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Abstract— We present our ALCHEMY platform that supports 

the automatic parallelization of R programs during execution. 

Parallelization occurs fully transparent to the user. Different 

parallelization techniques can be implemented as modules, linked 

into the platform, and combined with each other. The 

parallelization analysis modules and code transformation 

modules use a new intermediate representation for sequential 

and parallelized R code. Successfully parallelized parts of the R 

program are executed on a multicore processor; the results and 

the remaining sequential parts are fed back into the standard R 

interpreter and evaluated to completion. This way, an R user can 

benefit from multiprocessor performance without writing a single 

line of parallel code. At this stage of the research project, the 

main goal is to enable ample experimentation with different 

approaches to the automatic parallelization of scripting 

languages such as R.  

Automatic parallelization; R language; scripting languages; 

data-parallelism; parallel intermediate languages 

I.  INTRODUCTION 

Scripting languages such as R [2][3] and Matlab are 
frequently used in science and engineering practice. They are 
mostly used by end users who are experts in their application 
domain, such as bioinformatics or electrical engineering, but 
who are no experts in programming. The application problems 
often require repeated computations with large amounts of 
data, resulting in long response times. For example, 
bioinformatics applies standard string matching algorithms to 
find common segments in genome sequences that consist of 
millions of characters. R has become a preferred programming 
tool in bioinformatics; see the recent efforts of the 
Bioconductor project [1]. 

R is an interpreted language that was not built with such 
tough processing requirements in mind. Yet, its interactive 
nature, its graphics capabilities, and the many special-purpose 
libraries that are available make it an attractive programming 
tool and environment for practitioners. As a solution to their 
growing performance requirements, it is natural that R 
practitioners want to take advantage of the computing power of 
modern multicore processors. This is not easy, though, because 
it requires parallel programming skills.  

Writing parallel programs is known to be difficult and 
error-prone, and it requires not only specific knowledge of 
parallel algorithms, parallel data-structures, and when to best 
use them, but also a deep understanding of synchronization 
mechanisms, concurrency defects, hardware characteristics, 
cache effects, etc. In addition, support for parallel 
programming in R currently is limited. In essence, one must 
use an R frontend to one of the well-known, low-level libraries 
for parallel programming, such as MPI or PVM; see section II. 
This seems a mismatch with the high-level programming 
features offered by R. 

The situation calls for the automatic parallelization of 
sequential R programs, as an alternative solution. The burden 
of hand-writing parallel code should best be avoided by an R 
application programmer. This view is underlined by the fact 
that R practitioners typically do not want to spend much time 
on development, but want to get their computation results 
quickly; this desire actually is a major driver for using a 
scripting language in the first place. In addition, a perfectly 
optimal usage of the parallel hardware typically is not required; 
a good performance and reasonable speedup on a standard 
multicore personal computer often will help in practice. 

In this paper, we focus on the automatic parallelization of R 
programs, expecting that our findings will be useful for other 
scripting languages as well, including Matlab. We consider R 
to be very suitable for this kind of research: The R language 
offers many functions that already operate on vector or matrix 
data. These functions are naturally used by programmers and 
offer immediate potential for parallelization. Also, R does not 
provide pointers, which makes static code analysis much easier. 
R programs tend to be short and highly modular. Finally, the 
complete R environment and interpreter are available as source 
code.  

More specifically, the goal of our research project is to 
build a platform – ALCHEMY – that allows us to experiment 
with the automatic parallelization of R programs. We want to 
try out different approaches and techniques for detecting and 
exploiting potential parallelism in a piece of R code. The best 
parallelization depends on the specific program and input data, 
of course; hence, a single parallelization technique will not do 
for all programs. We also want to combine different approaches 
and study experimentally if and how they might fit together. 



For example, it might make sense to first transform the key 
algorithm of an R program (say, a string matching algorithm in 
bioinformatics) into a parallel version using parallel design 
patterns, then add an analysis that looks for remaining data-
parallel operations that can be efficiently transformed into 
parallel code. Additional code transformations usually follow 
that compile the parallel design patterns into code that can be 
immediately executed on the target multicore processor, using 
a library such as Intel’s TBB or OpenMP. Fig. 1 shows a 
simplified data-flow diagram of the workflow in our platform, 
starting from the R program entered by the user and ending 
with its execution on a parallel backend. 

  

 

The key concept in ALCHEMY that allows us to combine 
several parallelization analyses and code transformations in a 
pipeline fashion is a new, common intermediate representation 
for (sequential and parallelized) R programs, the AIR 
(“analysis intermediate representation”). AIR offers parallel 
skeletons [13] as primitives, the basic R operations, and vectors 
of arbitrary length similar to the VCODE intermediate 
language [16], see section III.B. The original R program is 
automatically translated into AIR code, then analyzed and 
transformed by the different parallelization modules. Every 
parallelization module takes AIR as input and produces AIR as 
output. Clearly, not all analysis modules will use all features 
available in AIR; it depends on the specific analysis which 
features are present in its output. Basically, all analysis 
modules can be connected to each other. When starting 
ALCHEMY, a particular configuration is put into place using a 
configuration file. 

A particular difficulty for the automatic parallelization of R 
stems from the fact that R is an interpreter, not a compiler, and 
is used interactively during program development. Hence, we 
must analyze, transform, and execute the code that was typed in 
by the user at the R console (or read in from a file) “on the fly,” 
intercepting the normal flow of evaluation inside the R kernel. 
We solve this problem by re-programming the inner R 
interpreter loop in one location. We redirect control to our 
platform and resume normal interpreter operation after the 
automatically parallelized parts of the R program have been 
executed on the parallel backend; see section III.C for more 
details.  

In the paper, we present the architecture and key design 
elements of the ALCHEMY platform, including the new AIR 
intermediate language and the interface between ALCHEMY 
and the R interpreter. We illustrate the internal workflow of 
ALCHEMY using a simple program example. We describe 
how control flows from the R interpreter to ALCHEMY and 
back. Finally, we present some early measurements that show 
the speedup gained by a simple analysis module that 

automatically detects data-parallel R operations and executes 
them in parallel on a multicore processor. We would like to 
point out that these examples and measurements serve 
illustrative purposes. In particular, they show that the core of 
the ALCHEMY platform is fully functional and can be used 
transparently by the end user.  

II. RELATED WORK 

Currently, R users who want to take advantage of parallel 
hardware must explicitly write parallel code using one of the 
available parallel libraries for R, such as the well-known R 
implementations of MPI (“Rmpi” [5]) and PVM (“rpvm” [6]). 
Other useful parallel programming packages for R include 
“snow” [7] and “R/parallel” [8]. “snow” offers uniform 
programming access to Rmpi, rpvm, NetWorkSpaces, and raw 
sockets. “R/parallel” offers a special “runParallel” command 
for loops that contain no data dependencies; the 
implementation is based on threads. Another popular library is 
the “R multicore package” [9] that offers a “pvec” command 
for data-parallel operations; the implementation is based on the 
“fork()” system call. For a good overview of parallel 
programming for the R language see [4].  

There is a substantial body of knowledge on automatic 
parallelization, although mostly in the context of high 
performance computing for numerical or graphics applications; 
see f.e. [11] and [22]. In particular, there are powerful 
algorithms for parallelizing nested loops over matrices. In 
addition, there are tools that provide data dependence analysis 
and pointer analysis for languages such as C or Java, f.e., as 
part of the LLVM compiler framework [12]. Part of our 
motivation for building the ALCHEMY platform is to make 
such knowledge available for the parallelization of general R 
programs.  

Automatic parallelization of arbitrary R programs is not 
available at this time. We are aware of only one approach 
(“pR” [10]) that automatically detects and refactors loops in R 
programs, but this applies only to loops that contain no data 
dependencies at all. Such loops are split automatically and the 
work pieces are distributed among worker R processes. 

III. THE ALCHEMY PLATFORM 

For the sake of brevity, we introduce the term 
“transmutator” to denote both parallelization analysis modules 
and code transformation modules. By definition, a transmutator 
takes AIR code as input, analyzes and/or transforms it 
somehow, and outputs AIR code. According to this definition, 
backend components that execute the final parallelized code on 
some parallel hardware are transmutators as well, since any 
backend must return the computation results in AIR format, 
even if it were just one number. Other than the input and output 
format, the ALCHEMY platform itself does not impose 
restrictions to what a transmutator can do internally. Clearly, to 
provide useful service a transmutator must preserve the 
semantics of its input program; but this requirement applies to 
any automated parallelization technique, or compiler.   

Figure 1. Overview of the ALCHEMY workflow 



A.  High-Level Design 

The ALCHEMY platform consists of several (potentially 
distributed) software components, see the UML component 

diagram in Fig. 2. The two main components are RAlchemy 

and AlchemyCore, see below. In addition, there are a 
number of separate transmutator components, including 
backends. 

The various components can be deployed on different 
nodes in a network and communicate through a lightweight 
network protocol, ZeroMQ [18]. The idea was that we wanted 
to be able to use remote parallelization analyses, and remote 
backends. In addition, we wanted to copy application data only 
when necessary; hence, the data initially remains stored in the 
R process and gets delivered to the backend (or some 
intermediate analysis module) only upon request via the 

ValueSvc in the RAlchemy component. The same applies 
to things stored in the R environment, such as function 

definitions, which are fetched via the EnvironmentSvc 

from the RAlchemy component. The transmutators are 
implemented as services, too, following a simple 

TransmutationSvc API.  

 

 

 

The RAlchemy component provides an extension to the 
standard R kernel. In particular, it contains the interface 

(AlchemyAdapter) between ALCHEMY and the R inner 
interpreter loop (see subsection III.C below). In addition, it 
contains the value and environment services necessary for the 
communication with the transmutators, plus two converter 

services (RtoAIRConverter, AIRtoRConverter) 
that convert between the SEXPRs produced by the R parser 
and AIR code. 

Being an extension to R, RAlchemy is written in C 
language. It consists of 15 modules, totaling to about 5 KLOC 
of code.  

The AlchemyCore component implements the logic that 
controls the flow of AIR code between the transmutators 

(TransmutationController). The controller reads in a 
configuration file that describes which transmutators should be 
active under which conditions; a typical condition is that some 
particular other transmutator must have run to completion 
before. After receiving a transmutation request and 

corresponding AIR input from the RAlchemy component, the 
controller puts the transmutators into a queue and starts the first 
transmutator. Afterwards, it checks the conditions, possibly 
rearranges the queue, and starts the next transmutator in the 
queue. This occurs until all transmutators have finished. The 

AIR output of the last one is returned to the RAlchemy 
component. 

 AlchemyCore is written in Java. It consists of about 130 
classes, totaling to about 10 KLOC of code, including the 
simple EMBA and RMulticoreBackend transmutators (see 
section IV), a small ZeroMQ server, and the classes that 
implement the AIR language. 

B. Intermediate Language  

We have developed a special intermediate language AIR 
(“analysis intermediate representation”) for the ALCHEMY 
platform. The purpose is to provide a common code 
representation for all the transmutators in the platform, 
including the parallelization analysis modules, the code 
transformation modules, and the backend modules that wrap 
the parallel execution units. R’s native SEXPR language [23] 
seemed too low-level and too remote from parallel features for 
this purpose. Similarly, concurrency support in current 
intermediate languages is limited, see [17].  

Every transmutator takes AIR as input and produces AIR as 
output. Hence, in principle the transmutators can all be linked 
together to form a processing pipeline; of course, only certain 
combinations of parallelization analyses and code trans-
formations make sense. But for an experimentation platform, it 
is important that it is easy to combine different parallelization 
approaches so that we can try out how well they complement 
each other. Forming processing pipelines also makes it easier to 
design stages within a parallelization analysis. 

To be suitable as a common intermediate language for 
parallelization experiments in R, the AIR supports three 
distinct aspects of functionality: 

 AIR supports the most relevant language features of R. 

 AIR supports several data types of arbitrary length. 

 AIR includes a number of parallel skeletons to express 
parallelism efficiently. 

AIR supports most of the R language features, including 
control structures, user-defined functions, recursion, and the 
basic built-in functions. The UML class diagram in Fig. 3 (on 
the next page) shows the expression types that are currently 
supported by AIR.  

One language feature of R that we deliberately do not 
support is the “eval”-statement, because this introduces some 
kind of self-modification capability into an R program and 
makes parallelization analysis difficult. 

 AIR supports the basic R data types for numbers and 
strings, including vectors and matrices. The UML class 
diagram in Fig. 4 (on the next page) shows the types that are 
currently supported by AIR.  

Figure 2. ALCHEMY components 



AIR vectors and matrices are special: they can be of 
arbitrary size. This feature resembles the parallel intermediate 
language VCODE [16]. VCODE was designed to express data-
parallel problems efficiently in environments that offer fast, 
native vector operations, such as a Cray. VCODE served as an 
intermediate language for NESL [19] which has influenced 
Intel’s Ct technology [21]. Arbitrary length types proved useful 
in VCODE, and they align well with the vector and matrix data 
types in a scripting language such as R. 

AIR also provides the special types “AIRVectorStorage” 
and “AIRMatrixStorage”. They are proxies for the actual data. 
To avoid copying large chunks of application data back and 
forth between different transmutators, the actual data remains 
stored in the R environment and gets fetched only upon request 

via the ValueSvc. Any transmutator can fetch the data at any 

time. The “storage”-type values serve as placeholders in the 
meantime.  

 

 

Building upon the basic types, we are currently extending 
the set of types supported by AIR to include the more 
sophisticated R data types, notably inhomogeneous lists and 
data frames; see [3] for more details on these R features. 

To address parallelism in a program, AIR currently includes 
the most common parallel skeletons (type “SkeletonExpr” in 
Fig. 3), such as MAP, ZIP, ZIPW, SCAN, SHIFT, and 
DOPAR. For example, MAP applies a given function to a data 
vector element-wise; ZIPW merges two data vectors while 
applying a given function element-wise; DOPAR is a parallel 
loop; see [14] and [15] for more details. Using these skeletons, 
parallel solutions can often be expressed in a natural and 
compact form [13]. For example, two-dimensional parallel 
dynamic programming can be expressed efficiently without 
loops using list skeletons such as ZIPW and SCAN [20]. We 
add skeletons to the AIR whenever necessary to support a new 
parallelization technique. This currently is the most dynamic 
part of the AIR. 

There are known efficient parallel implementations for each 
skeleton. An ALCHEMY configuration typically includes such 
implementations in the backend module for execution.  

In addition, AIR comes with capabilities that allow writers 
of analysis or transformation modules to query and modify a 
piece of AIR code; more precisely, the corresponding abstract 
syntax tree. The queries are specified using the XPATH 
language based on a canonical representation of an AIR syntax 
tree as XML code (see also section IV for examples of this 
representation).  

For example, the XPATH query expression 

/Program/WhileStmt/body/*/ 

ForStmt[./ForCondition/@itervar="i"] 

would specify a subtree of AIR code that contains a for-loop 
nested inside a top-level while-loop. Such specifications can be 
used both for searching and for modifying an AIR syntax tree. 

C. Interface to the R Interpreter 

R is an interpreted language. After startup, R enters its 
interpreter loop, called the REPL – read, evaluate, print, loop.   
When the user enters code at the console, the input first gets 

  

 

parsed and translated into R’s SEXPR intermediate format; 
then it is evaluated stepwise and the results are displayed. 

Figure 4. AIR value types 

Figure 3. AIR expression types 



Hence, any parallelization of R code must occur “on the 
fly” during interpretation. To this end, ALCHEMY intercepts 
the normal sequence of operations in the innermost R 
interpreter loop (“R_ReplIteration”). ALCHEMY breaks up the 
REPL at the point where the user input has been parsed into 
SEXPR code, and inserts its own code (“AlchemyProxy…”) 
into the REPL, see step 4 in the simplified call graph in Fig. 5.  

 

 

The proxy code hands over the SEXPRs to the 

AlchemyAdapter, which converts them into AIR by calling 

the RtoAIRConverter service. Then, the AIR code is sent 

to the AlchemyCore component for parallelization and 
(possibly partial) parallel execution. 

When the AIR code has been parallelized and executed, the 
computation results are wrapped into AIR code again by the 
last transmutator in the current ALCHEMY configuration. The 
results (including any code fragments that ALCHEMY was 

unable to parallelize) are returned to the  AlchemyAdapter, 

which calls the  AIRtoRConverter service to translate the 
AIR results back into SEXPRs. Finally, control is returned to 
the R interpreter loop, which resembles normal evaluation on 
the R code (SEXPRs) returned from ALCHEMY.  

In our design, we have kept the changes to the R code base 
minimal. In particular, we extended the code of the interpreter 
loop in one location only. This minimal set of changes makes it 
as easy as possible to keep in sync with new versions of R in 
the future. 

IV. A SAMPLE TRANSFORMATION CHAIN  

To illustrate the inner workings of the ALCHEMY 
platform, we show how the simple, single-line R input at the 
bottom of the listing in Fig. 6 (a call to the sine function with a 
list of three numbers as operands) gets processed by the 
platform.  

For this example, we assume that the “EMBA” analysis 
module and the “RMulticoreBackend” module have been 
configured into ALCHEMY. We’ll describe these modules in 
more detail in the course of this section. For the moment being, 
it suffices to know that EMBA can detect data-parallel 
operations in R code, such as a math function being applied to 
a vector of data; and the RMulticoreBackend module is a 
simple backend that distributes work chunks among the cores 
of a multicore processor.  

 

 

 

After having started the R environment, and prior to 
entering the sine statement, the user activates ALCHEMY 
(“alchemy.enable” in the screenshot of Fig. 6). This has to be 
done only once for each interactive session. ALCHEMY 
connects to its internal services, reads its configuration file, 
pushes the corresponding transmutators (here, EMBA and 
RMulticoreBackend) onto its internal processing queue, and 
returns control to the command window.  

 

 

 

The user then enters the sine command. The input line gets 
parsed by the R interpreter and reaches the inner interpreter 
loop. At this point, ALCHEMY intercepts the R code (more 
precisely, the corresponding SEXPR code produced by the R 
parser, see section III.C) and transforms it into AIR code. This 
AIR code is listed in Fig. 7, using XML notation for 
convenience. The sine function appears in lines 5 to 7, the  
c-operator of R (which combines its arguments into a list) 
appears in lines 11 to 13, and the three operand numbers appear 

Figure 5. Intercepted R interpreter loop 

Figure 6.  Start of ALCHEMY, and simple data-parallel R command 

Figure 7.  AIR code corresponding to the sine command 



in lines 15 to 29. All this happens in the RAlchemy 
component of the system. 

The AIR code then gets transferred to the AlchemyCore 
component, where the transmutation controller schedules the 
EMBA analysis module. EMBA detects the data-parallel sine 
operation and transforms it into a MAP skeleton. The resulting 
AIR code is listed in Fig. 8, again using XML notation. The 
MAP appears in line 4, its vector argument in lines 6 to 10, and 
the function to be applied to the vector elements (the sine 
function) in lines 11 to 13.  

 

 

 

At this point, the code has been completely analyzed and 
basically is ready for execution on a multicore target. All that is 
needed is some more code generation for, say, Intel’s TBB, or 
some other common multicore library.  

In this example, we instead use our special backend module 
“RMulticoreBackend” that transforms MAP skeletons back 
into R code based on the “R multicore library” package [9]. We 
found this special backend module very useful for testing the 
operation of our platform quickly and with low overhead. The 
“R multicore library” implements a simple fork-join-algorithm 
to distribute R code and data among processes on a multicore 
machine under Linux.  

Fig. 9 lists the AIR code (XML notation) after the 
RMulticoreBackend has transformed the MAP skeleton. The 
output now includes a call to the R multicore library-function 
“pvec” in lines 15 to 17. By its definition, “pvec” is 
semantically equivalent to a MAP. In addition, the backend 
module automatically inserts a call that loads the R multicore 
library, see lines 4 to 13. Other than that, our backend module 
relies on the semantic correctness of the “R multicore” 
package.   

 

 

 

 

The backend module is the last module in the queue for this 
sample configuration of ALCHEMY. Hence, the AIR code 
produced by the last module is transferred back to the 

RAlchemy component, where it is converted to R code (more 
precisely, to SEXPR code) and fed back into the inner R 
interpreter. The interpreter resumes work and evaluates the R 
code. This leads to the execution of the “pvec”-call in the R 
multicore library. In effect, the whole procedure triggers the 
same evaluation inside the R interpreter and produces the same 
result as if the user would have entered the commands listed in 
Fig. 10 at the R console prompt manually. 

 

 

 

Figure 9. AIR code after its transformation to R multicore library-calls 

Figure 8.  AIR code after its transformation to MAP skeleton  

code by the EMBA analysis module 

Figure 10. R code returned to the inner interpreter loop after the 
parallelization analysis  



The screenshot in Fig. 11 shows the final output at the 
console. One can see that the whole analysis, transformation, 
and execution process has occurred fully transparent to the 
user. All the user gets to see is the result of the computation 
triggered by his/her sine command. The only noticeable 
difference is that for large computations the prompt returns 
more quickly due to the higher execution speed. 

 

 

 

The UML collaboration diagram in Fig. 12 shows the 
transmutators that have been configured into ALCHEMY for 
this example, the workflow between the modules, and the 
different versions of AIR code that occur in the workflow, as 
described above. The transmutation controller in 

AlchemyCore pushes all three transmutator modules onto its 
processing queue at startup, beginning with the 
“FuncDefFilter” module.  

 

 

 

 

The FuncDefFilter is a special transmutator that checks 
whether the piece of code under analysis consists of only a 
function definition. In such a case, the AIR code is left 
unchanged, parallelization analysis is aborted, and the AIR 

code is returned to the RAlchemy component, where it is 

converted back to SEXPRs and returned to the R interpreter for 
further evaluation. The reason is that function definitions are 
analyzed “just in time” when the function is actually called in 
the code. At that point in time the function definition is fetched 
from the R environment (where such definitions are stored) 

using the EnvironmentSvc and analyzed.  

Such a “just in time” lookup occurs in the example given in 
the following section V, where the EMBA module first fetches 
the definition of the function “myfun,” and later the definition 

of the “helper” function from the EnvironmentSvc for 
further analysis.  

The EMBA parallelization analysis module detects 
“embarrassingly parallel” operations in R code. As we have 

seen in the example, this includes a number of built-in R 
functions operating on vector data, such as the sine function.  

In addition, EMBA detects calls to the special R function 
“lapply” which applies a given function to each element of a 
vector. The “lapply”-function is quite common in R programs 
because it can be used as a substitute for a loop, making the 
program run faster. Loops typically are slow when using an 
interpreter, but “lapply” has a fairly fast implementation in the 
R base library.  

EMBA transforms any such data-parallel operation into a 
MAP skeleton. MAP is a simple skeleton that applies a given 
function to a vector of data element-wise; hence, this program 
transformation obviously preserves the semantics of the input 
program. EMBA does not replace subtrees in AIR code that 
have already been processed by EMBA to avoid inefficient 
processing of nested parallelism. The flow chart in Fig. 13 
shows the steps taken by the current version of EMBA.  

 

 

 

 

V. SOME EARLY MEASUREMENTS 

As discussed in the previous section, our EMBA analysis 
module automatically detects data-parallel operations in an R 
program, such as a sine function that is applied to a vector of 
data. In R, many functions operate on vectors or matrices of 
data; hence, there naturally is some potential for automatic 
parallelization in R code at a fine-grained level.  

To illustrate how easily this potential might be exploited 
using an automatic parallelization approach such as our 
ALCHEMY platform, Fig. 14 shows a listing of some R code 
that applies a summation loop involving sine and cosine 
computations (function “helper”) to a data vector of 
configurable size (“numelements”). The “lapply” statement is 
standard R and applies its second argument (a function) to each 
element of its first argument (the data).  

Figure 12. Transmutation workflow for the example 

Figure 13. Workflow of the EMBA analysis module 

Figure11.  Final output at the R console window 



 

 

 

 

As a sequential program executed on a single core, this 
computation can require up to 5 minutes of execution time for a 
data vector containing one million elements. Our EMBA 
module automatically detects the lapply-operation and 
transforms the R code into a parallel AIR version using the 
MAP skeleton. The AIR code then is fed into the special 
RMulticoreBackend, which transforms the MAP into a pvec-
operation of the R multicore library; see section IV for details. 

Fig. 15 illustrates the speedup that can be gained with 
EMBA for various sizes of the data vector. On a PC with 8 
cores, the max speedup is about a factor of 5 as compared to 
the sequential program. The measurements were carried out 
under Ubuntu on an AMD FX-8120 with 8 cores running at 3.1 
GHz, with 8 GB of main memory.  

This speedup is not spectacular, but one should bear in 
mind that the backend used in this example is fairly simple. We 
expect to see better results with more advanced multicore 
libraries; a backend module for Intel’s ArBB library is already 
under development.  

For simply-structured massively data-parallel programs 
such as in our example, one can expect the speedup to scale 
fairly well with the number of processing units. For application 
programs that contain significant data-dependencies, the 
speedup typically is limited, though. In particular, the max 
speedup might well be reached with the six or eight cores 
currently available in off-the-shelf multicore PCs. In general, 
the speedup is hard to estimate and depends on the application, 
the input data size, and the particular parallelization technique 
applied. 

With the ALCHEMY platform, any speedup comes 
completely for free for the R user – he doesn’t have to write a 
single line of parallel code to benefit from the multicore 
performance. 

 

 

 

VI. ONGOING WORK 

We are currently implementing several more sophisticated 
analysis and transformation modules (transmutators) in our 
experimentation platform. As the platform currently is still at 
an early stage, we discuss this ongoing work in more detail 
here to indicate in which direction our research is headed. 

A few years ago, a group of researchers from the University 
of Tokyo have developed an interesting approach for 
parallelizing dynamic programming structures [20]. Their 
approach is based on list skeletons, such as ZIPW, SCAN, 
SHIFT, and MAP. They perform a dependency analysis of the 
statements in the nested loops of the dynamic program, then 
duplicate the underlying data matrix and handle each copy 
separately by transforming the loops and the statements in the 
loop body into suitable list skeletons. Fig. 16 shows a sample 
transformation, using pseudo-code notation. Since dynamic 
programming techniques occur quite frequently in applications, 
in particular in string matching for bioinformatics, we are 
currently implementing this approach. The detection part of our 
analysis module MATSU employs tree grammars, the code 
transformations are implemented at the syntax tree level. We 
expect first experimental results to be available soon. 

 

 

Figure 16. Sample transformation of dynamic programming  

into list skeletons 

Figure 15. Speedup for the parallelized version of the sample program 

with varying input and number of cores 

Figure 14.  Sample data-parallel program 

for i in 2:n 

for j in 2:m 

  D[i][j] <- min(D[i][j-2]+1, D[i][j-1]+2, D[i-1][j]+1) 

 

maps to (pseudo-code notation) 
 

define op(x,y) :=  min(x+1,y) 

E[_,0] = D[_,0] 

 

for j in 1:m-1 

  F[_,j] = zipw(min, 

                map(f(x)=x+2, shift(1, E[_,j-1], 

                map(f(x)=x+1, shift(0, E[_,j-1]) 

  E[_,j] = scan(op, F[_,j]) 

 

 

 



At the same time, we are developing an analysis module 
that implements automated dependency analyses in nested 
loops over matrices, based on the well-known SURE technique 
(“systems of uniform recurrence equations”) [22].  Basically, 
SURE computes a compact representation of the data 
dependencies from the index accesses that occur in the loop 
body, then detects cyclic dependencies using linear 
programming, and finally computes a multi-dimensional 
schedule for the statements in the loop body according to the 
cycles found in the previous step. From this schedule, a parallel 
version of the nested loops can be computed that is naturally 
expressed using DOPAR skeletons. Fig. 17 shows a sample 
transformation, using pseudo-code notation. We expect the 
SURE analysis module to be useful for a range of R application 
programs.                

 

 

To provide state-of-the-art performance at the end of the 
parallelization pipeline, we are currently writing a backend that 
transforms AIR code into C++ code for Intel’s ArBB platform 
(“array building blocks”) [24]. Our backend will support 
parallel skeletons such as MAP, SCAN, and ZIPW for general 
function arguments, and the basic mathematical functions of R. 
Some of these skeletons are already supported by ArBB, but 
only for specific function arguments such as addition and basic 
operand types such as integers. We are implementing more 
general versions, based on known techniques for a parallel 
execution of the skeletons.  

Recall that any AIR code that is not processed completely 
by a backend gets automatically fed back into the R interpreter 
for final evaluation. Hence, no code gets lost even if the 
program contains some statements that are not yet supported by 
the backend. For future versions of our ArBB backend, we also 
plan to add logic that dynamically finds an optimal distribution 
of the code and data code among the cores, resp., computing 
units. To this end, we shall apply the auto-tuning techniques 
that have previously been developed in our group [25]. 

The MATSU and SURE analysis modules are based on 
static code analysis. We are also working on dynamic analysis 
techniques that perform runtime measurements in the code to 
detect promising locations for parallelization. For example, we 
are experimenting with a prototype tool that identifies groups 
of functions that seem to behave according to a master-worker 
design pattern. The analysis tool measures and compares the 
call frequencies and computing times of the function calls. At a 
more local code level, we experiment with identifying program 
statements that can be computed asynchronously to 
surrounding statements, such as function calls whose results are 

not used immediately, or function calls that implement 
expensive computations in different branches of switch blocks. 
Such calls can be automatically transformed into “futures” [26] 
and distributed among different threads. All this is ongoing 
work.  

VII. CONCLUSIONS 

We have presented a platform for the automatic 
parallelization of programs written in the R language. R is an 
interpreted interactive language; hence, parallelization must 
take place “on the fly” during evaluation of the code in the 
interpreter. Our platform intercepts the R code after it has been 
parsed by the inner R interpreter loop, runs a (multi-stage) 
parallelization analysis and corresponding code transformation, 
executes the parallelized parts of the program on a multicore 
processor, and then feeds back the (partial) computation results 
with the remaining R program into the interpreter loop. This 
way, parallelization is fully transparent to the user.  

At this early stage, our platform aims at encouraging 
researchers to experiment with different approaches and 
techniques for the automatic parallelization of R. Any 
parallelization technique can be implemented as a separate 
analysis module and linked into the platform. The analysis and 
code transformation modules can be freely linked together in 
the platform using a configuration file, allowing for automatic 
parallelization in stages. In particular, our platform makes it 
easy to experiment with combinations of different 
parallelization techniques. This flexibility is made possible by 
our design decision that all modules in the platform use a 
common intermediate code representation as both input and 
output. We described this parallel intermediate language in 
detail.  

We described the internal workflow of our platform using 
an example, showing all intermediate code versions that occur 
during the analysis. Parallelization is performed by a simple 
module that detects “embarrassingly parallel” operations in R 
code. This includes many built-in math functions operating on 
vector data, but also R’s special “lapply”-statement that applies 
an arbitrary function argument to a vector of data. Such data-
parallel operations occur frequently in real R programs; hence, 
being able to parallelize such code automatically is highly 
relevant in practice. The parallelized R code was executed 
using a special, standard R library on a multicore processor. 
We presented some early measurements that indicate the 
speedup possible with this simple parallelization module. 
Clearly, more experiments and measurements need to be 
performed in the future to evaluate the ALCHEMY approach 
and the performance of various parallelization techniques.  

We also sketched several more sophisticated parallelization 
modules that we are currently implementing, based on known 
parallelization techniques. This includes a module that 
parallelizes dynamic programming code using data dependency 
analysis and list skeletons; and a module that parallelizes 
nested loops over matrices using mathematical recurrence 
equations and scheduling techniques. In addition, we are 
currently implementing a more powerful backend module for 
multicore processors using Intel’s ArBB library. We expect to 
present first experimental results soon. 

Figure 17. Sample transformation of nested loops  

into parallel loops 



The goal remains the same for all ALCHEMY modules that 
are under development: R users shall benefit from multicore 
performance without having to write a single line of parallel 
code.  
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