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Introduction

Autotuning is an effective technique for optimizing parallel
applications.

Most work in the autotuning area has concentrated on application
specific tuning parameters.
On graphic processing units (GPUs), there are various tunable
parameters that are application independent.

Number of threads per block
Loop unrolling
Workload per thread

⇒ Application-independent Autotuning for GPUs
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Online Autotuning - AtuneRT

Our autotuner AtuneRT uses a feedback loop of
1 measuring execution time of a program section and
2 adjusting the tuning parameter configuration.

A search-based algorithm such as Nelder-Mead guides the process.

As a general-purpose run-time autotuner, AtuneRT does not use
application-specific knowledge about tuning parameters.
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AtuneRT - API

AtuneRT is controlled with the following three functions:

addParameter(&pararm, range, default)

startMeasurement()

stopMeasurement()

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 4/14



Autotuning on the GPU

Modern GPUs offer massive parallelism for a wide range of
algorithms.
Optimizing GPUs is hard.

Align memory access patterns
Minimize control flow costs
Balance workloads

Even though GPU compilers got better, most optimization is still done
by hand using trial and error.
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Autotuning on the GPU - CUDA
In our work we employed NVIDIA’s CUDA architecture.
CUDA is parallel programming model that organizes threads in a
hierarchy.
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Autotuning on the GPU - Block Size

The number of overall threads is dictated by the number of data
elements.

The number of threads per block (block size) is variable.

Due to limited resources for each block not all threads can be active.

Common approach:
Trial and error hand-optimized code for one GPU generation.
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Autotuning on the GPU

Online autotuning removes the need for hand-tuning and has multiple
advantages:

No knowledge of the GPUs specification is required.

React to changes at run-time.

Tune multiple non-independent parameters.

Fast and easy to use.
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Results

Evaluation on three GPUs:

Model Generation
Geforce GTX 680 GK104
Geforce GTX 470 GF100
Quadro 6000 GF100GL

We examined the performance of four applications with all possible tuning
configurations.
We also measured the iterations it took AtuneRT to reach the optimal
values and resulting speed-up.
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Results - Marching Cubes

Marching Cubes - block size of one kernel - complete parameter space

What is optimal for one GPU can be the worst case for another.
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Results - Merge Sort
Merge Sort - block sizes of three kenerls - complete parameter space

Even with similar behavior the optimum is different.
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Results - N-Body Simulation
N-Body Simulation - block size and degree of loop unrolling

Tuning parameters (here: degree of loop unrolling and block size) are
not independent of each other.
Optimization matters – over 20% speed-up only through loop unrolling.
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Results - Thrust

Thrust is a C++ template library for CUDA, similar to the Standard
Template Library (STL).

Thrust’s algorithms either use hard-coded values or simple heuristics
to determine the block size of the CUDA kernels.

time in seconds block size
GTX 680, no tuner 2.566 224

GTX 680, with tuner 2.223 128
Quadro 6000, no tuner 10.025 224

Quadro 6000, with tuner 10.026 224

Tuning the thrust::inclusive scan-function results in a
speed-up of 13% on the GTX 680.

Thrust optimizes for older generation GPUs like the Quadro 6000.
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Conclusion

Tuning application independent parameters is important.

Autotuning is feasible for optimizing GPU applications on multiple
platforms.

Preparing the applications for AtuneRT was easy: Three calls to the
tuner sufficed.

The tuner could be integrated in the kernel API call.

No knowledge of hardware specifications is required.

We expect autotuning to become an essential part in determining tuning
parameters at run-time on the GPU.
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Results - Merge Sort

default time optimal time speed-up autotuning
iterations

Quadro 6000 0.0483 0.0324 32.81% 17
GTX 470 0.0457 0.0307 32.85% 20
GTX 680 0.0328 0.0234 28.64% 20

Execution times in seconds. Speed-up of the optimal configuration relative
to the default parameters.
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Autotuning on the GPU - Time
measurement

Measuring time on the GPU is not accurate. GPU computation is initiated
via driver calls (with internal scheduling).

Time is measured by inserting events in the execution pipeline.

CPU

GPU

kernel launch synchronize GPU

kernel execution time

start event stop event
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