
KARLSRUHE INSTITUTE OF TECHNOLOGY

Application-independent Autotuning for GPUs
Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy

KIT – University of the State of Baden-Wuerttemberg and

National Laboratory of the Helmholtz Association

www.kit.edu

http://www.kit.edu


Introduction

Autotuning is an effective technique for optimizing parallel
applications.

Most work in the autotuning area has concentrated on application
specific tuning parameters.
On graphic processing units (GPUs), there are various tunable
parameters that are application independent.

Number of threads per block
Loop unrolling
Workload per thread

⇒ Application-independent Autotuning for GPUs

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 2/14



Online Autotuning - AtuneRT

Our autotuner AtuneRT uses a feedback loop of
1 measuring execution time of a program section and
2 adjusting the tuning parameter configuration.

A search-based algorithm such as Nelder-Mead guides the process.

As a general-purpose run-time autotuner, AtuneRT does not use
application-specific knowledge about tuning parameters.

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 3/14



AtuneRT - API

AtuneRT is controlled with the following three functions:

addParameter(&pararm, range, default)

startMeasurement()

stopMeasurement()

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 4/14



Autotuning on the GPU

Modern GPUs offer massive parallelism for a wide range of
algorithms.
Optimizing GPUs is hard.

Align memory access patterns
Minimize control flow costs
Balance workloads

Even though GPU compilers got better, most optimization is still done
by hand using trial and error.

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 5/14



Autotuning on the GPU - CUDA
In our work we employed NVIDIA’s CUDA architecture.
CUDA is parallel programming model that organizes threads in a
hierarchy.

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 6/14



Autotuning on the GPU - Block Size

The number of overall threads is dictated by the number of data
elements.

The number of threads per block (block size) is variable.

Due to limited resources for each block not all threads can be active.

Common approach:
Trial and error hand-optimized code for one GPU generation.

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 7/14



Autotuning on the GPU

Online autotuning removes the need for hand-tuning and has multiple
advantages:

No knowledge of the GPUs specification is required.

React to changes at run-time.

Tune multiple non-independent parameters.

Fast and easy to use.

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 8/14



Results

Evaluation on three GPUs:

Model Generation
Geforce GTX 680 GK104
Geforce GTX 470 GF100
Quadro 6000 GF100GL

We examined the performance of four applications with all possible tuning
configurations.
We also measured the iterations it took AtuneRT to reach the optimal
values and resulting speed-up.

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 9/14



Results - Marching Cubes

Marching Cubes - block size of one kernel - complete parameter space

What is optimal for one GPU can be the worst case for another.

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 10/14



Results - Merge Sort
Merge Sort - block sizes of three kenerls - complete parameter space

Even with similar behavior the optimum is different.

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 11/14



Results - N-Body Simulation
N-Body Simulation - block size and degree of loop unrolling

Tuning parameters (here: degree of loop unrolling and block size) are
not independent of each other.
Optimization matters – over 20% speed-up only through loop unrolling.

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 12/14



Results - Thrust

Thrust is a C++ template library for CUDA, similar to the Standard
Template Library (STL).

Thrust’s algorithms either use hard-coded values or simple heuristics
to determine the block size of the CUDA kernels.

time in seconds block size
GTX 680, no tuner 2.566 224

GTX 680, with tuner 2.223 128
Quadro 6000, no tuner 10.025 224

Quadro 6000, with tuner 10.026 224

Tuning the thrust::inclusive scan-function results in a
speed-up of 13% on the GTX 680.

Thrust optimizes for older generation GPUs like the Quadro 6000.

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 13/14



Conclusion

Tuning application independent parameters is important.

Autotuning is feasible for optimizing GPU applications on multiple
platforms.

Preparing the applications for AtuneRT was easy: Three calls to the
tuner sufficed.

The tuner could be integrated in the kernel API call.

No knowledge of hardware specifications is required.

We expect autotuning to become an essential part in determining tuning
parameters at run-time on the GPU.

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 14/14



References I

Jason Ansel et al. “Language and compiler support for auto-tuning
variable-accuracy algorithms”. In: Proceedings of the 9th Annual
IEEE/ACM International Symposium on Code Generation and
Optimization. IEEE Computer Society. 2011, pp. 85–96.

“CUDA C Best Practices Guide”. In: 2012, p. 39.

Mark Harris et al. “Optimizing parallel reduction in CUDA”. In:
NVIDIA Developer Technology 2 (2007).

Thomas Karcher and Victor Pankratius. “Run-time automatic
performance tuning for multicore applications”. In: Euro-Par 2011
Parallel Processing. 2011, pp. 3–14.

Anna Morajko, Tomàs Margalef, and Emilio Luque. “Design and
implementation of a dynamic tuning environment”. In: Journal of
Parallel and Distributed Computing 67.4 (2007), pp. 474–490.

References

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 15/14



References II

John A. Nelder and Roger Mead. “A simplex method for function
minimization”. In: The computer journal 7.4 (1965), pp. 308–313.

Frank Otto et al. “A language-based tuning mechanism for task and
pipeline parallelism”. In: Proceedings of the 16th international
Euro-Par conference on Parallel processing: Part II. Euro-Par’10.
Ischia, Italy, 2010, pp. 328–340. ISBN: 3-642-15290-2,
978-3-642-15290-0. URL:
http://dl.acm.org/citation.cfm?id=1885276.1885309.

Cristian Ţăpuş, I-Hsin Chung, Jeffrey K Hollingsworth, et al. “Active
harmony: towards automated performance tuning”. In: Proceedings
of the 2002 ACM/IEEE conference on Supercomputing. IEEE
Computer Society Press. 2002, pp. 1–11.

References

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 16/14

http://dl.acm.org/citation.cfm?id=1885276.1885309


References III
Yuri Torres, Arturo Gonzalez-Escribano, and Diego R Llanos.
“Understanding the impact of CUDA tuning techniques for Fermi”.
In: High Performance Computing and Simulation (HPCS), 2011
International Conference on. IEEE. 2011, pp. 631–639.

Vasily Volkov. “Better performance at lower occupancy”. In:
Proceedings of the GPU Technology Conference, GTC. Vol. 10.
2010.

Clint Whaley, Antoine Petitet, and Jack J. Dongarra. “Automated
empirical optimizations of software and the ATLAS project”. In:
Parallel Computing 27.1 (2001), pp. 3–35.

Henry Wong et al. “Demystifying GPU microarchitecture through
microbenchmarking”. In: Performance Analysis of Systems
Software (ISPASS), 2010 IEEE International Symposium on. 2010,
pp. 235–246. DOI: 10.1109/ISPASS.2010.5452013.

References

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 17/14

http://dx.doi.org/10.1109/ISPASS.2010.5452013


Results - Merge Sort

default time optimal time speed-up autotuning
iterations

Quadro 6000 0.0483 0.0324 32.81% 17
GTX 470 0.0457 0.0307 32.85% 20
GTX 680 0.0328 0.0234 28.64% 20

Execution times in seconds. Speed-up of the optimal configuration relative
to the default parameters.

References

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 18/14



Autotuning on the GPU - Time
measurement

Measuring time on the GPU is not accurate. GPU computation is initiated
via driver calls (with internal scheduling).

Time is measured by inserting events in the execution pipeline.

CPU

GPU

kernel launch synchronize GPU

kernel execution time

start event stop event

References

Martin Tillmann, Thomas Karcher, Carsten Dachsbacher, Walter F. Tichy –
Application-independent Autotuning for GPUs September 11, 2013 19/14


	Appendix

