
Pattern-based refactoring process of sequential source code

Korbinian Molitorisz

Karlsruhe Institute of Technology (KIT)

IPD, Chair Prof. Walter F. Tichy

Germany

molitorisz@kit.edu

Abstract— Software refactoring is a very well-studied subject,

but with the huge gap between omnipresent multicore

processors and the vast majority of software that has not been

developed with multicore in mind, it gains new and important

significance: At what locations should the sequential code be

refactored? How should this be done for a given location? Is

the code still correct? And finally: Does it execute faster?

In this paper we present a refactoring concept to exploit

parallelizable regions in legacy software. Our concept relies on

the presence of recurring patterns and identifies potential

regions, transforms them to parallel versions, tests them for

correctness and tunes their parallel performance. We show

early implementation results.

Keywords: Refactoring; Multicore; Architecture Patterns;

Architecure Description Language; Sequential; Parallel

I. INTRODUCTION

Software engineers around the world face the big
challenge of refactoring legacy software for multicore
architectures. Whether it’s a workstation, a laptop, a tablet or
a cell phone: Hardware has shifted to multicore within only
10 years [1]. The era of free speedups from higher clock
rates ended in 2002, as David Patterson, president of the
ACM, already stated in his open letter in 2006. This imposes
a new burden on every software engineer: How can legacy
software properly be refactored? Multicore architectures
might be ubiquitous but the knowledge how to use them is
not.

We face a situation where literally billions of lines of
legacy code have not been developed with multicore in
mind. It is very unlikely that all sequential code artifacts will
simply be developed from scratch because this would take
ages and cost a fortune. So it is radically important to help
software engineers refactor for the multicore era, as Hans
Vandierendonck also states in [2].

This paper is structured as follows: Section II motivates
the necessity of this research by naming typical parallel
errors. In section III we present a refactoring concept that
consists of three components and builds on the presence of
recurring patterns. We show the current implementation
status and evaluation in sections IV and VI. We conclude
with current drawbacks. In [10] we already conducted an
empirical study with software from different application
domains with 131.000 lines of code showing that recurring
patterns can indeed be identified and used in an automated
transformation.

II. MOTIVATION: WHY WE NEED REFACTORING SUPPORT

FOR EXISTING SOURCE CODE

In this section we motivate our approach by defining the
problem scope of a refactoring concept. It is no secret that
developing parallel software is hard. Even more so, when it
has to execute both correct and fast.

Up to this time the precondition that a program would
always produce the same result under the same input was
always true, as a sequential program would always execute
the identical instruction sequence. Today in the multicore era
this is not the case anymore: Each execution of a parallel
program emits a different instruction sequence interleaving
caused by the operating system scheduler. This makes data
and control flow analysis highly relevant.

Additionally to that, parallel code implies a whole bunch
of new program errors engineers have to deal with, like race
conditions, deadlocks or atomicity violations. Refactoring is
currently a manual task where software engineers invest a lot
of time and have to be very skilled. One big challenge we are
currently facing is to build tools that help to identify
locations in sequential software where the control or data
flow can safely be split up and producing a speedup gain. In
the best case we can find out which hot spot won’t put the
program correctness at danger. In object-oriented
environments where references and dynamic binding are
heavily used this is far from trivial. Even more when we
don’t focus on small applications like matrix multiplication
or array operations but general purpose applications. Until
now, parallelization approaches operate on narrow use cases
like matrices or loops without data dependencies [3, 4, 5, 6].

Parallel code throws this kind of determinism over board.
Now each parallel execution contains its own control flow
leading to an instruction interleaving. In fact, a parallel
section has to be executed only often enough to evoke all
possible instruction interleaving. This aspect also applies to
data dependencies across the parallel instruction interleaving:
If they don’t share data, they can safely be executed in
parallel. Otherwise the data has to be secured by measures of
locks to avoid data races. However, deadlocks or atomicity
violations can still occur. So obviously, control and data
dependencies limit the parallel potential.

One example is given in Figure 1. The methods print()
and main() both write to a global variable. In a sequential
program the call made by main() only happens after
print() has returned.

calculate() print()solve()

(a, b)

(x)

statements()

wr

(x)

main()

w

Figure 1: Data race example
When executed in parallel both calls might interfere and

result in a race condition: The value in the global variable
depends on which thread executed the statement last. In
order to solve this issue it is sufficient to assure that the value
change to the shared variable happens in an atomic
instruction which can be realized using a lock. With this
solution the parallel program executes the problematic
instruction in serial order. But this raises the question
whether the parallel execution still leads to a speedup, as a
part of the parallel region will be executed sequentially. To
conclude, parallel programs are error-prone and it is time-
consuming to deal with the correctness of parallel programs.

III. REFACTORING CONCEPT

Figure 2: Pattern-based refactoring process
We present a parallelization concept for general purpose

applications that identifies potential parallelism at different
abstraction layers. We build on the premise that recurring
patterns can be identified. As we already showed in the
empirical study in [10], this premise can be satisfied. In this
paper we extend the focus to a more general refactoring
concept.

It is commonly known that there are recurring structures
in software. As N. Pettersson, W. Lowe and J. Nivre show in
[7], patterns occur at different levels of a software system. In
the last years there has been some effort to detect these
implicit structures for several reasons like improve source
code quality or parallelism [3, 4, 5, 6]. Unfortunately, this
research has focused on rather small applications or single

patterns. In our refactoring concept we want to be able to
deal with different patterns for a single hot spot and therefore
define three distinct phases. They are shown in Figure 2.

 Analysis: As [7] suggests, patterns occur on
different levels of a software system and have to
be dealt with individually. In our concept this is
expressed through the analysis components
AutoModel, AutoProfiler and AutoFuture: The
identification at model level needs different
analyses compared to the identification at the
level of object instances and methods.
AutoFuture is a concept that automatically
transforms and executes methods using the data
type Future. AutoProfiler is a concept that
identifies patterns in sequential code and maps
them onto parallel patterns. AutoModel applies
the pattern detection concept to diagrams.

 Architecture Description: In order to be as
flexible as possible for future parallel libraries
or runtimes, we feel the need to explicitly
describe the identified pattern at the respective
level. The actual transformation process should
be separated from this. For this we define an
architectural description language that also
embodies implicit runtime parameters identified
by the analysis modules. An example is shown
in Figure 3 and discussed in section IV.

 Code Refactoring: This phase consists of the
two components AutoTADL and AutoTest, the
first being the actual transformation of
sequential to parallel code according to the
specification given in the TADL-language and
the creation of unit tests for the correctness and
performance of parallel code [9].

IV. COMPONENT IMPLEMENTATION

In this section we present the implementation of the
analysis module AutoProfiler. AutoFuture has previously
been published in [10]. TADL, AutoTest and AutoModel
depicted in the refactoring concept are currently under
development and will be published in the future.

In contrast to AutoFuture that makes use of static
analyses, AutoProfiler uses a dynamic analysis in
combination with a post-mortem processing of the runtime
data in order to minimize the runtime footprint of the
analysis. It currently identifies the architectural pattern
Master/Worker. We currently extend its analysis to also
include data dependencies to identify the Pipeline pattern at
object level. In the first execution of the dynamic analysis,
AutoProfiler gathers the following key figures from program
execution:

 Caller/Callee-graph

 Method invocation count

 Method runtime share

With these numbers AutoProfiler creates a runtime graph
to distinguish methods that rather delegate their work to
corresponding child methods in the call hierarchy from

Analysis

AutoModel

AutoProfiler

AutoFuture

A
rc

h
ite

c
tu

re
D

e
s
c
rip

tio
n

Code Refactoring

AutoTest

AutoTADL

Figure 3: Refactoring for parallelism
methods that actually consume this runtime share.

Together with the invocation count it tries to identify master
methods, that delegate and worker methods that receive work
orders.

Additionally it distinguishes between time that is
exclusively spent inside a method body (without time shares
of called methods, exclTS) and the total amount of time
spent inside a method body (inclusive time share, inclTS).
One question is, at what hierarchy level to identify master
and worker methods, as the main function is always a worker
method in this sense. Our results show that it is useful to
calculate the ratio of both time shares.

An example of the analysis in AutoProfiler is given in
Figure 3. We see three methods with a data dependency
between line 3 and 5 caused by x. Looking at this piece of
code, it is unclear if the Pipeline pattern might be better
suited than Master/Worker. If there was no data dependency
between lines 3 and 5, main() could be seen as a master in a
Master/Worker pattern. With the dependency on x it could
still be refactored as Master/Worker with lines 3 and 4 as
worker nodes and an implicit barrier before line 5 in order to
join the parallel control flow back. In a situation where the
runtime distribution between these worker methods is very
imbalanced, one of the parallel workers would have to wait
relatively long which leads to a poor parallelization gain.

Instead, a Pipeline would be more suited in this situation
if we knew that the calling method main() was executed
more than just once. A Pipeline only leads to a performance
gain, when all stages constantly process items. It might be
the case that the middle stage operations() is the longest
running stage and this stage can be split in distinct parallel
tasks internally. In our concept this is a runtime parameter
AutoProfiler could identify and emit to a tuning tool [8].

V. EVALUATION: PATTERN AP1: MASTER/WORKER

We conducted an empirical study to evaluate the intuitive
approach with the following characteristics and iteratively
adjusted the boundaries for master and worker methods to
the given values:

 M1: High inclTS (> 70%)

 M2: Low exclTS (< 5%)

 M3: Low call number

 W1: High inclTS (> 55%)

 W2: High exclTS (> 55%)

 W3: High call number

We used the Parallel Programming Samples benchmark

that consists of 26 sequential and manually parallelized tools

[11]. Before, we manually classified the benchmark and
identified 13 hot spots in 8 tools that made use of 3 different
parallel patterns (5 x Master/Worker, 7 x Pipeline, 1 x Wave
Front). We evaluated AutoProfiler by running the respective
sequential versions. AutoProfiler identified a total of 23 hot
spots, 9 of which were true positive results. All occurrences
of the Master/Worker pattern (5 of 5) were identified
correctly. AutoProfiler’s precision rate is 39.1% and its recall
rate is 69.2%.

AutoProfiler identified 10 additional hot spots that had
not been found in the previous manual parallelization. We
revised them and found that all of them were calls into the
class library of the .NET-runtime. 7 of them were GUI
updates and 3 were calls to indexer or properties. Concerning
their architecture, GUI updates can generally be seen as a use
case for AutoFuture, but as they are handled directly by the
runtime library, an automatic parallelization is currently not
possible. If we accounted these 7 use cases as true positives
for AutoProfiler, its precision rate would increase to 69.6%
and its recall rate to 80%.

In a next step we want to extend the dynamic analysis to
also gather data dependencies as this is necessary to identify
the Pipeline pattern. With this extension AutoProfiler would
be able to distinguish between task and data parallelism and
helps to solve the problem of ambiguity shown in Figure 3.

VI. CAVEATS AND CRITICISM

Our concept is partly implemented and still work in
progress. In this section we want to emphasize the open
issues of our concept and implementation.

First of all the process is not yet fully implemented but
reflects our current picture to the best of our knowledge. We
see the urgency to aid in the typical phases of identifying and
suggesting relevant hot spots. By automating most of the
work we will need to show the relevance of our process by
evaluating the correctness of our results together with the
achieved speedup. For AutoFuture this could already be
shown in [10]. In this paper we presented results that indicate
the soundness of the basic analysis used in AutoProfiler. We
feel motivated by the results that certain patterns exist across
application domains and can be found and transformed to a
parallel version automatically. As for any automated
approach, we might produce false-positive and false-negative
results, so we need to discuss the aspects correctness and
speedup in more detail.

Our concept dictates that each parallel suggestion is
being tested by triggering a race detector in order to preserve
correctness. This cannot prove the absence of parallel errors
like data races in general, but if a parallel error occurs under
the given input, it will be found. Also it can be shown that
the program is free of parallel errors under the given input. In
order to extend this mechanism to a more generalized
statement on correctness, the tests would have to be run with
different inputs. So far we have not worked on input
coverage.

If the tool chain produces incorrect output we currently
try to fix it automatically by error pattern detection using
AutoTest which is still unpublished. If this is not possible, the
software engineer is given the information, what variable

?

1: main()
2: {
3: x=solve(a,b);
4: operations();
5: print (x);
6: }

main

solve

operations

print

Master/Worker

a, b
solve operations print

Pipeline

x x

produces the race. So at the end the engineer has to engage in
parallel refactoring but we believe that with our process a lot
of recurring patterns can indeed be identified and refactored
automatically.

The analysis modules try to look for very precise
patterns. If the source code varies, it might not be possible to
identify the pattern, although it is there. Here, we need more
research on the boundaries of our analysis modules, but the
problem stays: When specifying a pattern at some point there
is a cut-off. Situations, where code is very close to the cut-
off simply cannot be identified.

AutoFuture currently operates as static analysis and our
results encourage us to extend it to also encounter runtime
information. A proper points-to analysis has not yet been
done automatically, as this is not possible statically.

One essential drawback is that our concept heavily relies
on the presence of recurring patterns. The better code is
written the more we might gain. This also accounts for the
contrary: If the sequential code is bad and without any best-
practice object-oriented guidelines, then the effort to identify
patterns might lead to no result. We suggest applying
traditional refactoring to improve the object-oriented code
quality first and then run the pattern-based parallelization.

A general drawback is that any tool chain always bears
the problem of correctness and speedup. Both goals are
urgent for the acceptance of a tool chain implementing the
concept. We see the necessity to produce correct output as
more important than a high speedup and we believe that with
our test-based correctness approach we can achieve a high
acceptance rate.

The results we expect with our concept are not super
linear speedups. Our focus is any speedup that can be
obtained for free. Our results with AutoFuture shows, that
speedups up to 3.34 on an Intel Core 2 Quad machine can be
obtained without any knowledge about parallel programming
which is quite respectable for a fully-automatic process.

VII. CONCLUSION

In this paper we presented a parallel refactoring process
that tries to identify existing architectures and patterns in
sequential code. We motivated the necessity and urgency of
this research, as the gap between the omnipresence of
multicore processors and the lack of knowledge, time and
tool support is real.

In our concept we separate between the analysis and
refactoring phase and introduce an explicit architecture
language for the following reasons: The presence of patterns
is independent of their technical implementation. When
explicitly describing architectures it is easily adapted to
parallel libraries in the future. Also it is possible to identify
patterns at different levels of a software system. We
currently introduce three different analysis modules but in
the future there might even be more levels and in the
proposed concept additional modules can easily be
integrated. With the number of processor cores steadily
growing a parallelization scheme should be able to adapt to
changing runtime conditions. The architecture language we
use enables specifying tuning parameters, such as replicable

pipeline stages or alternative implementations of parallel
algorithms.

Acknowledgements. We thank Siemens Corporate

Technologies for their financial support. We also appreciate
the support of the excellence initiative at the Karlsruhe
Institute of Technology.

VIII. REFERENCES

[1] R. R. Schaller, Moore's law: past, present and future, IEEE
Spectrum, vol. 34, pp. 52–59, 1997

[2] H. Vandierendonck, T. Mens, Averting the Next Software
Crisis, Journal Computer, vol. 44, pp. 88–90, 2011

[3] G. Tournavitis, Z. Wang, B. Franke, M. F. P. O’Boyle,
Towards a holistic approach to auto-parallelization,
Proceedings of the 2009 Conference on Programming
Languages Design and Implementation, pp. 177–187, 2009

[4] G. Tournavitis, B. Franke, “Semi-automatic extraction and
exploitation of hierarchical pipeline parallelism using
profiling information”, Proceedings of the 19th International
Conference on Parallel architectures and compilation
techniques, pp. 377–388, 2010

[5] C. Hammacher, K. Streit, S. Hack, A. Zeller, Profiling Java
programs for parallelism, Proceedings of the 2009 ICSE
Workshop on Multicore Software Engineering, pp. 49–55,
2009

[6] S. Rul, H. Vandierendonck, K. De Bosschere, Function level
parallelism driven by data dependencies, SIGARCH
Computer Architecture News, vol. 35, pp. 55–62, 2007

[7] N. Pettersson, W. Lowe, J. Nivre, Evaluation of Accuracy in
Design Pattern Occurrence Detection, IEEE Transactions on
Software Engineering, vol. 36, pp. 575–590, 2010

[8] C. A. Schaefer, V. Pankratius, W. F. Tichy, Engineering
parallel applications with tunable architectures, Proceedings
of the 32nd ACM/IEEE International Conference on Software
Engineering, pp. 405-414, 2010

[9] J. Schimmel, K. Molitorisz, W. Tichy, Race detection by
exhaustive unit test-based testing of parallel programs,
unpublished

[10] K. Molitorisz, J. Schimmel, F. Otto, Automatic parallelization
using AutoFutures,International Conference on Multicore
Software Engineering, Performance, and Tools, pp. 78–81,
2012

[11] Microsoft Developer Network, Samples for parallel
programming with the .NET Framework, 2011,
http://code.msdn.microsoft.com/windowsdesktop/Samples-
for-Parallel-b4b76364

[12] M. Baskaran, N. Vydyanathan, U.K. Bondhugula, J.
Ramanujam, A. Rountev, P. Sadayappan, Compiler-assisted
dynamic scheduling for effective parallelization of loop nests
on multicore processors, Proceedings of the 14th ACM
SIGPLAN symposium on Principles and practice of parallel
programming, pp. 219–228, 2009

[13] J. Mak, K Faxén, S. Janson, A. Mycroft, Estimating and
exploiting potential parallelism by source-level dependence
profiling, Proceedings of the 16th international Euro-Par
conference on Parallel processing, pp. 26–37, 2010

[14] J. A. Poovey, B. Railing, T. M. Conte, Parallel pattern
detection for architectural improvements, Proceedings of the
3rd USENIX conference on Hot topic in parallelism, page 12,
2011

[15] B. Chan, T. S. Abdelrahman, Run-time support for the
automatic parallelization of Java programs, Journal of
Supercomputing, vol. 28, pp. 91–117, 2004

