
Synchronizing Domain Models with Natural Language Specifications

Mathias Landhäußer, Sven J. Körner, Walter F. Tichy
Karlsruhe Institute of Technology, IPD Tichy, Faculty of Computer Science,

{landhaeusser,sven.koerner,tichy}@kit.edu

Abstract—Textual specifications and domain models change
during development and need to be kept consistent. However,
in practice the cost of maintaining consistency is too high.
Stakeholders need to be informed about model changes in
natural language, software architects need to see the impact
of specification changes on their models. Our Requirements
Engineering Feedback System (REFS) automates the process of
keeping specification and models consistent when the models
change. Also, it can assess the impact of specification changes.

I. INTRODUCTION

Most of the time, requirements documents and domain
descriptions are provided in natural language [1]. The first
steps of a software project comprise the transfer of natu-
ral language specifications into semi-structured documents.
Eventually, models evolve that are used in the subsequent
software development process. This transfer from natural
language text to models (e.g. UML models) creates two
separate representations – one in written text and one as
models. Initially (and ideally) both representations of the
future system are equivalent, but this is not always the case.
A modification in one representation should be accompanied
by a change in the other. If synchronization is not maintained
in the development process, the representations diverge from
another. Our Requirements Engineering Feedback System
(REFS) records model changes and includes them into the
specification text automatically; furthermore, we show, how
the impact of specification changes in the domain model can
be measured.

A. Text to Model Synchronization

Starting with a textual representation of the stakeholders’
needs and wishes, an expert builds a model. Following model
driven development, one starts with a domain model and
refines it. This way, the domain model becomes a software
model (first platform independent, then platform specific)
and finally executable software. Gelhausen presented an
approach to generate UML domain models directly from
textual specifications [2], [3]. Following his approach, the
first step of model driven development can be automated.

Often, stakeholders change the textual software specifi-
cation whilst the software is already in the making [4]. The
direct approach would be to generate a new model after mod-
ifications. This approach leads to information loss if work on
the existing models has already begun. It is the requirements

analyst’s job to assess the impact of the changes on the
existing domain model. Ideally, one calculates the necessary
changes in the models and keeps the unchanged parts of the
models as well as the other software artifacts that have been
created already. Our aim is to provide a fast and accurate
evaluation of the situation when changes occur. We help the
analyst to decide if changes are worthwhile or if they imply
an overhaul of the architecture and the implementation.

B. Model to Text Synchronization

However, models also change. Experts work with the
domain model, refining, consolidating, and correcting it
before transforming it into the platform independent model.
The changes, additions, and deletions on the domain model
should be transferred back to the textual specification
enabling the stakeholders to evaluate the experts’ work.
Keeping track of changes manually is cumbersome and
therefore often neglected. It is not until software projects
reach the final phase when stakeholders realize and inform
the manufacturer of shortcomings and misunderstandings
of software features. Extending Gelhausen’s work [3], we
developed a system that tracks model changes and reflects
them in the textual specification. Then stakeholders can
evaluate the expert’s model changes directly in the textual
specification.

II. RELATED WORK

In this section, we focus on related work that supports the
connection between textual specifications and their model
representation. Also we review some work on impact anal-
ysis.

A. Automatic Model Creation and Text Synthesis

Overmyer’s Linguistic Assistant for Domain Analysis
(LIDA) [5] is a tool for requirements engineers who want
support in the iterative requirements engineering process.
LIDA analyzes the lexical content of natural language spec-
ifications. It identifies and marks lexical items corresponding
to candidate model elements. The analyst creates the UML
model according to model elements proposed by LIDA. It
supports the analyst with a well-arranged document that
he or she can use to extract the system domain model.
Comparing the feedback components, it generates a new
specification text instead of maintaining the initial specifica-
tion. In contrast to LIDA, our approach keeps the connection



between the specification and the model representation with-
out re-generating the specification.

Kroha’s TESSI [6] is another iterative-capable automatic
model generator. TESSI helps the analyst to complete re-
quirements. The analyst needs to specify the roles of words
in the text. The problem is that the analyst needs to know ev-
ery role of every word during the modeling process, because
incomplete role arguments lead to incomplete UML models.
The model is then used to synthesize a new specification
from the model, i.e. to provide a model-derived requirements
description. Again, the original specification is not updated
but discarded. With SUGAR [7] Deeptimahanti et al. offer
a tool to extract models from text. Unfortunately, changes
in the specification text require a rerun of the process and
models from the previous run are discarded. Model changes
are not fed back to the text.

Mala’s system [8] uses a NLP pipeline to generate a model
without the help of a domain expert. Mala states that the
yielded results are at least as good as or exceeding human
made class diagrams. Other tools that extract models from
natural language with the phrase pattern approach come
from Fliedl [9] and Li [10]. Bajwa’s UMLG [11] extracts
nouns and verb combinations from input texts and maps the
nouns and verbs to UML elements and relations respectively.
Unfortunately, none of these tools support iteration or impact
analysis.

Adding new information to the model needs to be ex-
pressed in the textual specification, too. An example would
be a new class element that has been added to the UML
domain model. In this case, natural language would have to
be generated from the model. Research projects from Reiter,
Meziane, and Kroha focus on this [12], [13], [14]. But still,
this cannot be considered as synchronization between model
and textual specification rather than document generation
from models. There is no direct connection to the initial
specification.

B. Impact Assessment

Being able to determine the impact of changes on a soft-
ware specification is a well-known problem that has existed
ever since software development became an industry. Bohner
and Arnold [15] define impact analysis as “identifying the
potential consequences of a change, or estimating what
needs to be modified to accomplish a change”. To be able
to do that, one has to maintain traceability among various
entities of the software development process. Also one has
to detect possible side and ripple effects of the changes.

Kung et al. use impact analysis to focus testing efforts
on hot spots [16]. They describe a formal model to identify
changes and their impact on an object-oriented software
library. Chaumun et al. use impact analysis methods to
assess maintainability [17].

Most impact analysis approaches focus on changes of
the program code whereas Han used dependencies defined

between software artifacts to identify the impact of a
change [18]. Briand et al. [19] propose a tool that uses a set
of OCL constraints to detect the differences between two
versions of an UML model and their impact on unchanged
model elements. To the best of our knowledge, there are
no systems, that deal with impact analysis on models for
changes in a textual specification.

III. IMPLEMENTATION

Our implementation uses Gelhausen’s [2] approach to
derive a UML model from textual specifications. He uses
a graph as an intermediate representation of the text. The
graph contains typed nodes for sentences and words. Edges
stand for thematic roles and are the heart of his approach
because they represent the semantic information given in
the text. The roles are based on the work of Fillmore [20]
and were adapted for the purpose of model extraction.
Graph transformation rules are then used to build a UML
representation [3]. Fig. 1 illustrates the graph representation.
The left part of Fig. 1 shows the text subgraph for the phrase
The WHOIS client makes a text request to
the WHOIS server, then the WHOIS server
replies with text content. The right part shows
an excerpt of the corresponding UML subgraph; typed
edges connect the class and method nodes.

To implement REFS, we extended Gelhausen’s model
extraction process. We added tracking edges that connect
text nodes with UML nodes; the tracking edges are added
to the graph during the UML generation and are shown as
dashed lines in Fig. 1. This way, the UML representation
is tightly linked with the underlying text. To account for
possible repetitions in the text, we allow a given UML
element to be linked with multiple text nodes. We store the
original specification and the connected model together to
reflect model changes back to text later on.

A. Transferring Model Changes to the Specification

After the first UML models have been created from the
textual specification, software architects make design deci-
sions, rearrange UML model elements, group parts of the
models, create superclasses, and so on. These changes are
carried out with UML tools. Essentially, updates, creations,
and deletions occur. Updates on relations are being treated
as a combination of deletions and creations. Simple name
updates are reflected directly into the text.

To reflect model changes to the specification, the initial
model (Mi) and the changed model (Mc) need to be com-
pared and matched. We use EMFCompare of the Eclipse
Modeling Framework to compute the difference between
Mi and Mc. EMFCompare identifies model elements of
Mi that also occur in Mc by hierarchically (type-aware)
matching model elements: At first, the name of the model
element is considered; then, all references to other elements
are being examined. After that, the attributes are analyzed



Whois client

The

Phrase

makes

replies

then

with

a

Whois server

Text content

Whois server

the

text request

to

the

Class: Whois client

Method: replies

Method: makes

Class: text request

Class: Text content

Class: Whois server
hasMethod

hasParameter

hasParameter

hasMethod

Figure 1. Tracking Edges Connect the Textual Nodes With their UML Counterparts.

and finally the type of the element (i.e. the meta-model type)
is considered. Every comparison gives a similarity value
between 0 and 1. After comparing names, EMFCompare
sums up the weighted combination of the values. If the sum
is above a certain threshold, the elements are considered
equal.

All elements that are being matched are either unchanged
or can be identified for modification. All other elements
of Mi have been removed in Mc; all unmatched elements
of Mc are considered new. This way, we create a list of
creations, updates, and deletions and successively integrate
them into the original specification. Changes are processed
in a create/update/read sequence to assure the correct order
of changes without ripple effects. Changed and deleted
elements can be identified in the text graph using the
tracking edges for updating the text or removing the text
elements. New elements are appended to the specification
using simple templates; readability could be increased using
more sophisticated approaches. At the end of the process,
a modified specification text can be generated; parts not
affected by the model changes remain untouched during the
text modification.

The updated specification can be handed over to the
stakeholders, who can also use text comparison to review
the changes. A list of changes can be used for a quick
overview. Fig. 3 shows an updated specification after some
modifications (see Sec. IV).

B. Impact Assessment of Requirements Changes
The idea of keeping the interconnection of textual spec-

ifications and the corresponding models also works from
text to model. With the introduction of the bidirectional
connection of text and model, we are able to detect the
results of textual changes in the corresponding model. To
retrieve this information, we create an UML model of the
initial specification and of the altered specification. Then we
compute the differences between the initial and the altered
model. Inspired by the function point method, we attach a
weight-factor to every UML change. Adding these factors,
we assess the impact of specification changes to models.

A WHOIS server listens on TCP port 43 for
requests from WHOIS clients.

The WHOIS client makes a text request to the
WHOIS server, then the WHOIS server replies
with text content.

All requests are terminated with ASCII CR and
then ASCII LF.

The response might contain more than one line of
text, so the presence of ASCII CR or ASCII LF
characters does not indicate the end of the
response.

The WHOIS server closes its connection as soon as
the output is finished.

The closed TCP connection is the indication to
the client that the response has been received.

Listing 1. The Whois Protocol Specification (IETF RFC 3912)

This technique is straight forward for additional text,
but also works for text changes and deletions. This can
mean anything from changing a class name to altering the
parameter list of a class’ method. Deletions are simpler – we
check if the deleted text element appears anywhere else in
the text. If not, the corresponding model element is deleted.

Reordering the sentences of a specification has no effect
on the model an thus no impact at all.

IV. CASE STUDY

At first, we show how REFS transfers model changes
back to a specification text. Then we explain, how model
differencing can help determine the impact of specification
changes on UML domain models. To illustrate our approach,
we work with the WHOIS protocol specification (IETF’s
RFC 3912) as printed in Listing 1.

Model to Text Synchronization: To exemplify the model
to text synchronization, we use a generated class diagram for
the WHOIS protocol specification. The diagram (see Fig. 2
for an excerpt) has been generated from the unmodified
specification as shown in Listing 1. Model elements can be
updated, deleted, or created. For our example, we change
the model as follows: We delete the class ASCII_LF and
its members as well as the class text_content and the
corresponding parameter of the method replies. Also,



Figure 2. An Excerpt of the Generated UML Class Diagram for the
WHOIS Protocol Specification.

Figure 3. Using Microsoft Word to Present Model Changes in Textual
Specifications

we rename the WHOIS_server and WHOIS_client
to WHOKNOWS_server and WHOKNOWS_client respec-
tively. Furthermore, we want the server to listen on
TCP_Port_911 instead of 43. With this modified model,
we run REFS to transfer the changes back to text. The
resulting text and the comparison to the original text are
shown in Fig. 3. We show the first three sentences only, but
a deletion in the model can lead to multiple deletions in the
textual specification; also the renaming of server and client
is propagated to the entire specification.

Text to Model Synchronization: Assume the last two
sentences of the WHOIS specification are missing in the ini-
tial specification. If a stakeholder now enters this additional
information, the model has to be extended. Elements are
not modeled repeatedly: if already existing model elements
appear in new text, they are reused. Tab. I shows the detected
natural language elements from the last two sentences. The
right column shows the UML model elements that were
detected and added if not already existing.

Treating Updates and Creations: Until now, we have
described the mutual synchronization process when parts
of the UML model are deleted or parts of text are added
to the specification. Of course, our approach also allows
modifications, deletions of text, and the creation of new
model elements. For newly created model elements, we
need natural language generators to add the changes to
the specification. So far, we use only simple templates
to create sentences [21]. Updates of model elements and
text passages are handled in a similar manner. Updates
are usually treated as deletions followed by creations. A

Table I
TEXT ADDITIONS CREATE NEW UML MODEL ELEMENTS UNLESS

THEY ARE ALREADY EXISTING.

Text Addition UML Model Element
WHOIS server class (already existing)

closes method of class WHOIS server
connection class

output class
is finished method

closed attribute of class connection
indication method of an indetermined class

WHOIS client class (already existing)
response class (already existing)
received method of class response
closes method of class WHOIS server

few exceptions update the text or model elements directly
thereby preserving contextual information. If applicable, we
prefer deleting and creating objects to avoid orphans.

Evaluating Random Modifications: To assess, whether
our approach provides a viable feedback loop between
models and textual specifications, we conducted a small
study. We used three specifications where we applied random
modifications; one member of our team modified the texts,
another independently modified the models using Altova
UModel. Both randomly determined the elements to be
modified or deleted. The complete specifications can be
found on our website [22] with a detailed report.

Tab. II shows an excerpt of the results: Every entry a/b
states how many random modifications (b) have been made
and how many modifications have been correctly transferred
in the opposite direction (a). The 3rd and 4th columns show
the results of the analysis of text modifications on the UML
models; columns 5 and 6 show the number of model changes
correctly transferred to the specification. For example, in the
Timbered House specification, we made three modifications
to the text and deleted seven words from the it; all three
updates have been correctly mapped to the corresponding
model elements and two of the deletions had an effect on
the model. As can be seen, the random text deletions (and
updates) sometimes modified elements that were detected
but irrelevant for a UML class diagram. Elements that are
not used for the automatic model creation are omitted in the
REFS feedback. Furthermore, we made three updates to the
model and deleted seven model elements; all changes were
correctly transferred to the text. The model to text feedback
is not yet perfect: One update to the model was incorrectly
identified as a deletion and a creation; this information
was transferred to the specification, but the resulting text’s
readability was reduced. Also, Altova UModel creates extra
tool specific packages. These packages are detected, but are
irrelevant for the feedback loop. Therefore, they are removed
before processing the model with REFS.



Table II
RESULTS OF THE RANDOM MODIFICATIONS EXPERIMENT

Case Study Text to Model Model to Text
Text Size Updates Deletions Updates Deletions

Cinema 153 1/6 + 6/7 4/4 7/7
Words 5 irrel. + 1 irrel.

Timbered 88 3/3 2/7 3/3 7/7
House Words + 5 irrel.

WHOIS 100 8/8 2/2 5/6 2/3
Protocol Words + 1 incorr. crea/del

V. CONCLUSION

In this paper we presented a novel approach to synchro-
nizing changes in UML model representations with textual
specifications elicited from stakeholders. We explained how
model changes can occur and how we transform these
changes back into the textual specification as well as the
other way around. We deliver the changed specification to
the stakeholder for verification in an easy to read format,
such as Microsoft Word. For the first implementation we
concentrated on class diagrams only and the current im-
plementation of our text generator is rudimentary. REFS
also detects changes in activity diagrams, but we have not
implemented the feedback loop yet. In future, we expect
serious impact and true benefits if stakeholders can easily
check if the new specification complies with their idea of
the software to be implemented.

REFERENCES

[1] L. Mich, M. Franch, and P. Inverardi, “Market research for
requirements analysis using linguistic tools,” Requir. Eng.,
vol. 9, pp. 40–56, 2004.

[2] T. Gelhausen and W. F. Tichy, “Thematic Role Based Gen-
eration of UML Models from Real World Requirements,” in
Proc. of the ICSC 2007, 2007, pp. 282–289.

[3] T. Gelhausen, B. Derre, and R. Geiß, “Customizing grgen.net
for model transformation,” in Proc. of GRaMoT ’08. ACM,
2008, pp. 17–24.

[4] K. E. Wiegers, Software requirements : practical techniques
for gathering and managing requirements throughout the
product development cycle, 2nd ed. Redmond, WA: Mi-
crosoft Press, 2003.

[5] S. P. Overmyer, B. Lavoie, and O. Rambow, “Conceptual
modeling through linguistic analysis using LIDA,” in Proc.
of the ICSE ’01. Washington, DC, USA: IEEE Computer
Society, 2001, pp. 401–410.

[6] P. Kroha, “Preprocessing of requirements specification,” vol.
1873, pp. 675–684, 2000.

[7] D. K. Deeptimahanti and R. Sanyal, “An innovative approach
for generating static UML models from natural language re-
quirements,” in Advances in Software Engineering, ser. Com-
munications in Computer and Information Science, vol. 30.
Springer, 2009, pp. 147–163.

[8] G. S. A. Mala and G. V. Uma, “Automatic construction of
object oriented design models [UML diagrams] from natural
language requirements specification,” in PRICAI, 2006, pp.
1155–1159.

[9] G. Fliedl, C. Kop, and H. C. Mayr, “Recent results of the
NLRE (natural language based requirements engineering)
project,” EMISA Forum, vol. 24, no. 1, pp. 24–25, 2004.

[10] K. Li, R.G.Dewar, and R.J.Pooley, “Towards Semi-
automation in Requirements Elicitation: mapping natural lan-
guage and object-oriented concepts,” in RE05, 2005, pp. 5–7.

[11] I. S. Bajwa and M. A. Choudhary, “Natural language process-
ing based automated system for uml diagrams generation,” in
The 18th Saudi National Computer Conf. on computer science
(NCC18). Riyadh, Saudi Arabia: The Saudi Computer
Society (SCS), Mar. 2006.

[12] F. Meziane, N. Athanasakis, and S. Ananiadou, “Generating
natural language specifications from UML class diagrams,”
Requir. Eng., vol. 13, no. 1, pp. 1–18, Jan. 2008.

[13] P. Kroha, P. Gerber, and L. Rosenhainer, “Towards generation
of textual requirements descriptions from UML models.” pp.
31 – 38, Apr. 2006.

[14] E. Reiter and R. Dale, Building Natural Language Generation
Systems, ser. Natural Language Processing. Cambridge
University Press, 2000.

[15] S. A. Bohner and R. S. Arnold, “An introduction to software
change impact analysis,” in Software Change Impact Analysis.
IEEE Computer Soc. Press, 1996, pp. 1–26.

[16] D. Kung, J. Gao, P. Hsia, F. Wen, Y. Toyoshima, and
C. Chen, “Change impact identification in object oriented
software maintenance,” in Proc. of the Int. Conf. on Software
Maintenance, Sep. 1994, pp. 202–211.

[17] M. A. Chaumun, H. Kabaili, R. K. Keller, and F. Lustman, “A
change impact model for changeability assessment in object-
oriented software systems,” Science of Computer Program-
ming, vol. 45, no. 2-3, pp. 155 – 174, 2002.

[18] J. Han, “Supporting impact analysis and change propagation
in software engineering environments,” in Proc. of the 8th
IEEE Int. Workshop on Software Technology and Engineering
Practice, Jul. 1997, pp. 172–182.

[19] L. C. Briand, Y. Labiche, and L. O’Sullivan, “Impact analysis
and change management of uml models,” Carleton University,
Technical Report SCE-03-01, Feb. 2003.

[20] C. J. Fillmore, “Toward a modern theory of case,” in Modern
Studies in English, D. A. Reibel and S. A. Schane, Eds.
Prentice Hall, 1969, pp. 361–375.

[21] B. Derre, “Rückkopplung von Softwaremodelländerungen in
textuelle Spezifikationen,” Master’s thesis, Karlsruhe Institute
of Technology, May 2010.

[22] S. J. Körner, M. Landhäußer, T. Gelhausen, and
B. Derre, “RECAA – the Requirements Engineering
Complete Automation Approach.” [Online]. Available:
https://svn.ipd.uni-karlsruhe.de/trac/mx


