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Mathias Landhäußer, Adrian Genaid
Karlsruhe Institute of Technology

Karlsruhe, Germany
landhaeusser@kit.edu, adrian.genaid@ira.uka.de

Abstract—User Stories are short feature descriptions from
the user’s point of view. Functional tests ensure that the feature
described by a User Story is fully implemented.

We present a tool that builds an ontology for code and
links completed User Stories in natural language with the
related code artifacts. The ontology also contains links to
API components that were used to implement the functional
tests. Preliminary results show that these links can be used to
recommend reusable test steps for new User Stories.
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I. INTRODUCTION

Agile development processes have been on the rise since
the early 2000s. Informal documents and sketches dominate
the requirement elicitation process. One early artifact of
agile development processes is the User Story (see Fig. 1). It
depicts a feature of the software from a stakeholder’s point
of view, while it is not as detailed and extensive as a Use
Case [1].

Developers implement the needed functionality and write
unit tests (and integration tests). Independently, testers write
structured natural language test scripts and describe the
usage of the new functionality step-by-step (in so called
test steps). Also, test steps can define the desired outcome
and/or the desired behavior of the software. Test steps that
are identical for a number of stories should be reused instead
of reimplemented. However, the manual process of finding
reusable test steps is tedious and time consuming.

We propose to build an ontology of the entire code base
together with the completed User Stories and their respective
functional tests. This ontology can then be used to retrieve
similar test steps to ease test code reuse. Furthermore the
ontology can provide guidance for finding the parts of the
API that are likely to be needed when implementing a new
test script.

The remainder of this paper is structured as follows: Sec-
tion II explores related work. Section III illustrates our ap-
proach and Section IV shows preliminary results. Section V
concludes this paper and subsumes future enhancements as
well as future opportunities.

II. RELATED WORK

In this section, we focus on Behavior Driven Development
(BDD) and behavior driven testing. Also we review some
work on building and using software ontologies.
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Figure 1. A Development and Test Process using User Stories.

A. Behavior Driven Development

BDD is an agile development technique that concentrates
on specifying and testing a system in a new way: It focuses
on the desired behavior of the new software as defined by
stakeholders in natural language [2], [3]. User Stories lay
the foundation of the process: They are a short description
of a new feature and should be written according to the
template As a <role>, I want <some goal> so that <some
reason> (see Listing 1). User Stories are also used for
testing: Test scripts illustrate the story’s new feature and
show the expected behavior of the software. They ensure
that the functionality and behavior of the software meets
the stakeholder’s criteria. As you can see in Listing 2, a test
script comprises several test steps, which explicitly define
either preconditions (Given), actions (When), or expected
results (Then).

Scripts for functional tests can be written in Gherkin,
“a Business Readable, Domain Specific Language that lets
you describe software’s behaviour without detailing how
that behaviour is implemented”1 and there are grammars
for many spoken languages. There are tools that translate
Gherkin scripts into code stubs; e.g. SpecFlow for the .NET
platform [4]. For every test step, there is one stub method
generated that either asks for program state setup (Given),
actions (When), or for result verification (Then). Provided
with these stubs, the developer has to fill the gaps with the
needed API calls to exercise the steps. The resulting test
code can be run with a test environment that resembles the
well-known xUnit test environments. Succeeding functional
tests mark the completion of the implementation of the User

1https://github.com/cucumber/cucumber/wiki/Gherkin,
accessed: 03/23/2012.

https://github.com/cucumber/cucumber/wiki/Gherkin/2060db4689db53e1d67334bf1c8a56e412e7185c


As a string manipulation library user, I want to
have a fancycase method in order to gain
fancy cased strings.

* The fancy case method should print the
characters of a string alternating in upper
and lower case.

* Whitespace should be ignored.

Listing 1. A Simple User Story for String Manipulation.

Scenario: Fancy strings
Given I have the string "BDD is fun"
When I put it in fancy case
Then I see the string "BdD iS fUn"

Listing 2. A Simple Test Script for String Manipulation.

Story. While BDD tools help a great deal when it comes to
translating the specification into test methods, there is a lack
of tool support for finding reusable test steps.

B. Software Ontology Building and Population

Mining software requires that the software itself (i.e.
source code) and related artifacts such as documentation
and requirements documents are stored in a machine read-
able format. Both, formal and informal sources should be
analyzed and prepared for the storage in a formally defined
structure. Ideally, all artifacts are stored in a single database
and can be queried using a single interface. Ontologies offer
exactly that: They allow to specify concepts and relations
and thus are an “explicit specification of a conceptualiza-
tion” [5]. They are not limited to the specification of the
concepts, but also allow for storing (or rather defining)
instances of these concepts.

Queries to ontologies can not only ask for explicitly
recorded, but also for inferred information. An example for
information that can be inferred are transitive relations: If
a relation rel holds between the elements a and b, and
b and c respectively and rel is transitive, then we can
infer that rel holds between a and c also. Such inference
tasks are carried out by a reasoner. We use OWL2 [6] for the
definition of the ontology. We chose Pellet [7] as reasoner
because it proved to be reliable and fast on our ontology ([8]
lists reasoners for OWL2). Ontologies can be queried using
a SPARQLDL query engine [9], which uses the reasoner for
answering questions.

Zhang et al. link ontologies of design documentation and
source code [10]. Their system SOUND supports reverse
engineering tasks. It allows easy querying for source code
and documentation elements such as instances of a specific
design pattern. Khamis et al. extract source code comments,
process them using a natural language pipeline and popu-
late an ontology [11]. During the processing, they calculate
metrics to assess source code comment quality [12]. To the
best of our knowledge, there is no previous work that aims
directly at easing test implementation or API retrieval for
natural language requirements.
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Figure 2. An Overview of Sources for Ontology Population.

Overlapping and/or complementary ontologies can be
linked (ontology matching or alignment) [13]. A source code
ontology such as ours could be aligned with one from a bug
tracking database or a version control system. Especially
the latter could provide important information about test
step implementation. As developers are hardly supported
in writing commit messages, we cannot rely on commit
messages for linking source code modifications with User
Stories or requirements respectively. Furthermore, we are
less interested in new or modified production code, but more
in reusable test code.

III. EXPLOITING A COMBINED KNOWLEDGE BASE FOR
CODE AND USER STORIES

Given that the User Stories and test scripts are written
by non-technical staff (likely a member of the operating
department), the natural language representation of the test
steps can be inconsistent. Developers must know the soft-
ware under test by heart to efficiently implement the tests.
When different developers implement similar, overlapping,
or equal test steps, one cannot take that knowledge for
granted; developers then have to search the other test scripts
for similar steps and/or the code base for the needed API
interfaces.

To address the challenge of retrieving test steps that could
be reused, we use an ontology that provides a structure
for elements of source code (similar to Zhang’s source
code ontology [10]). Fig. 2 illustrates the population sources
and their connections. We built F-TRec (Functional Test
Recommender), a prototype for C# and SpecFlow tests
which we evaluate in Sect. IV. In the following, we describe
how we build and use the ontology.

A. Ontology Structure and Population

Source Code: We decided not to use classic vector
space models since we plan to extend the retrieval algorithms
to use API information (e.g. call graphs) and build an
integrated knowledge base for the use in software projects.
To allow a precise representation, the ontology provides
distinct concepts for source code elements and relations.
To populate the ontology, we first parse the project source
code (production code as well as test code). We traverse
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Figure 3. A Parse Tree containing a Compound Noun.

the abstract syntax tree and record all structural elements
(e.g. classes, methods and so on). Then, we fill in the
links between the extracted elements according to the source
code structure. Furthermore, we analyze implementations
of methods and similar elements to identify further links.
Thus, the resulting ontology parallels the source code in
structure. Here, we consider method calls, object creations,
and inheritance relations.

Test Scripts: Secondly, we include test scripts into the
ontology. Since for every user story there is a test script and
a corresponding test implementation, test scripts are an ideal
bridge between source code and User Stories (c.f. III-B). A
test script consists of a feature title and test scenarios. A test
scenario is described by a title and test steps (c.f. Listing 2);
a test step is a sentence in natural language beginning with
Given, When or Then. All test script elements are added to
the ontology; the order of the steps is encoded in relations.

Requirements: The final ingredient for our ontology
are natural language elements (NLEs) that we extract from
User Stories and test steps. At the moment, we only extract
(compound) nouns and verbs. We identify these elements
by parsing the text sentence-wise with the Stanford factored
parser [14].

The output of the parser is a parse tree representing the
sentence structure; you can see the tree for the phrase This
is described in the Excel sheet in Fig. 3. The root node
S represents the entire phrase (sentence) and the leaves
represent the words. The inner nodes describe the structure
of the phrase; an inner node directly before a leaf stands for
the part-of-speech tag (POS-tag) of the adjacent word leaf.
Verbs are tagged with a POS-tag that starts with VB; POS-
tags for nouns start with NN. Compound nouns are groups
of nouns that are siblings in a noun phrase (NP) subtree, e.g.
Excel sheet in Fig. 3. We extract non-compound nouns and
verbs directly. Since we want to store normalized NLEs in
our ontology, we lemmatize the extracted words; e.g., the
passive verb is described is reduced to its lemma describe.

Then we employ the Stanford Named Entity Recog-
nizer [15] to identify and filter person names that occur in the
stories. Furthermore, the extracted NLEs have to be filtered,

lemmatizer
parser

named entity
recognizer

test script

User Story

ontology

natural
language
elements

(NLE)

normalized
NLEs

filtered
NLEs blacklist

Figure 4. F-TRec’s Natural Language Element Extraction Process.

as some of them do not contain valuable information (e.g.
verbs like to be, pronominals, and nouns like February).
Since the list of such NLEs is project specific, we admin-
ister it manually. Fig 4 illustrates the processing of natural
language sources through a NLP pipeline to extract, filter,
and add NLEs to the ontology.

B. Linking Stories and Code

For every User Story there is a test script that can be
compiled into code stubs with SpecFlow. So every NLE
that is extracted from a User Story is linked with the
corresponding test script. Furthermore, a NLE that occurs
in a test step is linked directly with that step. So a NLE in
our ontology is linked either with a test script or a test step
or both. NLEs linked with a test script are linked with all
test steps of that script transitively.

Test steps exist in our ontology twice: One time as part
of a test script and a second time as a C# test method.
We can link these artifacts, because SpecFlow annotates
the C# methods with the step text. SpecFlow eases the
reuse of test steps in that it allows parameterized test step
implementations. Then the annotation does not contain the
natural language test step but a parameterized variant. The
annotation for a reusable step implementation of line two
in Listing 2 would be Given("I have the string
(.*)"). We use the annotation to identify the matching
implementation for a test step and link the step with its
implementation.

C. Using the Knowledge

Given a new User Story, we extract all NLEs just as we
did during ontology population; we refer to them as query
NLEs. Then we search the knowledge base for all test steps
that are linked with query NLEs. Listing 3 shows a query
for steps associated with the query NLE button.

The result is very much like the one, a Boolean retrieval
would give. The number of results can be large, thus we
must sort the results by relevance. We assume that a test step,
that is linked to more than one query NLE, is more likely
to be helpful than a single-linked step. Simply counting the
number of links is not sufficient, since some NLEs are used
in many stories and thus bear less importance than others.



PREFIX o : <h t t p : / / o n t o s e r v / p r o j e c t 1#>
SELECT ? s t e p ? s t e p t y p e ? s t e p t e x t WHERE {

Type ( ? n le , o : S t o r y C o n c e p t ) ,
P r o p e r t y V a l u e ( ? n le , o : hasName , ” b u t t o n ” ) ,
P r o p e r t y V a l u e ( ? n le , o : h a s S t e p R e f e r e n c e , ? s t e p ) ,
P r o p e r t y V a l u e ( ? s t e p , o : h a s T e s t I m p l e m e n t a t i o n , ? impl ) ,
P r o p e r t y V a l u e ( ? impl , o : h a s A t t r i b u t e , ? a t t r ) ,
P r o p e r t y V a l u e ( ? a t t r , o : h a s A t t r i b u t e V a l u e , ? s t e p t e x t ) ,
P r o p e r t y V a l u e ( ? a t t r , o : hasName , ? s t e p t y p e ) ,

}

Listing 3. A SPARQLDL-Query for Test Steps that are Connected to the
Natural Language Entity button.

In F-TRec, we use the term frequency tfi,j of a NLE
i in a test step j and the inverse document frequency idfi
to weight the NLEs: The idfi is calculated as idfi = log N

ni
,

where N is the number of all resulting test steps and ni is the
number of test steps that contain NLE i. Together with the
term frequency the weight is wi,j = tfi,j ∗ idfi (c.f. [16]).
Since tfi,j is (almost) always one2, we refine the weight
by multiplying it with the NLE’s frequency rank regarding
the new User Story. We use the frequency rank instead of
the plain frequency to reduce the impact of frequent NLEs
further. Finally, the weights of all query NLEs, that are
linked with a given test step, are summed up to represent its
relevance score. Afterwards, we sort the result set according
to the relevance scores.

IV. PRELIMINARY RESULTS

We conducted a small case study to examine the fitness
of our approach in which we analyzed an industry project
with approx. 300 KLOC of code, 10 KLOC of which are
functional test code. In total, we examined 39 completed
User Stories with associated test scripts. To test whether
F-TRec can provide useful recommendations, we built the
ontology for the project and the User Stories. The last seven
User Stories belong to the most recent sprint and were
taken as test examples. For every User Story, we created the
ontology without the story’s information; then we searched
for relevant test steps. As the seven test examples are already
completed and tested, we can determine if the retrieved test
steps were actually used.

Table I shows the results of our case study. For every test
step in the result set, we checked whether it is in the gold
standard. Returned steps that were expected were counted
as true positives (TP), otherwise as false positives (FP).
Expected steps not contained in the result set need extra
consideration. Steps, that are contained in the ontology, but
not in the result set, were counted as false negatives (FN).
Steps that were implemented especially for testing the given
User Story are not contained in the ontology and therefore
are missing in the result set. We counted these steps as new,
as we cannot expect F-TRec to deliver them; also the new
steps were not considered when determining recall.

2Test steps are short and it is unlikely that a NLE is used in a step more
than once.

For the seven test stories, many of the reusable steps
were found using the NLEs from the story. Additionally,
F-TRec recommended test steps with high relevance scores
that could have been considered for implementation reuse,
but where implemented anew in the gold standard. This also
supports the usefulness of F-TRec.

The number of retrieved relevant steps depends on the
nature of a User Story. A story that describes an extension
of existing functionality is more likely to be testable with
many existing steps (e.g. program state setup steps). New
functionality that barely builds upon existing code will not
use many existing test steps. In this case, F-TRec cannot
find many true positives. This is especially the case for
the stories one, two, six, and seven. We expect this effect
to decrease as the project matures and additional stories
enhance or complement existing features without the need
of implementing isolated or base functionality.

Weighting the test steps as described in Sect. III-C is too
simplistic and needs to be improved in the future. Due to
that, we do not cut off the result list by now and hence the
precision is rather low.

Manually providing links between synonymous NLEs, we
were able to improve the results. We added two synonym
relations to the ontology which affected stories one and four.
Marking these synonyms increased precision and recall by
138 percent and 65 percent respectively (in average for these
two stories). It seemed that the identified synonyms were not
used to make the specification more “readable”, but that the
cause of synonym usage lies in the different vocabularies of
the stakeholders – especially those with different roles in the
development process. For example, a developer might talk
about a plot canvas, while a user refers to a plot window.
This finding calls for the usage of a glossary which not
only defines a common vocabulary but also can be leveraged
during step retrieval. As synonyms of technical and domain-
specific terms are hard to detect, domain experts could help
in maintaining the glossary during development.

Also, the handling of compound nouns can be improved.
For example, the compound noun data selection view would
only be linked with stories if they use the same compound
noun. If the context of data selection is known to a human
reader, the concept could simply be referred to by view
without prepending data selection explicitly. Then F-TRec
cannot establish a connection between the query NLE view
and the actual concept data selection view.

V. CONCLUSION AND FUTURE WORK

We proposed a novel approach to recommend reusable
test steps to testers and developers. F-TRec is a prototypi-
cal implementation and populates an ontology with source
code and natural language elements of User Stories and
test scripts. Using this ontology, F-TRec retrieves relevant
reusable test steps for new User Stories; besides the actually



Table I
RESULTS OF THE CASE STUDY.

Story Test Steps Recall PrecisionTP FP FN new
1 7 55 3 9 70 % 11.3 %
2 0 0 0 4 - -
3 3 33 0 0 100 % 8.3 %
4 3 63 4 3 42.9 % 4.6 %
5 16 71 2 0 88.9 % 18.4 %
6 1 41 0 9 100 % 2.4 %
7 1 63 0 2 100 % 1.6 %
Totals 31 326 9 31 77.5 % 8.68 %

used test steps, we were able to identify steps that could have
been reused but were reimplemented.

Even though first results are encouraging, much work
remains: The precision of our retrieval is rather low –
we plan to use context information of User Stories to
further improve the ranking of retrieved steps (e.g. whether
a story deals with the user interface or with calculation
functions). Steps that stem from stories in the same context
could be more relevant than others. We saw, that there are
“common steps” that are used in many test scripts (especially
preconditions); our current approach penalizes these steps –
even if they are relevant for a query. Also, we will take
the steps’ type into consideration; further studies will show,
whether precision can be improved if one concentrates on a
specific step type.

We plan to extend the NLE list to be a fully fledged
glossary. Using the glossary during the writing of new stories
and test scripts, F-TRec could urge product owners and
testers to use a consistent vocabulary.

In terms of result presentation, we also can improve
F-TRec. The presentation of the result list should be grouped
by the step type to ease readability. Since the test steps are
directly linked to the test step implementations, we could
evaluate their API calls and source code comments. Com-
ments could be provided to testers in order to assess whether
the recommended test steps are reusable. Developers could
additionally profit from links to API components, that are
likely to be of interest when implementing test steps.
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