
An Experimentation Platform for the

Automatic Parallelization of R Programs

Frank Padberg

Faculty of Informatics

Karlsruhe Institute of Technology KIT

Karlsruhe, Germany

frank.padberg@kit.edu

Michael Mirold

Mirold Softwareentwicklung

Fürth, Germany

mail@michael-mirold.de

Abstract— We present our ALCHEMY platform that supports

the automatic parallelization of R programs during execution.

Parallelization occurs fully transparent to the user. Different

parallelization techniques can be implemented as modules, linked

into the platform, and combined with each other. The

parallelization analysis modules and code transformation

modules use a new intermediate representation for sequential

and parallelized R code. Successfully parallelized parts of the R

program are executed on a multicore processor; the results and

the remaining sequential parts are fed back into the standard R

interpreter and evaluated to completion. This way, an R user can

benefit from multiprocessor performance without writing a single

line of parallel code. At this stage of the research project, the

main goal is to enable ample experimentation with different

approaches to the automatic parallelization of scripting

languages such as R.

Automatic parallelization; R language; scripting languages;

data-parallelism; parallel intermediate languages

I. INTRODUCTION

Scripting languages such as R [2][3] and Matlab are
frequently used in science and engineering practice. They are
mostly used by end users who are experts in their application
domain, such as bioinformatics or electrical engineering, but
who are no experts in programming. The application problems
often require repeated computations with large amounts of
data, resulting in long response times. For example,
bioinformatics applies standard string matching algorithms to
find common segments in genome sequences that consist of
millions of characters. R has become a preferred programming
tool in bioinformatics; see the recent efforts of the
Bioconductor project [1].

R is an interpreted language that was not built with such
tough processing requirements in mind. Yet, its interactive
nature, its graphics capabilities, and the many special-purpose
libraries that are available make it an attractive programming
tool and environment for practitioners. As a solution to their
growing performance requirements, it is natural that R
practitioners want to take advantage of the computing power of
modern multicore processors. This is not easy, though, because
it requires parallel programming skills.

Writing parallel programs is known to be difficult and
error-prone, and it requires not only specific knowledge of
parallel algorithms, parallel data-structures, and when to best
use them, but also a deep understanding of synchronization
mechanisms, concurrency defects, hardware characteristics,
cache effects, etc. In addition, support for parallel
programming in R currently is limited. In essence, one must
use an R frontend to one of the well-known, low-level libraries
for parallel programming, such as MPI or PVM; see section II.
This seems a mismatch with the high-level programming
features offered by R.

The situation calls for the automatic parallelization of
sequential R programs, as an alternative solution. The burden
of hand-writing parallel code should best be avoided by an R
application programmer. This view is underlined by the fact
that R practitioners typically do not want to spend much time
on development, but want to get their computation results
quickly; this desire actually is a major driver for using a
scripting language in the first place. In addition, a perfectly
optimal usage of the parallel hardware typically is not required;
a good performance and reasonable speedup on a standard
multicore personal computer often will help in practice.

In this paper, we focus on the automatic parallelization of R
programs, expecting that our findings will be useful for other
scripting languages as well, including Matlab. We consider R
to be very suitable for this kind of research: The R language
offers many functions that already operate on vector or matrix
data. These functions are naturally used by programmers and
offer immediate potential for parallelization. Also, R does not
provide pointers, which makes static code analysis much easier.
R programs tend to be short and highly modular. Finally, the
complete R environment and interpreter are available as source
code.

More specifically, the goal of our research project is to
build a platform – ALCHEMY – that allows us to experiment
with the automatic parallelization of R programs. We want to
try out different approaches and techniques for detecting and
exploiting potential parallelism in a piece of R code. The best
parallelization depends on the specific program and input data,
of course; hence, a single parallelization technique will not do
for all programs. We also want to combine different approaches
and study experimentally if and how they might fit together.

For example, it might make sense to first transform the key
algorithm of an R program (say, a string matching algorithm in
bioinformatics) into a parallel version using parallel design
patterns, then add an analysis that looks for remaining data-
parallel operations that can be efficiently transformed into
parallel code. Additional code transformations usually follow
that compile the parallel design patterns into code that can be
immediately executed on the target multicore processor, using
a library such as Intel’s TBB or OpenMP. Fig. 1 shows a
simplified data-flow diagram of the workflow in our platform,
starting from the R program entered by the user and ending
with its execution on a parallel backend.

The key concept in ALCHEMY that allows us to combine
several parallelization analyses and code transformations in a
pipeline fashion is a new, common intermediate representation
for (sequential and parallelized) R programs, the AIR
(“analysis intermediate representation”). AIR offers parallel
skeletons [13] as primitives, the basic R operations, and vectors
of arbitrary length similar to the VCODE intermediate
language [16], see section III.B. The original R program is
automatically translated into AIR code, then analyzed and
transformed by the different parallelization modules. Every
parallelization module takes AIR as input and produces AIR as
output. Clearly, not all analysis modules will use all features
available in AIR; it depends on the specific analysis which
features are present in its output. Basically, all analysis
modules can be connected to each other. When starting
ALCHEMY, a particular configuration is put into place using a
configuration file.

A particular difficulty for the automatic parallelization of R
stems from the fact that R is an interpreter, not a compiler, and
is used interactively during program development. Hence, we
must analyze, transform, and execute the code that was typed in
by the user at the R console (or read in from a file) “on the fly,”
intercepting the normal flow of evaluation inside the R kernel.
We solve this problem by re-programming the inner R
interpreter loop in one location. We redirect control to our
platform and resume normal interpreter operation after the
automatically parallelized parts of the R program have been
executed on the parallel backend; see section III.C for more
details.

In the paper, we present the architecture and key design
elements of the ALCHEMY platform, including the new AIR
intermediate language and the interface between ALCHEMY
and the R interpreter. We illustrate the internal workflow of
ALCHEMY using a simple program example. We describe
how control flows from the R interpreter to ALCHEMY and
back. Finally, we present some early measurements that show
the speedup gained by a simple analysis module that

automatically detects data-parallel R operations and executes
them in parallel on a multicore processor. We would like to
point out that these examples and measurements serve
illustrative purposes. In particular, they show that the core of
the ALCHEMY platform is fully functional and can be used
transparently by the end user.

II. RELATED WORK

Currently, R users who want to take advantage of parallel
hardware must explicitly write parallel code using one of the
available parallel libraries for R, such as the well-known R
implementations of MPI (“Rmpi” [5]) and PVM (“rpvm” [6]).
Other useful parallel programming packages for R include
“snow” [7] and “R/parallel” [8]. “snow” offers uniform
programming access to Rmpi, rpvm, NetWorkSpaces, and raw
sockets. “R/parallel” offers a special “runParallel” command
for loops that contain no data dependencies; the
implementation is based on threads. Another popular library is
the “R multicore package” [9] that offers a “pvec” command
for data-parallel operations; the implementation is based on the
“fork()” system call. For a good overview of parallel
programming for the R language see [4].

There is a substantial body of knowledge on automatic
parallelization, although mostly in the context of high
performance computing for numerical or graphics applications;
see f.e. [11] and [22]. In particular, there are powerful
algorithms for parallelizing nested loops over matrices. In
addition, there are tools that provide data dependence analysis
and pointer analysis for languages such as C or Java, f.e., as
part of the LLVM compiler framework [12]. Part of our
motivation for building the ALCHEMY platform is to make
such knowledge available for the parallelization of general R
programs.

Automatic parallelization of arbitrary R programs is not
available at this time. We are aware of only one approach
(“pR” [10]) that automatically detects and refactors loops in R
programs, but this applies only to loops that contain no data
dependencies at all. Such loops are split automatically and the
work pieces are distributed among worker R processes.

III. THE ALCHEMY PLATFORM

For the sake of brevity, we introduce the term
“transmutator” to denote both parallelization analysis modules
and code transformation modules. By definition, a transmutator
takes AIR code as input, analyzes and/or transforms it
somehow, and outputs AIR code. According to this definition,
backend components that execute the final parallelized code on
some parallel hardware are transmutators as well, since any
backend must return the computation results in AIR format,
even if it were just one number. Other than the input and output
format, the ALCHEMY platform itself does not impose
restrictions to what a transmutator can do internally. Clearly, to
provide useful service a transmutator must preserve the
semantics of its input program; but this requirement applies to
any automated parallelization technique, or compiler.

Figure 1. Overview of the ALCHEMY workflow

A. High-Level Design

The ALCHEMY platform consists of several (potentially
distributed) software components, see the UML component

diagram in Fig. 2. The two main components are RAlchemy

and AlchemyCore, see below. In addition, there are a
number of separate transmutator components, including
backends.

The various components can be deployed on different
nodes in a network and communicate through a lightweight
network protocol, ZeroMQ [18]. The idea was that we wanted
to be able to use remote parallelization analyses, and remote
backends. In addition, we wanted to copy application data only
when necessary; hence, the data initially remains stored in the
R process and gets delivered to the backend (or some
intermediate analysis module) only upon request via the

ValueSvc in the RAlchemy component. The same applies
to things stored in the R environment, such as function

definitions, which are fetched via the EnvironmentSvc

from the RAlchemy component. The transmutators are
implemented as services, too, following a simple

TransmutationSvc API.

The RAlchemy component provides an extension to the
standard R kernel. In particular, it contains the interface

(AlchemyAdapter) between ALCHEMY and the R inner
interpreter loop (see subsection III.C below). In addition, it
contains the value and environment services necessary for the
communication with the transmutators, plus two converter

services (RtoAIRConverter, AIRtoRConverter)
that convert between the SEXPRs produced by the R parser
and AIR code.

Being an extension to R, RAlchemy is written in C
language. It consists of 15 modules, totaling to about 5 KLOC
of code.

The AlchemyCore component implements the logic that
controls the flow of AIR code between the transmutators

(TransmutationController). The controller reads in a
configuration file that describes which transmutators should be
active under which conditions; a typical condition is that some
particular other transmutator must have run to completion
before. After receiving a transmutation request and

corresponding AIR input from the RAlchemy component, the
controller puts the transmutators into a queue and starts the first
transmutator. Afterwards, it checks the conditions, possibly
rearranges the queue, and starts the next transmutator in the
queue. This occurs until all transmutators have finished. The

AIR output of the last one is returned to the RAlchemy
component.

 AlchemyCore is written in Java. It consists of about 130
classes, totaling to about 10 KLOC of code, including the
simple EMBA and RMulticoreBackend transmutators (see
section IV), a small ZeroMQ server, and the classes that
implement the AIR language.

B. Intermediate Language

We have developed a special intermediate language AIR
(“analysis intermediate representation”) for the ALCHEMY
platform. The purpose is to provide a common code
representation for all the transmutators in the platform,
including the parallelization analysis modules, the code
transformation modules, and the backend modules that wrap
the parallel execution units. R’s native SEXPR language [23]
seemed too low-level and too remote from parallel features for
this purpose. Similarly, concurrency support in current
intermediate languages is limited, see [17].

Every transmutator takes AIR as input and produces AIR as
output. Hence, in principle the transmutators can all be linked
together to form a processing pipeline; of course, only certain
combinations of parallelization analyses and code trans-
formations make sense. But for an experimentation platform, it
is important that it is easy to combine different parallelization
approaches so that we can try out how well they complement
each other. Forming processing pipelines also makes it easier to
design stages within a parallelization analysis.

To be suitable as a common intermediate language for
parallelization experiments in R, the AIR supports three
distinct aspects of functionality:

 AIR supports the most relevant language features of R.

 AIR supports several data types of arbitrary length.

 AIR includes a number of parallel skeletons to express
parallelism efficiently.

AIR supports most of the R language features, including
control structures, user-defined functions, recursion, and the
basic built-in functions. The UML class diagram in Fig. 3 (on
the next page) shows the expression types that are currently
supported by AIR.

One language feature of R that we deliberately do not
support is the “eval”-statement, because this introduces some
kind of self-modification capability into an R program and
makes parallelization analysis difficult.

 AIR supports the basic R data types for numbers and
strings, including vectors and matrices. The UML class
diagram in Fig. 4 (on the next page) shows the types that are
currently supported by AIR.

Figure 2. ALCHEMY components

AIR vectors and matrices are special: they can be of
arbitrary size. This feature resembles the parallel intermediate
language VCODE [16]. VCODE was designed to express data-
parallel problems efficiently in environments that offer fast,
native vector operations, such as a Cray. VCODE served as an
intermediate language for NESL [19] which has influenced
Intel’s Ct technology [21]. Arbitrary length types proved useful
in VCODE, and they align well with the vector and matrix data
types in a scripting language such as R.

AIR also provides the special types “AIRVectorStorage”
and “AIRMatrixStorage”. They are proxies for the actual data.
To avoid copying large chunks of application data back and
forth between different transmutators, the actual data remains
stored in the R environment and gets fetched only upon request

via the ValueSvc. Any transmutator can fetch the data at any

time. The “storage”-type values serve as placeholders in the
meantime.

Building upon the basic types, we are currently extending
the set of types supported by AIR to include the more
sophisticated R data types, notably inhomogeneous lists and
data frames; see [3] for more details on these R features.

To address parallelism in a program, AIR currently includes
the most common parallel skeletons (type “SkeletonExpr” in
Fig. 3), such as MAP, ZIP, ZIPW, SCAN, SHIFT, and
DOPAR. For example, MAP applies a given function to a data
vector element-wise; ZIPW merges two data vectors while
applying a given function element-wise; DOPAR is a parallel
loop; see [14] and [15] for more details. Using these skeletons,
parallel solutions can often be expressed in a natural and
compact form [13]. For example, two-dimensional parallel
dynamic programming can be expressed efficiently without
loops using list skeletons such as ZIPW and SCAN [20]. We
add skeletons to the AIR whenever necessary to support a new
parallelization technique. This currently is the most dynamic
part of the AIR.

There are known efficient parallel implementations for each
skeleton. An ALCHEMY configuration typically includes such
implementations in the backend module for execution.

In addition, AIR comes with capabilities that allow writers
of analysis or transformation modules to query and modify a
piece of AIR code; more precisely, the corresponding abstract
syntax tree. The queries are specified using the XPATH
language based on a canonical representation of an AIR syntax
tree as XML code (see also section IV for examples of this
representation).

For example, the XPATH query expression

/Program/WhileStmt/body/*/

ForStmt[./ForCondition/@itervar="i"]

would specify a subtree of AIR code that contains a for-loop
nested inside a top-level while-loop. Such specifications can be
used both for searching and for modifying an AIR syntax tree.

C. Interface to the R Interpreter

R is an interpreted language. After startup, R enters its
interpreter loop, called the REPL – read, evaluate, print, loop.
When the user enters code at the console, the input first gets

parsed and translated into R’s SEXPR intermediate format;
then it is evaluated stepwise and the results are displayed.

Figure 4. AIR value types

Figure 3. AIR expression types

Hence, any parallelization of R code must occur “on the
fly” during interpretation. To this end, ALCHEMY intercepts
the normal sequence of operations in the innermost R
interpreter loop (“R_ReplIteration”). ALCHEMY breaks up the
REPL at the point where the user input has been parsed into
SEXPR code, and inserts its own code (“AlchemyProxy…”)
into the REPL, see step 4 in the simplified call graph in Fig. 5.

The proxy code hands over the SEXPRs to the

AlchemyAdapter, which converts them into AIR by calling

the RtoAIRConverter service. Then, the AIR code is sent

to the AlchemyCore component for parallelization and
(possibly partial) parallel execution.

When the AIR code has been parallelized and executed, the
computation results are wrapped into AIR code again by the
last transmutator in the current ALCHEMY configuration. The
results (including any code fragments that ALCHEMY was

unable to parallelize) are returned to the AlchemyAdapter,

which calls the AIRtoRConverter service to translate the
AIR results back into SEXPRs. Finally, control is returned to
the R interpreter loop, which resembles normal evaluation on
the R code (SEXPRs) returned from ALCHEMY.

In our design, we have kept the changes to the R code base
minimal. In particular, we extended the code of the interpreter
loop in one location only. This minimal set of changes makes it
as easy as possible to keep in sync with new versions of R in
the future.

IV. A SAMPLE TRANSFORMATION CHAIN

To illustrate the inner workings of the ALCHEMY
platform, we show how the simple, single-line R input at the
bottom of the listing in Fig. 6 (a call to the sine function with a
list of three numbers as operands) gets processed by the
platform.

For this example, we assume that the “EMBA” analysis
module and the “RMulticoreBackend” module have been
configured into ALCHEMY. We’ll describe these modules in
more detail in the course of this section. For the moment being,
it suffices to know that EMBA can detect data-parallel
operations in R code, such as a math function being applied to
a vector of data; and the RMulticoreBackend module is a
simple backend that distributes work chunks among the cores
of a multicore processor.

After having started the R environment, and prior to
entering the sine statement, the user activates ALCHEMY
(“alchemy.enable” in the screenshot of Fig. 6). This has to be
done only once for each interactive session. ALCHEMY
connects to its internal services, reads its configuration file,
pushes the corresponding transmutators (here, EMBA and
RMulticoreBackend) onto its internal processing queue, and
returns control to the command window.

The user then enters the sine command. The input line gets
parsed by the R interpreter and reaches the inner interpreter
loop. At this point, ALCHEMY intercepts the R code (more
precisely, the corresponding SEXPR code produced by the R
parser, see section III.C) and transforms it into AIR code. This
AIR code is listed in Fig. 7, using XML notation for
convenience. The sine function appears in lines 5 to 7, the
c-operator of R (which combines its arguments into a list)
appears in lines 11 to 13, and the three operand numbers appear

Figure 5. Intercepted R interpreter loop

Figure 6. Start of ALCHEMY, and simple data-parallel R command

Figure 7. AIR code corresponding to the sine command

in lines 15 to 29. All this happens in the RAlchemy
component of the system.

The AIR code then gets transferred to the AlchemyCore
component, where the transmutation controller schedules the
EMBA analysis module. EMBA detects the data-parallel sine
operation and transforms it into a MAP skeleton. The resulting
AIR code is listed in Fig. 8, again using XML notation. The
MAP appears in line 4, its vector argument in lines 6 to 10, and
the function to be applied to the vector elements (the sine
function) in lines 11 to 13.

At this point, the code has been completely analyzed and
basically is ready for execution on a multicore target. All that is
needed is some more code generation for, say, Intel’s TBB, or
some other common multicore library.

In this example, we instead use our special backend module
“RMulticoreBackend” that transforms MAP skeletons back
into R code based on the “R multicore library” package [9]. We
found this special backend module very useful for testing the
operation of our platform quickly and with low overhead. The
“R multicore library” implements a simple fork-join-algorithm
to distribute R code and data among processes on a multicore
machine under Linux.

Fig. 9 lists the AIR code (XML notation) after the
RMulticoreBackend has transformed the MAP skeleton. The
output now includes a call to the R multicore library-function
“pvec” in lines 15 to 17. By its definition, “pvec” is
semantically equivalent to a MAP. In addition, the backend
module automatically inserts a call that loads the R multicore
library, see lines 4 to 13. Other than that, our backend module
relies on the semantic correctness of the “R multicore”
package.

The backend module is the last module in the queue for this
sample configuration of ALCHEMY. Hence, the AIR code
produced by the last module is transferred back to the

RAlchemy component, where it is converted to R code (more
precisely, to SEXPR code) and fed back into the inner R
interpreter. The interpreter resumes work and evaluates the R
code. This leads to the execution of the “pvec”-call in the R
multicore library. In effect, the whole procedure triggers the
same evaluation inside the R interpreter and produces the same
result as if the user would have entered the commands listed in
Fig. 10 at the R console prompt manually.

Figure 9. AIR code after its transformation to R multicore library-calls

Figure 8. AIR code after its transformation to MAP skeleton

code by the EMBA analysis module

Figure 10. R code returned to the inner interpreter loop after the
parallelization analysis

The screenshot in Fig. 11 shows the final output at the
console. One can see that the whole analysis, transformation,
and execution process has occurred fully transparent to the
user. All the user gets to see is the result of the computation
triggered by his/her sine command. The only noticeable
difference is that for large computations the prompt returns
more quickly due to the higher execution speed.

The UML collaboration diagram in Fig. 12 shows the
transmutators that have been configured into ALCHEMY for
this example, the workflow between the modules, and the
different versions of AIR code that occur in the workflow, as
described above. The transmutation controller in

AlchemyCore pushes all three transmutator modules onto its
processing queue at startup, beginning with the
“FuncDefFilter” module.

The FuncDefFilter is a special transmutator that checks
whether the piece of code under analysis consists of only a
function definition. In such a case, the AIR code is left
unchanged, parallelization analysis is aborted, and the AIR

code is returned to the RAlchemy component, where it is

converted back to SEXPRs and returned to the R interpreter for
further evaluation. The reason is that function definitions are
analyzed “just in time” when the function is actually called in
the code. At that point in time the function definition is fetched
from the R environment (where such definitions are stored)

using the EnvironmentSvc and analyzed.

Such a “just in time” lookup occurs in the example given in
the following section V, where the EMBA module first fetches
the definition of the function “myfun,” and later the definition

of the “helper” function from the EnvironmentSvc for
further analysis.

The EMBA parallelization analysis module detects
“embarrassingly parallel” operations in R code. As we have

seen in the example, this includes a number of built-in R
functions operating on vector data, such as the sine function.

In addition, EMBA detects calls to the special R function
“lapply” which applies a given function to each element of a
vector. The “lapply”-function is quite common in R programs
because it can be used as a substitute for a loop, making the
program run faster. Loops typically are slow when using an
interpreter, but “lapply” has a fairly fast implementation in the
R base library.

EMBA transforms any such data-parallel operation into a
MAP skeleton. MAP is a simple skeleton that applies a given
function to a vector of data element-wise; hence, this program
transformation obviously preserves the semantics of the input
program. EMBA does not replace subtrees in AIR code that
have already been processed by EMBA to avoid inefficient
processing of nested parallelism. The flow chart in Fig. 13
shows the steps taken by the current version of EMBA.

V. SOME EARLY MEASUREMENTS

As discussed in the previous section, our EMBA analysis
module automatically detects data-parallel operations in an R
program, such as a sine function that is applied to a vector of
data. In R, many functions operate on vectors or matrices of
data; hence, there naturally is some potential for automatic
parallelization in R code at a fine-grained level.

To illustrate how easily this potential might be exploited
using an automatic parallelization approach such as our
ALCHEMY platform, Fig. 14 shows a listing of some R code
that applies a summation loop involving sine and cosine
computations (function “helper”) to a data vector of
configurable size (“numelements”). The “lapply” statement is
standard R and applies its second argument (a function) to each
element of its first argument (the data).

Figure 12. Transmutation workflow for the example

Figure 13. Workflow of the EMBA analysis module

Figure11. Final output at the R console window

As a sequential program executed on a single core, this
computation can require up to 5 minutes of execution time for a
data vector containing one million elements. Our EMBA
module automatically detects the lapply-operation and
transforms the R code into a parallel AIR version using the
MAP skeleton. The AIR code then is fed into the special
RMulticoreBackend, which transforms the MAP into a pvec-
operation of the R multicore library; see section IV for details.

Fig. 15 illustrates the speedup that can be gained with
EMBA for various sizes of the data vector. On a PC with 8
cores, the max speedup is about a factor of 5 as compared to
the sequential program. The measurements were carried out
under Ubuntu on an AMD FX-8120 with 8 cores running at 3.1
GHz, with 8 GB of main memory.

This speedup is not spectacular, but one should bear in
mind that the backend used in this example is fairly simple. We
expect to see better results with more advanced multicore
libraries; a backend module for Intel’s ArBB library is already
under development.

For simply-structured massively data-parallel programs
such as in our example, one can expect the speedup to scale
fairly well with the number of processing units. For application
programs that contain significant data-dependencies, the
speedup typically is limited, though. In particular, the max
speedup might well be reached with the six or eight cores
currently available in off-the-shelf multicore PCs. In general,
the speedup is hard to estimate and depends on the application,
the input data size, and the particular parallelization technique
applied.

With the ALCHEMY platform, any speedup comes
completely for free for the R user – he doesn’t have to write a
single line of parallel code to benefit from the multicore
performance.

VI. ONGOING WORK

We are currently implementing several more sophisticated
analysis and transformation modules (transmutators) in our
experimentation platform. As the platform currently is still at
an early stage, we discuss this ongoing work in more detail
here to indicate in which direction our research is headed.

A few years ago, a group of researchers from the University
of Tokyo have developed an interesting approach for
parallelizing dynamic programming structures [20]. Their
approach is based on list skeletons, such as ZIPW, SCAN,
SHIFT, and MAP. They perform a dependency analysis of the
statements in the nested loops of the dynamic program, then
duplicate the underlying data matrix and handle each copy
separately by transforming the loops and the statements in the
loop body into suitable list skeletons. Fig. 16 shows a sample
transformation, using pseudo-code notation. Since dynamic
programming techniques occur quite frequently in applications,
in particular in string matching for bioinformatics, we are
currently implementing this approach. The detection part of our
analysis module MATSU employs tree grammars, the code
transformations are implemented at the syntax tree level. We
expect first experimental results to be available soon.

Figure 16. Sample transformation of dynamic programming

into list skeletons

Figure 15. Speedup for the parallelized version of the sample program

with varying input and number of cores

Figure 14. Sample data-parallel program

for i in 2:n

for j in 2:m

 D[i][j] <- min(D[i][j-2]+1, D[i][j-1]+2, D[i-1][j]+1)

maps to (pseudo-code notation)

define op(x,y) := min(x+1,y)

E[_,0] = D[_,0]

for j in 1:m-1

 F[_,j] = zipw(min,

 map(f(x)=x+2, shift(1, E[_,j-1],

 map(f(x)=x+1, shift(0, E[_,j-1])

 E[_,j] = scan(op, F[_,j])

At the same time, we are developing an analysis module
that implements automated dependency analyses in nested
loops over matrices, based on the well-known SURE technique
(“systems of uniform recurrence equations”) [22]. Basically,
SURE computes a compact representation of the data
dependencies from the index accesses that occur in the loop
body, then detects cyclic dependencies using linear
programming, and finally computes a multi-dimensional
schedule for the statements in the loop body according to the
cycles found in the previous step. From this schedule, a parallel
version of the nested loops can be computed that is naturally
expressed using DOPAR skeletons. Fig. 17 shows a sample
transformation, using pseudo-code notation. We expect the
SURE analysis module to be useful for a range of R application
programs.

To provide state-of-the-art performance at the end of the
parallelization pipeline, we are currently writing a backend that
transforms AIR code into C++ code for Intel’s ArBB platform
(“array building blocks”) [24]. Our backend will support
parallel skeletons such as MAP, SCAN, and ZIPW for general
function arguments, and the basic mathematical functions of R.
Some of these skeletons are already supported by ArBB, but
only for specific function arguments such as addition and basic
operand types such as integers. We are implementing more
general versions, based on known techniques for a parallel
execution of the skeletons.

Recall that any AIR code that is not processed completely
by a backend gets automatically fed back into the R interpreter
for final evaluation. Hence, no code gets lost even if the
program contains some statements that are not yet supported by
the backend. For future versions of our ArBB backend, we also
plan to add logic that dynamically finds an optimal distribution
of the code and data code among the cores, resp., computing
units. To this end, we shall apply the auto-tuning techniques
that have previously been developed in our group [25].

The MATSU and SURE analysis modules are based on
static code analysis. We are also working on dynamic analysis
techniques that perform runtime measurements in the code to
detect promising locations for parallelization. For example, we
are experimenting with a prototype tool that identifies groups
of functions that seem to behave according to a master-worker
design pattern. The analysis tool measures and compares the
call frequencies and computing times of the function calls. At a
more local code level, we experiment with identifying program
statements that can be computed asynchronously to
surrounding statements, such as function calls whose results are

not used immediately, or function calls that implement
expensive computations in different branches of switch blocks.
Such calls can be automatically transformed into “futures” [26]
and distributed among different threads. All this is ongoing
work.

VII. CONCLUSIONS

We have presented a platform for the automatic
parallelization of programs written in the R language. R is an
interpreted interactive language; hence, parallelization must
take place “on the fly” during evaluation of the code in the
interpreter. Our platform intercepts the R code after it has been
parsed by the inner R interpreter loop, runs a (multi-stage)
parallelization analysis and corresponding code transformation,
executes the parallelized parts of the program on a multicore
processor, and then feeds back the (partial) computation results
with the remaining R program into the interpreter loop. This
way, parallelization is fully transparent to the user.

At this early stage, our platform aims at encouraging
researchers to experiment with different approaches and
techniques for the automatic parallelization of R. Any
parallelization technique can be implemented as a separate
analysis module and linked into the platform. The analysis and
code transformation modules can be freely linked together in
the platform using a configuration file, allowing for automatic
parallelization in stages. In particular, our platform makes it
easy to experiment with combinations of different
parallelization techniques. This flexibility is made possible by
our design decision that all modules in the platform use a
common intermediate code representation as both input and
output. We described this parallel intermediate language in
detail.

We described the internal workflow of our platform using
an example, showing all intermediate code versions that occur
during the analysis. Parallelization is performed by a simple
module that detects “embarrassingly parallel” operations in R
code. This includes many built-in math functions operating on
vector data, but also R’s special “lapply”-statement that applies
an arbitrary function argument to a vector of data. Such data-
parallel operations occur frequently in real R programs; hence,
being able to parallelize such code automatically is highly
relevant in practice. The parallelized R code was executed
using a special, standard R library on a multicore processor.
We presented some early measurements that indicate the
speedup possible with this simple parallelization module.
Clearly, more experiments and measurements need to be
performed in the future to evaluate the ALCHEMY approach
and the performance of various parallelization techniques.

We also sketched several more sophisticated parallelization
modules that we are currently implementing, based on known
parallelization techniques. This includes a module that
parallelizes dynamic programming code using data dependency
analysis and list skeletons; and a module that parallelizes
nested loops over matrices using mathematical recurrence
equations and scheduling techniques. In addition, we are
currently implementing a more powerful backend module for
multicore processors using Intel’s ArBB library. We expect to
present first experimental results soon.

Figure 17. Sample transformation of nested loops

into parallel loops

The goal remains the same for all ALCHEMY modules that
are under development: R users shall benefit from multicore
performance without having to write a single line of parallel
code.

 ACKNOWLEDGMENT

We would like to thank Prof. Sebastian Hack from the
computer science department at Saarland University, Germany,
for fruitful discussions about the subject and valuable hints to
the literature.

REFERENCES

[1] R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling, S.
Dudoit, B. Ellis, L. Gautier, Y. Ge, J. Gentry, K. Hornik, T. Hothorn, W.
Huber, S. Iacus, R. Irizarry, F. Leisch, C. Li, M. Maechler, A. J. Rossini,
G. Sawitzki, C. Smith, G. Smyth, L. Tierney, J. Y. Yang, J. Zhang,
"Bioconductor: Open software development for computational biology
and bioinformatics," J. Genome Biology, vol. 5, issue 10, 2004

[2] R. Ihaka, R. Gentleman, “R: A language for data analysis and graphics,”
J. of Computational and Graphical Statistics, vol. 5, 1996, pp. 299-314

[3] W. N. Venables, D. M. Smith: An introduction to R. Network Theory
Ltd., 2002

[4] M. Schmidberger, M. Morgan, D. Eddelbuettel, H. Yu, L. Tierney, U.
Mansmann, “State of the Art in Parallel Programming with R,” J. of
Statistical Software, vol. 31, issue 1, August 2009, pp. 1-27

[5] H. Yu, “Rmpi: Parallel Statistical Computing in R," R News, vol. 2,
issue 2, 2002, pp. 10-14, online at
http://CRAN.R-project.org/doc/Rnews/

[6] N. M. Li, A. J. Rossini, “rpvm: Cluster Statistical Computing in R," R
News, vol. 1, issue 3, 2001, pp. 4-7, online at
http://CRAN.R-project.org/doc/Rnews/

[7] A. J. Rossini, L. Tierney, N. M. Li, “Simple Parallel Statistical
Computing in R," J. of Computational and Graphical Statistics, vol. 16,
issue 2, 2007, pp. 399-420

[8] G. Vera, R. C. Jansen, R. L. Suppi, ”R/parallel. Speeding up
Bioinformatics Analysis with R," BMC Bioinformatics, vol. 9, 2008, pp.
390-396

[9] S. Urbanek, “Package multicore," online at
http://cran.r-project.org/web/packages/multicore/multicore.pdf

[10] X. Ma, J. Li, N. F. Samatova, "Automatic Parallelization of Scripting
Languages," 21st Int. Parallel and Distributed Processing Symposium
IPDPS, 2007, pp. 1-6

[11] U. Banerjee: Loop Parallelization. Loop Transformations for
Restructuring Compilers. Kluwer, 1994

[12] C. A. Lattner: LLVM. An Infrastructure for Multi-Stage Optimization.
Master's thesis, Computer Science Dept., University of Illinois at
Urbana-Champaign, 2002

[13] M. Cole, “Bringing Skeletons out of the Closet: A Pragmatic Manifesto
for Skeletal Parallel Programming,” J. Parallel Computing, vol. 30, issue
3, 2004, pp. 389-406

[14] T. G. Mattson, B. A. Sanders, B. L. Massingill: Patterns for Parallel
Programing. Addison-Wesley, 2005

[15] M. McCool, J. Reinders, A. Robison: Structured Parallel Programming.
Morgan Kauffman, 2012

[16] G. E. Blelloch, S. Chatterjee, “VCODE: A Data-Parallel Intermediate
Language,” 3rd Symposium on the Frontiers of Massively Parallel
Computation, 1990, pp. 471-480

[17] S. Marr, M. Haupt, T. D'Hondt, “Intermediate language design of high-
level language virtual machines: Towards comprehensive concurrency
support,” 3rd Workshop on Virtual Machines and Intermediate
Languages VMIL October 2009, extended abstract

[18] ZeroMQ Project, online at http://www.zeromq.org

[19] G. E. Blelloch, S. Chatterjee, J. C. Hardwick, J. Sipelstein, M. Zagha,
"Implementation of a Portable Nested Data-Parallel Language," J. of
Parallel and Distributed Computing JPDC, vol. 21, issue 1, April 1994,
pp. 4-14

[20] K. Kakehi, K. Matsuzaki, A. Morihata, K. Emoto, Z. Hu, "Parallel
Dynamic Programming using Data-Parallel Skeletons," 22nd Conference
of the Japan Society for Software Science and Technology, 2005

[21] E. Anwar Ghuloum, J. Sprangle, G. Fang, X. Z. Wu, "Ct: A Flexible
Parallel Programming Model for Tera-scale Architectures," Intel White
Paper, October 2007, online at
http://techresearch.intel.com/UserFiles/en-us/File/terascale/Whitepaper-
Ct.pdf

[22] A. Darte, Y. Robert, F. Vivien: Scheduling and Automatic
Parallelization. Birkhäuser Verlag, 2000, chapter 4.2

[23] R Development Core Team: R Internals. online at
http://cran.r-project.org/doc/manuals/R-ints.pdf

[24] C. J. Newburn, B. So, Z. Liu, M. McCool, A. Ghuloum, S. Du Toit, Z.
G. Wang, Z. H. Du, Y. Chen, G. Wu, P. Guo, Z. Liu, D. Zhang, “Intel’s
Array Building Blocks: A Retargetable, Dynamic Compiler and
Embedded Language,” 9th Int. Symposium on Code Generation and
Optimization CGO, 2011, pp. 224-235

[25] C. A. Schaefer, V. Pankratius, W. F. Tichy, “Engineering parallel
applications with tunable architectures,” 32nd Int. Conference on
Software Engineering ICSE, 2010 pp. 405-414

[26] K. Molitorisz, J. Schimmel, F. Otto, “Automatic Parallelization using
AutoFutures,” Int. Conference on Multicore Software Engineering
MSEPT, May 2012

