holds for a non-deadlocking
process PROGRAM :

LIV E vF (PROGRAM \ Σ ; LIV E)

LIV E = live→ LIV E

The specification process is the recursive process LIV E,
which always has the event live available. If PROGRAM

ends successfully then it will behave like LIV E, but if not it
will never perform the live event, and the refinement will not
hold. Additionally all events from PROGRAM are hidden
because none of them appear in LIV E. If the refinement
does not hold, there is a sequence of events that lead to a state
where the process will deadlock.

Similar to the race case, if a deadlock is found, we extract
the events performed by the process PROGRAM alone,
and this sequence will lead to a situation where the original
program deadlocks.

2.3 Replay, confirmation and localization
Each counterexample describes the order of synchronization
operations that lead to a data race or deadlock. The program
is re-executed with the same input but the synchronization
operations are blocked until the previous operations defined in
the counterexample have been executed. The counterexample
only defines the scheduling until it reaches the erroneous
thread segments, so the replay is only deterministic until that
point; afterwards the program runs non-deterministically. The
use of coarse-grained enforcing allows a certain degree of
parallelism between threads and does not impose a speed
penalty like a complete serialization of the execution or a
fine-grained replay based on memory accesses.

Replaying plays two additional roles outside of enabling
consistent debugging by the user: confirmation and error lo-
calization. The detection can generate false positives because
the modeling does not consider that the control flow has di-
verged due to a reorder of thread segments. Under the new
order, the program can take a different branch and never reach
the erroneous situation. Or the program is unable to execute
the whole counterexample, because the new order does not
exist in the program. Also, the tracing step does not collect in-
formation about how the specific program instructions map to



the source code; this reduces the size of the trace and tracing
speed penalty. But the concrete source code lines involved in
the specific error are unknown.

This two issues are solved by replaying the program with
the counterexamples and executing in parallel a dynamic on-
line happens-before detector. If the happens-before detector
does not detect any race nor is the program deadlocked
then the counterexample is discarded, otherwise it leads to a
concurrency error. If the counterexample cannot be enforced,
then it is dropped. The use of a happens-before detector
ensures that no false positives are produced during replaying.
The localization of the error is provided by the happens-
before detector in the case of a data race, and can be observed
with a standard debugger in the case of a deadlock.

3. Implementation
We target multithreaded C programs using the pthread library
[1]. The tracing and replayer are modifications of ThreadSan-
itizer [18], the input program is compiled using the LLVM
framework, statically instrumented and linked against an aux-
iliary runtime library.

The number of read and write events performed by a
program can be huge, so we apply several strategies to
reduce the number of logged events. During instrumentation,
an escape analysis removes local operations (scope local
variables). Inside the same thread segment, it is enough to
trace a single access to a specific address (and it is a write),
because if this operation races, similar operations in the same
thread segment are going to produce a data race too. During
tracing, each thread uses a thread local cache for the current
thread segment, that stores the last access to each variable
and the events; the cache is emitted to the trace at the end
of the thread segment (a new synchronization operation).
Remaining redundant events are removed later offline.

Then each thread trace is collected independently, as no
synchronization is done between threads; which contains a
single execution of the whole program. This file is processed
offline afterwards: to remove remaining redundant memory
operations in the same thread segment, match signal-wait
events and compute the shared objects. The generated trace
follows the format presented in Section 2.1. As described, the
format assumes that each object is a unique memory region.
To apply a real program trace to this model, we would need
to consider each byte as a different shared object and then
apply a CSP check for each object (i.e. each byte). Instead,
for each read and write, the starting address and operation
size is logged; and in this step each shared region (composed
of consecutive shared bytes) is computed and replaced by an
unique identifier. Each identifier represents a single shared
object in the final trace.

Also, in Section 2.1, the operations on condition variables
and barriers are defined for each unique use of the synchro-
nization construct. For barriers, it is enough to identify them
and log the enter and exit on the primitive. But in the signal-

wait synchronization case, the wait primitive is not always
observed: if the waiting precondition is met before reaching
the corresponding wait-loop (as recommended by the pthread
library), the pthread cond wait primitive is never executed.
This makes creating the signal-wait relationship for individ-
ual uses of the condition variable difficult, as there can be a
logical signal-wait order between two threads, but without
the appearance of the wait event. To solve this issue, we im-
plemented an additional instrumentation step, that finds the
wait-loops and instruments them after and before. This addi-
tional instrumentation allows the postprocessing to match the
wait-loop with the signal independently if the wait primitive
is observed or not.

For data races, we make a first and fast filter of race-
pairs. We use a hybrid algorithm to prune non racy memory
accesses without generating false negatives. This will reduce
the number and the complexity of the the more expensive
CSP checks afterwards. It is a two step algorithm, which
first executes a weakened happens-before algorithm without
mutex induced edges; it removes all race-pairs correctly
ordered by the following synchronizations: fork-start, end-
join, signal-wait and barriers. Then we use a standard lockset
algorithm to remove race-pairs that share at least one lock.
The remaining shared variables have at least one race-pair
candidate.

We build a CSP model for each remaining shared variable,
without the accesses to the other variables, to minimize the
number of events and the checking time. Then each shared
variable is checked for races using a refinement check as
described. In the case of checking for deadlocks a CSP is
built directly from the captured trace without any intermediate
step as all memory accesses are unnecessary (shared object
computation and the hybrid happens before are irrelevant).
The model and check are coded in CSPM (machine readable
CSP) and passed to the Failures-Divergences Refinement 3
model checker [7].

The replayer is also a modification of ThreadSanitizer,
it executes the given program under a concrete synchro-
nization order and checks for races simultaneously. The or-
der is defined by the synchronization events in the coun-
terexample and enforced through a semaphore [4]; all non-
synchronization operations are executed freely. ThreadSan-
itizer executes its normal happens-before race detection si-
multaneously, but it ignores all happens-before edges due to
the replayer internal machinery.

The replayer aborts the execution if the counterexample
cannot be enforced due a control flow divergence, so it can
be differentiated from a deadlock of the program under test.

Scalability As other trace based techniques, the length of
the trace limits the scalability of the approach. A longer trace
produces a more complex model, and the model checker
needs more time.

The complexity of our model increases only with the
number of synchronization operations in the trace, as for



each shared variable a different model is built and non-
related memory operations are removed. The number of
synchronization events is expected to be a fraction of the
whole program trace. But this is not enough, a common
strategy is to split the trace in windows and process each
window individually. We use this approach, splitting the trace
in fixed sized windows, and analyzing each one independently
for errors. Previous windows are only used to compute
the initial state of mutexes and to generate the prefix of
the generated schedules. The prefix for a given window is
the same interleaving as the observed until this point. The
splitting introduces false negatives, e.g.: data races between
memory events in different windows are overlooked. This
also limits the effect of control flow divergence during
replaying as it can only happen inside the analyzed window.

Further reduction in the number of model checks and
trace size is possible trough a reduction in the number of
instrumented memory accesses. Instead instrumenting the
whole program, a set of functions or specific instructions
can included or excluded for instrumentation based on user
input or output of a static race detector. In any case, all
synchronization operations are still tracked.

4. Evaluation
We evaluated our approach in two parts: a set of microbench-
marks representing concrete multithreading orderings and
a set of known open source applications with concurrency
errors. The evaluation has been done on a Intel Xeon eight
core machine with 3.7GHz processor and 64GB RAM. The
splitting window size is set to 10000 events executed by the
program. No manual or static detector prefiltering for in-
strumentation has been used. We evaluate the results of our
tool against ThreadSanitizer [18] (TSAN), a state of the art
dynamic happens-before race detector for C programs.

4.1 Microbenchmarks
The microbenchmarks evaluation, Table 1, is an aggrega-
tion of scenarios from multiple sources[18–20]. Scenarios
described in papers that are not available have been coded
explicitly. The third column is the total number of real er-
rors: races and deadlocks. The fourth column is the number
of errors detected by our approach. The fifth column is the
number errors detected by TSAN.

Our approach can find and correctly generate a repro-
ducible counterexample for all the microbenchmark pro-
grams, finding 100% of the errors. Most of the missed errors
(32,3% of the total number of errors) by TSAN are related to
critical section commutativity (a specific order of accesses
hides the race). Even for a relaxed version of a happens-
before detector it is very difficult, if not impossible, to reason
about all these scenarios [19].

4.2 Application benchmark
The application benchmark is composed of several appli-
cations commonly used in data race benchmarking. Aget

is a parallel download http application. BoundedBuffer is
a producer-consumer implementation with a limited buffer.
Ctrace is a library for debugging and tracing multithreaded
programs. Qsort is a parallel implementation of the quick-
sort ordering algorithm. Blackscholes, fmm, fft, lu, lu-non,
streamcluster and water-nsquared are applications and ker-
nels from the SPLASH-2 multithreaded benchmark [22]. This
benchmark compares a single execution of our tool against
multiple executions of TSAN.

The results appear in Table 2. The first column is the
application name and the second column the aggregated
lines of code. The third column is the total number of
events traced by the program before offline postprocessing.
The fourth column is the final number of events of the
postprocessed simplified trace, and the fifth is how many
events are synchronization events. The sixth column is the
number of suspicious counterexamples emitted by the CSP
refinement checking. The seventh column shows how many
counterexamples are replay feasible and report at least one
error. The eight column is the number of unique localizations
(in source code) with errors found by our counterexamples
after replaying. Finally, the ninth column shows how many
erroneous source code localizations TSAN finds in total after
100 executions.

All the errors detected by both tools are data races, no
deadlock is reported by any tool. For most race free programs
-blackscholes, boundedBuffer,lu, lu-non and water-nsquared-
we see that our tool generate no counterexample candidate.
Only in fft a single candidate is generated but later discarded
because the reproduction did not produce any warning.

In streamcluster a single valid counterexample is generated
for a single error, matching the results of TSAN. Ctrace
produces an extra counterexample that turns out useless,
but the other three counterexamples reveal an error more
as TSAN (who has found only two).

For aget, TSAN found one more data race as our approach,
which generates two counterexamples for two confirmed
errors. These additional data race is mutually exclusive with
another data race, both are in different program paths and they
cannot be found a single execution. This data race is found in
10% of the TSAN executions, the other data race appears in
the rest 90% of the executions; as our tool examines a single
trace it is highly dependent on the path explored by that trace.

Finally we have the qsort and fmm applications. In both
cases, our approach finds more erroneous locations than
TSAN. In qsort although initially only two counterexam-
ples are generated; each reveal more than one race, for a total
of six. This shows that a single counterexample is enough
for races on the same thread segment, as the trace is simpli-
fied and shared memory regions are treated as a single block.
Fmm generates 190 counterexamples, of them 10 are infea-
sible (they cannot be enforced), the remaining 180 generate
different amounts of race reports, from 2 to 40 reports per
counterexample. The 180 feasible counterexamples reveal a



Table 1. Microbenchmarks evaluation
Scenarios LOC Real errors Found errors TSAN errors

48 2274 31 31 21

Table 2. Application evaluation
Trace Counterexamples

Application LOC Captured Reduced Sync Candidates Feasible Found errors TSAN-errors
aget 847 1792 291 80 2 2 2 3

blackscholes 327 1568 84 4 0 0 0 0
boundedBuffer 252 829 326 105 0 0 0 0

ctrace 772 1543 275 64 4 3 3 2
fft 701 40440 207 18 1 0 0 0

fmm 3200 1078923 2730 1470 190 180 50 36
lu 732 59857037 1185 138 0 0 0 0

lu-non 533 971559 490 42 0 0 0 0
qsort 511 3305 195 40 2 2 6 1

streamcluster 1443 388 115 6 1 1 1 1
water-nsquared 1188 27560223 9220 8300 0 0 0 0

total of 50 race locations, while TSAN has only found 36 of
them. In this case there is a overlapping between counterex-
ample, and the same location is reported multiple times.

The results show that from a single execution our approach
can find more races than TSAN in multiple executions. A non-
predictive race detector relies on reaching a specific timing to
be able to see some races. But our solution dilutes this factor
exploring other interleavings offline. Although the errors we
can detect are constrained by the explored path of the trace.

Also race detectors usually provide only the localization
of the race, but no information on when and how the program
has reached that position. Mixing the race detector with
interactive debugging can make the erroneous state difficult
to reach, because of the probe effect [6]. Our tool provides
a step by step counterexample of the synchronization events
that can be used to reproduce the observed data race.

The time costs of our approach in comparison with TSAN
is vastly outperformed. TSAN being a dynamic detector with
a strong focus on performance introduces a typical slowdown
of 5x-15x. As our tracing and replay tools are build on top of
TSAN, they increase the performance penalty of TSAN, e.g.
by 20x for aget. This is due to the hugely increase of output
generated (the trace is stored as a readable character based
file) and partial serialization of the reproduction (threads
are blocked until they reach the corresponding event). But
a reproducible version of TSAN would incur in similar
costs. Additional costs come from the interleaving generation
part: postprocessing and model checking, both together can
take from a couple of seconds (in aget) to half an hour (in
lu). Although the resource consuming is much bigger, the
approach is automatized and the developer only need to pay
attention to the feasible generated counterexamples.

5. Related work
Predictive trace analysis techniques, like this work, encode
the trace of a single observation and generate reorderings of
the events. The reorderings are analyzed for errors providing
a witness. The work of Said et al. [16] encodes a trace as a sat-
isfiability problem and uses SMT to explore the reorders. This
technique is conservative as it enforces a complete read-write
consistency. It logs all the read and write operations including
their values, and enforces the dependencies between these
reads and writes as constraints. Additional constraints are
formed by the semantics of synchronization primitives. Due
to the read-write consistency, the technique does not suffer
from control flow divergence and does not emit false posi-
tives. Huang et al. [9] improves the technique explicitly taking
into account branch instructions, so it reduces the amount
of control flow dependencies and optimizations to minimize
the number of constrains. These two techniques have the ad-
vantages of not producing false positives and producing a
fine-grained witness. But they require a much more detailed
trace, including non-shared accesses and the actual values
of memory operations; also if only a selective tracing is de-
sired (find errors in a set of instructions) they need to trace
the complete backwards slice to maintain their capabilities.
Our approach works with less information, only needs to
know which addresses are accessed in each thread segment,
enabling selective tracing without additionally costs. We take
an empirical approach testing the generated witnesses to dis-
card false positives, instead of offering a sound predictive
step.

Most common detectors are dynamic detectors based on
happens-before [5, 18](based on the Lamport’s relationship
[12]). They build a directed graph of the behavior, any two
non-ordered shared memory accesses conform a race. It cov-



ers a limited set of interleavings and cannot explore alter-
native reordering of synchronization operations; so multiple
runs can produce different detection results due to differ-
ent observed timings. They do not produce false-positives
but can generate false negatives of races in non observed
interleavings. Variations of happens-before relax the model
(e.g. eliding mutexes) to cover more schedulings in a single
run [19]. The lockset algorithm [17] stores the locks used
to access each variable, when accesses to the same variable
without sharing any lock, a race is reported. Lockset produces
false alarms but is partially agnostic to the specific observed
interleaving. There are also hybrid approaches, that combine
happens-before and lockset, to maintain the precision with
a higher coverage [10, 14]. Lockset has been commonly ap-
plied to static detectors [21], but tend to generate too many
false alarms, rapidly making the developer lose interest in
the tool. Static approaches also have the disadvantage of not
producing a reproducible test case for the error.

Active testing approaches re-execute multiple times the
program under test with the same input; they force the pro-
gram to execute different reorders. Some use a random sched-
uler and introduce thread preemptions at different points in
the source code [11]. Others use model checking techniques
-partial order reduction- to explore systematically multiple
interleavings [13][23].

Most of the previous tools also detect if a lock has been
reached or the mutex acquisition order is inconsistent along
the execution. But inconsistent lock acquisition does not
mean that a deadlock is possible, as different orders can
be used in different disjoint parts of a program. Most specific
deadlock tools are static tools [15] with the false alarms that
static tools carry on, or focus on efficient online detection [2].

6. Conclusion
This paper describes a predictive approach to generate al-
ternative interleavings and detect data races and deadlock.
We capture a single trace of a multithreaded application and
model it in CSP process algebra. The CSP model represents
alternative reorderings of the synchronizations events, fol-
lowing the particular semantics of the synchronization con-
structs. We generate a set of counterexamples applying model
checking with generic patterns describing the concurrency er-
rors. These counterexamples are enforced in the program and
tested for usefulness along with a happens-before detector.

The results show all of the accepted generated counterex-
amples enforce some concurrency error, and altogether they
find more real errors than a common dynamic detector, up to
44% more erroneous locations. Even more, the counterexam-
ples enable coarse deterministic debugging of the program
and allows the developer to examine the behavior of the pro-
gram live.
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