
Deriving Time Lines from Texts

Mathias Landhäußer
Karlsruhe Institute of

Technology
Am Fasanengarten 5
Karlsruhe, Germany

landhaeusser@kit.edu

Tobias Hey
Karlsruhe Institute of

Technology
Am Fasanengarten 5
Karlsruhe, Germany

tobias.hey@student.kit.edu

Walter F. Tichy
Karlsruhe Institute of

Technology
Am Fasanengarten 5
Karlsruhe, Germany

walter.tichy@kit.edu

ABSTRACT
We investigate natural language as an alternative to pro-
gramming languages. Natural language would empower any-
one to program with minimal training. In this paper, we
solve an ordering problem that arises in natural-language
programming. An emprical study showed that users do not
always provide the strict sequential order of steps needed
for execution on a computer. Instead, temporal expressions
involving “before”, “after”, “while”, “at the end”, and others
are used to indicate an order other than the textual one. We
present an analysis that extracts the intended time line by
exploiting temporal clues. The technique is analyzed in the
context of Alice, a 3D programming environment, and Ali-
ceNLP, a system for programming Alice in ordinary English.
Extracting temporal order could also be useful for analyz-
ing reports, question answering, help desk requests, and big
data applications.

Categories and Subject Descriptors
D.2.3 [Software Engineering]: Coding Tools and Tech-
niques; D.2.6 [Software Engineering]: Programming En-
vironments; I.2.7 [Artificial Intelligence]: Natural Lan-
guage Processing—Language parsing and understanding

General Terms
Languages, Theory

Keywords
Natural language processing, time lines, temporal expres-
sions, temporal reasoning, Alice, programming with natural
language, end-user programming

1. INTRODUCTION
We investigate the use of natural language as a substitute

for programming languages. Human beings are for the most
part adapt at instructing – they teach children, train appren-
tices, or direct subordinates. Instructing in natural language

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
RAISE ’14, June 3, 2014, Hyderabad, India
Copyright 14 ACM 978-1-4503-2846-3/14/06 ...$15.00.

is easy for humans, whereas programming languages are dif-
ficult to master. Only a tiny fraction of the population can
cope with artifical programming languages. Natural lan-
guage, however, would empower anyone to program. Being
able to program is especially desirable now that nearly ev-
erybody owns programmable devices in the form of phones,
tablets, laptops, or PCs. Since ordinary language comes
easy for most people, it might also be the medium of choice
for instructing computers. However, achieving this vision is
a formidable challenge with many problems to be solved.

In this paper, we address one of the sub-problems, the
problem of non-sequentiality: humans do not necessarily
enumerate computational steps in the order they need to be
executed. Instead, they provide a narrative in which the im-
portant aspects are emphasized. Additional steps are filled
in out-of-order using temporal expressions such as “before
that, do ...”, “after a, do b”, “at the same time do ...”, etc.
Thus, extracting the total order of steps is a problem that
needs to be solved in order to allow for natural expression
of intent.

We discovered the problem of non-sequentiality when ask-
ing users to write scripts in natural language. The scripts
were meant to describe animations in Alice [2]. Alice is a
3D animation environment intended to teach children pro-
gramming in a dialect of Java and is developed at Carnegie
Mellon University (CMU). Our aim is to replace Alice’s Java
with ordinary English. We are in the process of building Al-
iceNLP, a package that generates Alice programs from nat-
ural language scripts. When working with real scripts, the
generated code sometimes turned out to be incorrect because
AliceNLP did not interpret temporal expressions properly.
Asking users to provide the correct order as in a program-
ming language would be unnatural for them. To support
this aspect of naturalness, we needed to solve the problem
of non-sequentiality.

Roughly, our temporal rectification works as follows. Ini-
tially, AliceNLP enumerates individual steps in textual or-
der. This order is then modified by interpreting clues given
by temporal adverbs and prepositions. The clues are trans-
lated into a set of ordering operators, which are then ap-
plied to the original sequence. An evaluation with 24 scripts
describing three Alice animations showed that 86% of the
temporal clues are correctly detected and the correct time
line was established in 17 of the 24 scripts. At most two
reorderings were missing in the incorrect time lines.

Section 2 introduces AliceNLP and Section 3 reviews re-
lated work. The following sections present our treatment of
temporal expressions and its evaluation.



2. THE ALICENLP PROJECT
AliceNLP is an environment in which users program in

natural language. As other projects before (c.f. Section 3),
we chose a restricted domain to work with: CMU’s Al-
ice. Alice is a programming framework for teaching object-
oriented programming to children [2]. It provides a library
of 3D objects (humans, animals, vehicles, backgrounds, and
so forth) that are used for building and animating a “world”.
An animation is a Java-like script composed by using drag-
and-drop. Eventually, the learner is expected to switch from
drag-and-drop to writing code. AliceNLP adds ordinary En-
glish as programming language.

Our approach is not limited to Alice. AliceNLP’s tools in-
ternally use an ontology that describes the target library; by
replacing the ontology, a different library could be enabled.
The only Alice-dependent components are the ontology cre-
ator and the Alice script generator. We use WordNet [7] to
deal with synonyms and generalizations, so users have a wide
range of expression. At this time, the only requirement is
that the library must use descriptive names, as coding con-
ventions suggest. We believe that our approach is indeed
portable to many different end-user programming environ-
ments.

2.1 Empirical Study
AliceNLP aims at understanding what the end-user wants,

not at teaching a particular programming language. At
the outset of AliceNLP, we needed to know how humans
would program in natural language. To that end, we asked
subjects with and without programming backgrounds to de-
scribe short Alice animations in their own words. We pro-
vided an example animation like the one in Figure 1 together
with a sample description. We explained our project’s goal
and the way subjects were supposed to produce the descrip-
tion. They were told to watch the animation closely and
then to write down the description; pausing and re-playing
was allowed. We provided the vocabulary for the objects
and their capabilities and asked the subjects to describe the
animation as precisely as possible, not to leave out anything,
to stick to the given names, and to describe the actions in
the correct order. We provided hints such as “Start with
the background and do not forget to tell the system where
the objects are in the beginning. Then describe the ani-
mation step by step.” We encouraged them to check their
descriptions after they wrote it.

Some subjects used text editors, others used pen and pa-
per; we removed spelling errors and minor grammatical is-
sues (e.g., using “him” when referring to an animal) but left
the texts untouched otherwise. The texts form a growing
corpus of animation descriptions that drive our research.
The corpus is also used for evaluation purposes.

Initially, we obtained 15 different texts describing a sin-
gle animation: seven written by authors without any pro-
gramming knowledge and eight by authors with program-
ming skills. Even though we thought the task of describing
animations not overly complex, we identified the following
challenges:

• Level of abstraction: Some authors expected too much
from the system and omited actions (e.g., opening a
box before looking into it); other authors included too
much detail (e.g., the look of a person).

• Use of synonyms: Subjects did not stick to the vocab-

Figure 1: Screenshot of an Alice animation.

ulary provided. Instead, they used multiple synonyms
(for example, “bunny” in one sentence and “rabbit” in
the next).

• Incremental scene setup: Some authors described the
initial scene only partially and added objects on-the-fly
as they needed them for the animation’s actions.

• Non-sequentiality: Even though we asked for a step-
by-step description, authors often ignored that. In-
stead, they used temporal expressions to shape the
story line.

In this paper, we concentrate on the challenge of non-
sequentiality. If the animations are translated for execution
on a computer, all animation actions must be strictly or-
dered. In order to obtain more samples, we designed new
animations and asked additional subjects to write descrip-
tions for them. We particularly asked for non-sequential
stories. One subject wrote rather convoluted ones. More
about this case in the evaluation.

Our corpus currently contains ten animations and two
static scenes with several descriptions each; it is available
on the project’s web site1.

2.2 Running Example
Figure 2a shows a simple description of an animation in

natural language; this example will be used throughout the
paper. As shown in Figure 1 there are a cheerleader and
a penguin. At the beginning, the cheerleader cheers. This
frightens the penguin, which then glides away.

The text in Figure 2a is correctly ordered. The text con-
sists of one sentence per action. The labels in parenthesis
are not part of the actual description. The adverb “twice”
triggers a loop. Alice also needs a scene setup (Figure 1).
The text for the setup is excluded for brevity as this paper
focuses on the dynamic part of the script.

Figure 2b describes the same animation as Figure 2a, but
not in sequential order. The actions are marked with the
same labels as before.

To represent the temporal order of actions we use time
lines. Figure 3a shows the timeline for the sequential de-

1https://svn.ipd.kit.edu/trac/AliceNLP

https://svn.ipd.kit.edu/trac/AliceNLP


The cheerleader cheers (a). The penguin flaps (b) its
wings twice. The cheerleader turns (c) to face the pen-
guin. The penguin turns (d) its head right. The penguin
flaps (e) its wings once. The penguin glides (f) away.
Then the cheerleader says (g): “Where are you going?”.

(a) Sequential description

Before the cheerleader turns (c) to face the penguin, the
penguin flaps (b) its wings twice. But at the beginning
of the scene, the cheerleader cheers (a). After the cheer-
leader turns (→c) to face the penguin, the penguin turns
(d) its head right. At the end, the cheerleader says (g):
“Where are you going?”. But before that the penguin
flaps (e) its wings once and then glides (f) away.

(b) Non-sequential description.

Figure 2: Example descriptions.

scription; it is [α, a, b , c, d, e, f, g, ω], where the roman
letters are action labels and α and ω are empty actions that
mark the ends of the time line. Action a, which is the cheer-
leader’s action “cheer”, is the first proper action in the time
line. The non-sequential description has a different time
line to begin with. It is shown in the top of Figure 3b. The
curved lines indicate the reordering necessary to bring it
into the same order as the sequential example. Recall that
actions are labeled the same way in both descriptions.

3. RELATED WORK
Research in natural language understanding deals with

detecting events and putting them on a time line. Puste-
jovsky et al. describe an approach that concentrates on ex-
act points in time [14]. They analyze newspaper articles to
build a question answering system that can handle queries
such as What happened in French politics last week? The
analysis is aware of temporal expressions such as last week
and can resolve relative time specifications in the context of
the article (e.g., publication date, context of the news, re-
ferrals to other events, and so on). The evaluation uses the
TimeBank corpus [12] which is annotated with TimeML [13].
TimeML annotates events and points in time; links between
different annotations form a temporal order of events. Ab-
solute points of time do not occur in our samples. Indeed,
programs, including animations, are expected to be repeated
at arbitrary points.

Schilder analyzes legal documents to create temporal con-
straints for events, e.g., entered the USA before December
31, 2005 [17]. After the analysis one knows that the event
entering happened before Dec. 31, 2005 but one cannot pin-
point the exact point of time. If the document states that
the person entered the USA on Dec. 31, 2005, Schilder can
extract the exact point of time and anchor the event on the
global time line. Again, absolute points on the time line are
not yet needed in our context.

Ohlbach’s system for Computational Treatment of Tem-
poral Notions (CTTN) focuses on terms that describe tem-
poral notions such as noon, tomorrow, and every Tuesday [9].
CTTN translates natural language into numeric points in
time, ranges, and time lines, but the notions modeled do
not occur in our scripts.

There is a body of research on temporal reasoning [16].
For example, Russell et al. describe an event calculus [15].

(a) Time line for the description in Figure 2a

(b) Time line for the description in Figure 2b

Figure 3: Time lines for the example animation.

The emphasis in this work is on automated reasoning using
the calculus, not the extraction of event order from texts.
Our analysis could provide input for temporal reasoning.

Regarding programming in natural language, Pane and
Myers investigated how non-programmers describe program-
ming solutions to make future programming languages more
user-centered [8][10]. Ballard and Biermann present an ap-
proach for natural language programming of matrix oper-
ations called NLC [1]. It allows users to input data and
manipulate matrix entries using English. User interactions
are handled strictly in sequential order.

Price et al. present NaturalJava, a prototypical user inter-
face based on natural language for creating, modifying, and
examining Java programs [11]. One can enter a Java pro-
gram using this system. Essentially, it is a Java dictation
system. The problem of non-sequentiality is not addressed.
An important difference is that AliceNLP users do not need
to write Java code at all.

Liu and Lieberman perform feasibility studies for pro-
gramming in natural language [4]. In paper [6] Mihalcea,
Liu, and Lieberman describe how programming steps, loops,
and comments can be identified in natural language and
mapped to programming constructs. Liu’s and Liberman’s
tool Metafor generates program skeletons from stories [5].
No executable code is generated, so the problem of order
does not arise.

Knöll and Menzini research an approach to natural lan-
guage programming called Pegasus [3]. Pegasus translates
natural language input in an intermediate “idea language”,
which is then compiled into real code. The problem of devi-
ations from sequential order is not addressed.

In summary, advances in temporal reasoning may become
applicable at a later stage of our work. Natural language
processing can produce absolute time lines given exact dates
and times; again, this work may be needed later for natural
language programs dealing with dates and times. As far as
we can tell, research in natural language processing has up
to now not dealt with deviations from strict sequential order
in realistic scripts produced by humans.

4. ANALYZING TEMPORAL
EXPRESSIONS

As mentioned before, people do not always describe action
sequences in strictly sequential order. When they deviate,



Table 1: Signal words for temporal expressions

Temporal Adverbs Temporal Prepositions
after, afterward(s), after-
while, before, beforehand,
concurrently, eventually,
finally, first (of all), firstly,
henceforth, hereafter, here-
upon, initially, last, later
(on), simultaneously, sub-
sequently, synchronously,
then, thereafter, thereon,
thereupon, ultimately,
when, whereupon, while,
plus some archaic forms

after, as, at, before, by, in,
prior to, subsequent

they use temporal expressions that indicate where in the
sequence a given action is to be placed. The temporal ex-
pressions involve before, at the beginning, after, and others.
Temporal expressions modify the textual order.

4.1 Temporal Expressions
We gathered temporal expressions (TEs) in the English

language. TE is the umbrella term for the three types of
expressions in English which describe temporal relations:
Tense, temporal adverbs and temporal prepositions.

Tense alone is not a useful indicator. This is because
tense by itself is not able to define a temporal relation. A
temporal relation could be established if tense changes from
one part of the text to another. However, the tense in the
analyzed texts changes rarely, and if so, incorrectly. Action
descriptions are best written in the present tense.

The other two types are useful for establishing temporal
order. Temporal adverbs include words such as afterwards,
yesterday and now. Temporal prepositions such as ago and
before form temporal relations between actions. To form
our temporal patterns, we use the signal words shown in
Table 1. We omitted terms such as now, yesterday or ago
as they are irrelevant for action descriptions. We are also
excluding simultaneous or parallel actions for the time being.

4.2 Patterns for Temporal Expressions
Signal words are used in certain patterns to form tempo-

ral relations. Every pattern translates to a temporal oper-
ator and refers to two actions. There are three operators:
after(a, b), before(a, b), and at(n, a): For the first two op-
erators, both parameters are actions; the first one is called
anchor action, the second one transfer action. after(a, b)
places the action b directly after the action a; before(a, b)
places the action b directly before the action a. Note that
after(a, b) is not the same as before(b, a) because the trans-
fer action is moved by the operator, whereas the anchor ac-
tion keeps its position on the time line. For example, the
operator after(a, c) transforms the time line [α, a, b, c, ω]
to [α, a, c, b, ω] whereas before(c, a) results in [α, b, a, c, ω].
The operator at(n, a) inserts the action a at the (numerical)
position n of the time line.

The position of a TE in a sentence determines the anchor
and transfer actions. In before a, do b the anchor action is
a and b is the transfer action: before(a, b). If one places
before between the first and the second action, the effect is
reversed: Do a before b is interpreted as before(b, a). A

Table 2: Temporal Patterns and Operators.

Temporal Pattern Operator
At the end, do a. before(ω, a)
In the beginning, do a. after(α, a)

As nth do a. at(n, a)
After a, do b. after(a, b)
Before a, do b. before(a, b)
Do a. Before that, do b. before(a, b)
Before a started, do b. before(a, b)
Do a. Then do b. after(a, b)
When a, do b. at(a, b)

. . .

TE which is used in a subordinate clause behaves like a TE
placed in a sentence which only consists of this subordinate
clause.

If a TE is followed by a word like that, this word has
an impact on the references if it forms an extended TE; the
extended TE has a different temporal meaning than its base:
For example, before that forms a different temporal relation
than before.

Our analysis uses TE patterns. We identified over 20 such
patterns (not counting synonyms) and Table 2 shows an ex-
cerpt of our list.

4.3 Process
The actual approach of identifying the changes of the tem-

poral order of a text is illustrated in Figure 4. First the text
is processed with the Stanford parser [18], which provides
part of speech tags, a phrase-structure tree, and grammat-
ical dependencies between the words. Afterwards the time
line is näıvely initialized, i.e. we arrange the actions in tex-
tual order. Then the text is analyzed sentence-by-sentence
to identify the TEs and incorporate the changes of the tem-
poral order. The process includes a signal word search, the
identification of temporal patterns, a check if a TE is in
a subordinate clause, the determination of the anchor and
transfer actions, and the update of the time line correspond-
ing to the identified changes.

Matching Temporal Patterns.
AliceNLP searches for signal words in the sentence and

checks if they form one of the relevant TE. The particular
TE is important, because each expression forms its temporal
relation in a slightly different way. AliceNLP also determines
the position of the TE relative to the actions in the sentence:
It is important to know whether the TE precedes the actions
or is located between them (e.g., “before a, do b” and “do
a before b”), because that influences which action is to be
moved and where it has to be moved. A pattern consists of
a TE, an anchor action and a transfer action.

Splitting Subordinate Clauses.
AliceNLP uses the position of the TE in the sentence to

determine whether to ignore parts of the sentence: If the
expression is in a subordinate clause, the sentence can be
split at the conjunction; only the part containing the TE
must be analyzed further. If both parts contain a TE, the
analysis proceeds in both parts separately.



Determining Anchor Action and Transfer Actions.
The anchor action can be stated in three different ways:

1. Absolutely with expressions like at the end or rela-
tively with expressions such as before that.

2. As an action in the same sentence: Do a after b.

3. As a reference to an action in a previous sentence: Do
a. After a do b.

One can handle the first two cases with the information
gained during the pattern search alone. The third case is
more complex because the referenced action must be deter-
mined first. Since the formulation of such a reference can
vary greatly and there is no off-the-shelf co-reference anal-
ysis for actions, we concentrated on references that literally
repeat the action. Such a reference is used in the third sen-
tence of the non-sequential example: “After the cheerleader
turns to face the penguin...” Here, the “turn” clause is a
repetition of a clause in the previous sentence (marked with
→ c in Figure 2b).

Rearranging the Time Line.
The effect of the TE is encoded for every pattern; Table 2

indicates where the transfer action should be placed.
If no TE can be found, no rearrangements occur. After

all sentences are analyzed, the resulting time line represents
the recognized temporal order of the actions in the text.
At the moment, TEs that demand simultaneous actions are
not included in our implementation; extending the patterns
appears easy and parallel actions could be included in the
time line with fork and join operators.

4.4 Reordering by Example
We demonstrate our approach with the example in Fig-

ure 2b. For this purpose we assume the first three sentences
to be fully processed and the actions a-d to be correctly
ordered on the time line: [α, a, b, c, d, g, e, f, ω].

We begin the analysis with the sentence At the end, the
cheerleader says: “Where are you going?”. At first, Ali-
ceNLP searches for temporal patterns and identifies at the
end as the only TE in the sentence. It also detects that the
TE is at the beginning of the sentence and that the sentence
contains only one action: says (g). Then it checks whether
the TE is in a subordinate clause (which is not the case).
Now it determines the anchor and transfer actions: The TE
at the end with only one action has no ambiguous references,
because at the end always refers to the final position of the
time line; therefore the anchor action is ω. Since says is the
only action, it has to be the transfer action. With this in-
formation AliceNLP can perform the actual rearrangement
of the actions on the time line: before(ω, g). The resulting
time line is [α, a, b, c, d, e, f, g, ω].

Next, the process analyzes the sentence: But before that
the penguin flaps its wings once and then glides away. Again
AliceNLP searches for temporal patterns and identifies the
two TEs before that and then. The expression before that is
at the beginning of the main clause and the expression then
is at the beginning of the subordinate clause. AliceNLP
splits the sentence at the conjunction (and) and processes
both parts separately.

The first part But before that the penguin flaps its wings
once contains only the action flaps (e) which therefore is the
transfer action of before that. Before that always references

Figure 4: Schematic Overview of the Analysis Approach.

the preceding action, so the anchor action is the action says
(g) in the previous sentence, resulting in before(g, e). The
second part then glides away contains the action glides (f).
Again, this means that the action is the transfer action of
the TE. Then also references the preceding action; in this
case the action flaps of the first part of the sentence. Then
places the transfer action directly after the anchor action:
after(e, f).

In combination, both rearrangements produce the tempo-
ral order [e, f, g]. This order is already in our time line, so
no changes occur.

After the last sentence is analyzed the resulting time line
is the one shown in Figure 3b which enumerates the actions
in the same order as the strictly sequential example.

5. EVALUATION
We evaluated our approach with 24 scripts for three dif-

ferent animations: Descriptions of the animation “Bunny”
contain some TEs but they result in no rearrangements.
Descriptions of the other two animations make heavy use
of TEs and rearrangements because we directly asked the
authors to do so. Some authors wrote descriptions of sev-
eral animations but each author described every animation



Table 3: Evaluation Results for Three Different Animations.

Animation Texts TEs X × ! ↔
Bunny 4 16 15 1 0 1
Cheerleader 10 81 67 5 9 6
Dragon 10 69 60 1 8 2
Total 24 166 142 7 17 9

86% 4% 10%

only once. Table 3 summarizes the results of our evaluation:
It shows how many TEs there are in the texts (TEs), how
many were correctly handled (X), misinterpreted (×), or
missed (!) and how many rearrangements (↔) were needed
to correct the resulting time lines.

At first, we manually analyzed all descriptions for TEs
and resulting rearrangements. Then we checked, whether
the software correctly analyzed the texts. Some TEs do not
result in rearrangements. In total, our software misinter-
preted 4% of the TEs and missed 10%.

To evaluate the resulting time lines we compared them
with the correct time lines. While analyzing the descrip-
tions, we learned that some authors had used so many TEs
that their texts do not describe the animation in the proper
order. Some authors missed (or added) actions that were
(not) in the animation. Therefore we manually created a
correct time line for every description and then compared
the computed time line with it.

A single misinterpreted (or missed) TE can result in many
actions that are not at the correct position in the time
line. Therefore, we cannot simply count the differences be-
tween the correct and the computed time lines: A time line
[a0, a1, a2, a3] with the actions ai would have a difference
count of four with respect to the time line [a3, a0, a1, a2].
Because of that, we decided to count the minimal rearrange-
ments needed to repair the computed time line; this results
in a count of one for the aforementioned example. As Ta-
ble 3 shows, only nine of twenty-four mistakes (seven errors
and 17 misses) surface in the resulting time line. This is
because we start with the näıve time line and some TE do
not change the order of the actions (such as then at the
beginning of a sentence).

Three of the seven errors result from errors of the Stanford
Parser. If the parser delivered correct output, no misinter-
pretations would have occurred. One further error is due to
a formulation that was not allowed: One author wrote that
an action happens before and after another action. Our ap-
proach is able to put the action either before or after the
anchor action; it does not replicate an action because of
TEs. The three remaining errors are misinterpretations of
our software.

Three expressions were not detected because the respec-
tive formulations were not discovered during our analysis of
the English language; these formulations were added to our
software after the evaluation.

One missed expression indicates that an action should be
inserted between two other actions: For example, do a three
times. After the second time, do b. AliceNLP records the
repetition of a as a single action on the time line. It does
not break up the action.

The remaining thirteen missing expressions stem from one
subject only. The subject wrote rather convoluted texts and
often referenced actions in the description. Co-referencing

is not fully implemented in AliceNLP. References that use
the exact same wording can be resolved automatically but
paraphrased actions cannot. Because many of these formu-
lations used the expression after and referenced the directly
preceding action, only few rearrangements had to be made.
Thus, missing these expressions rarely results in an error in
the final time line.

Even though the software did not produce the correct
time line for every text, the results are promising: Over-
all, AliceNLP misses only 10% of the TEs and 142 of the
147 detected TEs are correctly interpreted. Many of the
missed TEs do not lead to a rearrangement, so 17 of 24
time lines are correct. The incorrect time lines can be fixed
with at most two reorderings. Some of the errors can be
resolved by extending the covered expressions; some errors
arise from incorrect input. Most errors can be remedied
with a co-reference analysis for actions; if we provide these
co-references manually, the software can analyze the TEs
correctly. Automatic co-reference analysis for actions and
handling simultaneous actions is future work.

6. CONCLUSION
Determining the correct order of actions in a narrative is

essential for programming in natural language. A simple
heuristics helps in reordering actions. The approach is not
limited to programming in natural language: Automatically
computed time lines can help in understanding error reports
and support requests. Determining the sequence of actions
leading to a failure is crucial to understanding the problem.
Yet, users tend to provide seemingly important information
first and fill in details as they cross their minds. Auto-
matically derived time lines could also be used in question
answering systems and big data analysis.

Even though our results are promising, much work re-
mains to be done: Co-referencing actions in a natural lan-
guage text is far from complete. Including a comprehen-
sive co-reference analysis for actions into our software would
drastically reduce the number of missed expressions. The list
of covered TEs is likely to be expanded in the future.

Simultaneous actions can be detected using TEs as well:
We will integrate patterns such as when a, do b and while
doing a, do b into AliceNLP in future work. The operators
for parallel patterns will fork (and join) the time line to
model simultaneous actions.

7. REFERENCES
[1] B. W. Ballard and A. W. Biermann. Programming in

natural language: NLC as a prototype. In Proceedings
of the 1979 annual conference, ACM ’79, pages
228–237, New York, NY, USA, 1979. ACM.

[2] M. J. Conway. Alice: Easy-to-Learn 3D Scripting for
Novices. PhD thesis, Faculty of the School of
Engineering and Applied Science, University of
Virginia, Dec. 1997.

[3] R. Knöll and M. Mezini. Pegasus: first steps toward a
naturalistic programming language. In Companion to
the 21st ACM SIGPLAN symposium on
Object-oriented programming systems, languages, and
applications, OOPSLA ’06, pages 542–559, New York,
NY, USA, 2006. ACM.

[4] H. Lieberman and H. Liu. Feasibility studies for
programming in natural language. In H. Lieberman,



F. Paternò, and V. Wulf, editors, End User
Development, volume 9 of Human-Computer
Interaction Series, pages 459–473. Springer
Netherlands, 2006.

[5] H. Liu and H. Lieberman. Metafor: visualizing stories
as code. In Proceedings of the 10th international
conference on Intelligent user interfaces, IUI ’05,
pages 305–307, New York, NY, USA, 2005. ACM.

[6] R. Mihalcea, H. Liu, and H. Lieberman. Nlp (natural
language processing) for nlp (natural language
programming). In A. Gelbukh, editor, Computational
Linguistics and Intelligent Text Processing, volume
3878 of Lecture Notes in Computer Science, pages
319–330. Springer Berlin Heidelberg, 2006.

[7] G. A. Miller. Wordnet: a lexical database for english.
Commun. ACM, 38(11):39–41, Nov. 1995.

[8] B. A. Myers. Natural programming: Project overview
and proposal. Technical Report CMU-HCIL-98-100,
Human-computer Interaction Institute, Carnegie
Mellon University, Pittsburg, PA, USA, Jan. 1998.

[9] H. J. Ohlbach. Computational treatment of temporal
notions: The cttn-system. In F. Schilder, G. Katz, and
J. Pustejovsky, editors, Annotating, Extracting and
Reasoning about Time and Events, volume 4795 of
Lecture Notes in Computer Science, pages 72–87.
Springer Berlin Heidelberg, 2007.

[10] J. F. Pane, B. A. Myers, and C. A. Ratanamahatana.
Studying the language and structure in
non-programmers’ solutions to programming problems.
Int. J. Hum.-Comput. Stud., 54(2):237–264, Feb. 2001.

[11] D. Price, E. Rilofff, J. Zachary, and B. Harvey.
NaturalJava: a natural language interface for
programming in Java.

In Proceedings of the 5th international conference on
Intelligent user interfaces, IUI ’00, pages 207–211,
New York, NY, USA, 2000. ACM.

[12] J. Pustejovsky, P. Hanks, R. Sauri, A. See,
R. Gaizauskas, A. Setzer, D. Radev, B. Sundheim,
D. Day, L. Ferro, and M. Lazo. The timebank corpus.
In Proc. of Corpus Linguistics, pages 647–656, 2003.

[13] J. Pustejovsky, B. Ingria, R. Sauri, J. Castano,
J. Littman, R. Gaizauskas, A. Setzer, G. Katz, and
I. Mani. The specification language timeml. The
language of time: A reader, pages 545–557, 2005.

[14] J. Pustejovsky, R. Knippen, J. Littman, and R. Sauri.
Temporal and event information in natural language
text. Language Resources and Evaluation,
39(2-3):123–164, 2005.

[15] S. Russell and P. Norvig. The Artificial Intelligence.
Prentice Hall Press, Upper Saddle River, NJ, USA,
3rd edition, 2010.

[16] S. K. Sanampudi and G. V. Kumari. Temporal
reasoning in natural language processing: A survey.
International Journal of Computer Applications,
1(4):53–57, 2010.

[17] F. Schilder. Event extraction and temporal reasoning
in legal documents. In F. Schilder, G. Katz, and
J. Pustejovsky, editors, Annotating, Extracting and
Reasoning about Time and Events, volume 4795 of
Lecture Notes in Computer Science, pages 59–71.
Springer Berlin Heidelberg, 2007.

[18] R. Socher, J. Bauer, C. D. Manning, and A. Y. Ng.
Parsing with compositional vector grammars. In
Proceedings of the ACL 2013, 2013.


	Introduction
	The AliceNLP Project
	Empirical Study
	Running Example

	Related Work
	Analyzing TemporalExpressions
	Temporal Expressions
	Patterns for Temporal Expressions
	Process
	Reordering by Example

	Evaluation
	Conclusion
	References

