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Abstract— Software refactoring is a very well-studied subject, 

but with the huge gap between omnipresent multicore 

processors and the vast majority of software that has not been 

developed with multicore in mind, it gains new and important 

significance: At what locations should the sequential code be 

refactored? How should this be done for a given location? Is 

the code still correct? And finally: Does it execute faster?  

In this paper we present a refactoring concept to exploit 

parallelizable regions in legacy software. Our concept relies on 

the presence of recurring patterns and identifies potential 

regions, transforms them to parallel versions, tests them for 

correctness and tunes their parallel performance. We show 

early implementation results. 
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I. INTRODUCTION 

Software engineers around the world face the big 
challenge of refactoring legacy software for multicore 
architectures. Whether it’s a workstation, a laptop, a tablet or 
a cell phone: Hardware has shifted to multicore within only 
10 years [1]. The era of free speedups from higher clock 
rates ended in 2002, as David Patterson, president of the 
ACM, already stated in his open letter in 2006. This imposes 
a new burden on every software engineer: How can legacy 
software properly be refactored? Multicore architectures 
might be ubiquitous but the knowledge how to use them is 
not. 

We face a situation where literally billions of lines of 
legacy code have not been developed with multicore in 
mind. It is very unlikely that all sequential code artifacts will 
simply be developed from scratch because this would take 
ages and cost a fortune. So it is radically important to help 
software engineers refactor for the multicore era, as Hans 
Vandierendonck also states in [2]. 

This paper is structured as follows: Section II motivates 
the necessity of this research by naming typical parallel 
errors. In section III we present a refactoring concept that 
consists of three components and builds on the presence of 
recurring patterns. We show the current implementation 
status and evaluation in sections IV and VI. We conclude 
with current drawbacks. In [10] we already conducted an 
empirical study with software from different application 
domains with 131.000 lines of code showing that recurring 
patterns can indeed be identified and used in an automated 
transformation. 

II. MOTIVATION: WHY WE NEED REFACTORING SUPPORT 

FOR EXISTING SOURCE CODE 

In this section we motivate our approach by defining the 
problem scope of a refactoring concept. It is no secret that 
developing parallel software is hard. Even more so, when it 
has to execute both correct and fast.  

Up to this time the precondition that a program would 
always produce the same result under the same input was 
always true, as a sequential program would always execute 
the identical instruction sequence. Today in the multicore era 
this is not the case anymore: Each execution of a parallel 
program emits a different instruction sequence interleaving 
caused by the operating system scheduler. This makes data 
and control flow analysis highly relevant.  

Additionally to that, parallel code implies a whole bunch 
of new program errors engineers have to deal with, like race 
conditions, deadlocks or atomicity violations. Refactoring is 
currently a manual task where software engineers invest a lot 
of time and have to be very skilled. One big challenge we are 
currently facing is to build tools that help to identify 
locations in sequential software where the control or data 
flow can safely be split up and producing a speedup gain. In 
the best case we can find out which hot spot won’t put the 
program correctness at danger. In object-oriented 
environments where references and dynamic binding are 
heavily used this is far from trivial. Even more when we 
don’t focus on small applications like matrix multiplication 
or array operations but general purpose applications. Until 
now, parallelization approaches operate on narrow use cases 
like matrices or loops without data dependencies [3, 4, 5, 6]. 

Parallel code throws this kind of determinism over board. 
Now each parallel execution contains its own control flow 
leading to an instruction interleaving. In fact, a parallel 
section has to be executed only often enough to evoke all 
possible instruction interleaving. This aspect also applies to 
data dependencies across the parallel instruction interleaving: 
If they don’t share data, they can safely be executed in 
parallel. Otherwise the data has to be secured by measures of 
locks to avoid data races. However, deadlocks or atomicity 
violations can still occur. So obviously, control and data 
dependencies limit the parallel potential. 

One example is given in Figure 1. The methods print() 
and main() both write to a global variable. In a sequential 
program the call made by main() only happens after 
print() has returned.  
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Figure 1: Data race example 
When executed in parallel both calls might interfere and 

result in a race condition: The value in the global variable 
depends on which thread executed the statement last. In 
order to solve this issue it is sufficient to assure that the value 
change to the shared variable happens in an atomic 
instruction which can be realized using a lock. With this 
solution the parallel program executes the problematic 
instruction in serial order. But this raises the question 
whether the parallel execution still leads to a speedup, as a 
part of the parallel region will be executed sequentially. To 
conclude, parallel programs are error-prone and it is time-
consuming to deal with the correctness of parallel programs. 

III. REFACTORING CONCEPT 

Figure 2: Pattern-based refactoring process 
We present a parallelization concept for general purpose 

applications that identifies potential parallelism at different 
abstraction layers. We build on the premise that recurring 
patterns can be identified. As we already showed in the 
empirical study in [10], this premise can be satisfied. In this 
paper we extend the focus to a more general refactoring 
concept.  

It is commonly known that there are recurring structures 
in software. As N. Pettersson, W. Lowe and J. Nivre show in 
[7], patterns occur at different levels of a software system. In 
the last years there has been some effort to detect these 
implicit structures for several reasons like improve source 
code quality or parallelism [3, 4, 5, 6]. Unfortunately, this 
research has focused on rather small applications or single 

patterns. In our refactoring concept we want to be able to 
deal with different patterns for a single hot spot and therefore 
define three distinct phases. They are shown in Figure 2. 

 Analysis: As [7] suggests, patterns occur on 
different levels of a software system and have to 
be dealt with individually. In our concept this is 
expressed through the analysis components 
AutoModel, AutoProfiler and AutoFuture: The 
identification at model level needs different 
analyses compared to the identification at the 
level of object instances and methods. 
AutoFuture is a concept that automatically 
transforms and executes methods using the data 
type Future. AutoProfiler is a concept that 
identifies patterns in sequential code and maps 
them onto parallel patterns. AutoModel applies 
the pattern detection concept to diagrams. 

 Architecture Description: In order to be as 
flexible as possible for future parallel libraries 
or runtimes, we feel the need to explicitly 
describe the identified pattern at the respective 
level. The actual transformation process should 
be separated from this. For this we define an 
architectural description language that also 
embodies implicit runtime parameters identified 
by the analysis modules. An example is shown 
in Figure 3 and discussed in section IV. 

 Code Refactoring: This phase consists of the 
two components AutoTADL and AutoTest, the 
first being the actual transformation of 
sequential to parallel code according to the 
specification given in the TADL-language and 
the creation of unit tests for the correctness and 
performance of parallel code [9].  

IV. COMPONENT IMPLEMENTATION 

In this section we present the implementation of the 
analysis module AutoProfiler. AutoFuture has previously 
been published in [10]. TADL, AutoTest and AutoModel 
depicted in the refactoring concept are currently under 
development and will be published in the future. 

In contrast to AutoFuture that makes use of static 
analyses, AutoProfiler uses a dynamic analysis in 
combination with a post-mortem processing of the runtime 
data in order to minimize the runtime footprint of the 
analysis. It currently identifies the architectural pattern 
Master/Worker. We currently extend its analysis to also 
include data dependencies to identify the Pipeline pattern at 
object level. In the first execution of the dynamic analysis, 
AutoProfiler gathers the following key figures from program 
execution: 

 Caller/Callee-graph 

 Method invocation count 

 Method runtime share 
 

With these numbers AutoProfiler creates a runtime graph 
to distinguish methods that rather delegate their work to 
corresponding child methods in the call hierarchy from  
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Figure 3: Refactoring for parallelism 
methods that actually consume this runtime share. 

Together with the invocation count it tries to identify master 
methods, that delegate and worker methods that receive work 
orders.  

Additionally it distinguishes between time that is 
exclusively spent inside a method body (without time shares 
of called methods, exclTS) and the total amount of time 
spent inside a method body (inclusive time share, inclTS). 
One question is, at what hierarchy level to identify master 
and worker methods, as the main function is always a worker 
method in this sense. Our results show that it is useful to 
calculate the ratio of both time shares.  

An example of the analysis in AutoProfiler is given in 
Figure 3. We see three methods with a data dependency 
between line 3 and 5 caused by x. Looking at this piece of 
code, it is unclear if the Pipeline pattern might be better 
suited than Master/Worker. If there was no data dependency 
between lines 3 and 5, main() could be seen as a master in a 
Master/Worker pattern. With the dependency on x it could 
still be refactored as Master/Worker with lines 3 and 4 as 
worker nodes and an implicit barrier before line 5 in order to 
join the parallel control flow back. In a situation where the 
runtime distribution between these worker methods is very 
imbalanced, one of the parallel workers would have to wait 
relatively long which leads to a poor parallelization gain. 

Instead, a Pipeline would be more suited in this situation 
if we knew that the calling method main() was executed 
more than just once. A Pipeline only leads to a performance 
gain, when all stages constantly process items. It might be 
the case that the middle stage operations() is the longest 
running stage and this stage can be split in distinct parallel 
tasks internally. In our concept this is a runtime parameter 
AutoProfiler could identify and emit to a tuning tool [8]. 

V. EVALUATION: PATTERN AP1: MASTER/WORKER 

We conducted an empirical study to evaluate the intuitive 
approach with the following characteristics and iteratively 
adjusted the boundaries for master and worker methods to 
the given values: 

 M1: High inclTS   (> 70%) 

 M2: Low exclTS  (< 5%) 

 M3: Low call number 

 W1: High inclTS  (> 55%) 

 W2: High exclTS  (> 55%) 

 W3: High call number 
 
We used the Parallel Programming Samples benchmark 

that consists of 26 sequential and manually parallelized tools 

[11]. Before, we manually classified the benchmark and 
identified 13 hot spots in 8 tools that made use of 3 different 
parallel patterns (5 x Master/Worker, 7 x Pipeline, 1 x Wave 
Front). We evaluated AutoProfiler by running the respective 
sequential versions. AutoProfiler identified a total of 23 hot 
spots, 9 of which were true positive results. All occurrences 
of the Master/Worker pattern (5 of 5) were identified 
correctly. AutoProfiler’s precision rate is 39.1% and its recall 
rate is 69.2%. 

AutoProfiler identified 10 additional hot spots that had 
not been found in the previous manual parallelization. We 
revised them and found that all of them were calls into the 
class library of the .NET-runtime. 7 of them were GUI 
updates and 3 were calls to indexer or properties. Concerning 
their architecture, GUI updates can generally be seen as a use 
case for AutoFuture, but as they are handled directly by the 
runtime library, an automatic parallelization is currently not 
possible. If we accounted these 7 use cases as true positives 
for AutoProfiler, its precision rate would increase to 69.6% 
and its recall rate to 80%. 

In a next step we want to extend the dynamic analysis to 
also gather data dependencies as this is necessary to identify 
the Pipeline pattern. With this extension AutoProfiler would 
be able to distinguish between task and data parallelism and 
helps to solve the problem of ambiguity shown in Figure 3. 

VI. CAVEATS AND CRITICISM 

Our concept is partly implemented and still work in 
progress. In this section we want to emphasize the open 
issues of our concept and implementation. 

First of all the process is not yet fully implemented but 
reflects our current picture to the best of our knowledge. We 
see the urgency to aid in the typical phases of identifying and 
suggesting relevant hot spots. By automating most of the 
work we will need to show the relevance of our process by 
evaluating the correctness of our results together with the 
achieved speedup. For AutoFuture this could already be 
shown in [10]. In this paper we presented results that indicate 
the soundness of the basic analysis used in AutoProfiler. We 
feel motivated by the results that certain patterns exist across 
application domains and can be found and transformed to a 
parallel version automatically. As for any automated 
approach, we might produce false-positive and false-negative 
results, so we need to discuss the aspects correctness and 
speedup in more detail. 

Our concept dictates that each parallel suggestion is 
being tested by triggering a race detector in order to preserve 
correctness. This cannot prove the absence of parallel errors 
like data races in general, but if a parallel error occurs under 
the given input, it will be found. Also it can be shown that 
the program is free of parallel errors under the given input. In 
order to extend this mechanism to a more generalized 
statement on correctness, the tests would have to be run with 
different inputs. So far we have not worked on input 
coverage. 

If the tool chain produces incorrect output we currently 
try to fix it automatically by error pattern detection using 
AutoTest which is still unpublished. If this is not possible, the 
software engineer is given the information, what variable 
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produces the race. So at the end the engineer has to engage in 
parallel refactoring but we believe that with our process a lot 
of recurring patterns can indeed be identified and refactored 
automatically. 

The analysis modules try to look for very precise 
patterns. If the source code varies, it might not be possible to 
identify the pattern, although it is there. Here, we need more 
research on the boundaries of our analysis modules, but the 
problem stays: When specifying a pattern at some point there 
is a cut-off. Situations, where code is very close to the cut-
off simply cannot be identified. 

AutoFuture currently operates as static analysis and our 
results encourage us to extend it to also encounter runtime 
information. A proper points-to analysis has not yet been 
done automatically, as this is not possible statically. 

One essential drawback is that our concept heavily relies 
on the presence of recurring patterns. The better code is 
written the more we might gain. This also accounts for the 
contrary: If the sequential code is bad and without any best-
practice object-oriented guidelines, then the effort to identify 
patterns might lead to no result. We suggest applying 
traditional refactoring to improve the object-oriented code 
quality first and then run the pattern-based parallelization. 

A general drawback is that any tool chain always bears 
the problem of correctness and speedup. Both goals are 
urgent for the acceptance of a tool chain implementing the 
concept. We see the necessity to produce correct output as 
more important than a high speedup and we believe that with 
our test-based correctness approach we can achieve a high 
acceptance rate.  

The results we expect with our concept are not super 
linear speedups. Our focus is any speedup that can be 
obtained for free. Our results with AutoFuture shows, that 
speedups up to 3.34 on an Intel Core 2 Quad machine can be 
obtained without any knowledge about parallel programming 
which is quite respectable for a fully-automatic process. 

VII. CONCLUSION 

In this paper we presented a parallel refactoring process 
that tries to identify existing architectures and patterns in 
sequential code. We motivated the necessity and urgency of 
this research, as the gap between the omnipresence of 
multicore processors and the lack of knowledge, time and 
tool support is real. 

In our concept we separate between the analysis and 
refactoring phase and introduce an explicit architecture 
language for the following reasons: The presence of patterns 
is independent of their technical implementation. When 
explicitly describing architectures it is easily adapted to 
parallel libraries in the future. Also it is possible to identify 
patterns at different levels of a software system. We 
currently introduce three different analysis modules but in 
the future there might even be more levels and in the 
proposed concept additional modules can easily be 
integrated. With the number of processor cores steadily 
growing a parallelization scheme should be able to adapt to 
changing runtime conditions. The architecture language we 
use enables specifying tuning parameters, such as replicable 

pipeline stages or alternative implementations of parallel 
algorithms. 
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