
Engineering Parallel Applications with
Tunable Architectures

Christoph A. Schaefer
Karlsruhe Institute of

Technology, IPD
Am Fasanengarten 5

76131 Karlsruhe, Germany
cschaefer@ipd.uka.de

Victor Pankratius
Karlsruhe Institute of

Technology, IPD
Am Fasanengarten 5

76131 Karlsruhe, Germany
pankratius@ipd.uka.de

Walter F. Tichy
Karlsruhe Institute of

Technology, IPD
Am Fasanengarten 5

76131 Karlsruhe, Germany
tichy@ipd.uka.de

ABSTRACT
Current multicore computers differ in many hardware char-
acteristics. Software developers thus hand-tune their par-
allel programs for a specific platform to achieve the best
performance; this is tedious and leads to non-portable code.
Although the software architecture also requires adaptation
to achieve best performance, it is rarely modified because
of the additional implementation effort. The Tunable Ar-
chitectures approach proposed in this paper automates the
architecture adaptation of parallel programs and uses an
auto-tuner to find the best-performing software architecture
for a particular machine. We introduce a new architecture
description language based on parallel patterns and a frame-
work to express architecture variants in a generic way. Sev-
eral case studies demonstrate significant performance im-
provements due to architecture tuning and show the appli-
cability of our approach to industrial applications. Software
developers are exposed to less parallel programming com-
plexity, thus making the approach attractive for experts as
well as inexperienced parallel programmers.

Categories and Subject Descriptors
D.1.3 [Programming Techniques]: Concurrent Program-
ming—Parallel programming ; D.2.11 [Software Engineer-
ing]: Software Architectures—Patterns

General Terms
Performance, Design, Languages

1. INTRODUCTION
Performance tuning of parallel applications is a challeng-

ing task on today’s multicore computers because they differ
in a variety of ways (e.g., in the number of cores per chip,
memory bandwidth, cache architecture, or employed operat-
ing systems). Being under pressure to deliver the best par-
allel program performance, many software developers are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICSE ’10, May 2-8 2010, Cape Town, South Africa
Copyright 2010 ACM 978-1-60558-719-6/10/05 ...$10.00.

forced to hand-tune their programs for certain platforms.
This approach is tedious, costly, and may lead to non-por-
table code that has to be re-tuned on new machines [29,
30, 27, 16, 18]. Recent studies [14, 15, 17] have shown that
recompiling programs with appropriate instruction-level op-
timizations does not always lead to acceptable performance
on new platforms, and that the parallel program architecture
also needs adaptation. In addition, some situations require
reordering of nested parallel components. Yet programmers
are hesitant to do such invasive changes on new machines
due to the required implementation effort.

We propose Tunable Architectures to address these prob-
lems for shared-memory parallel programs on multicore plat-
forms. In principle, developers make the performance-rele-
vant parts of a program architecture configurable and pre-
pare the program for experiments. The experiments are
done by an auto-tuner – this is an external program that
systematically tests a program with different architecture
variants on a particular machine to find the best-performing
variant. Auto-tuning is a feedback-directed process consist-
ing of several steps: choice of architecture configuration, pro-
gram execution, monitoring of execution time, and genera-
tion of a new configuration based on optimization strategies
such as hill climbing or simulated annealing. In this process,
the software architecture converges to the best-performing
architecture on a given target platform.

To realize Tunable Architectures, we propose a novel ar-
chitecture description language that has operators to express
parallel programming patterns [12] such as pipelines, pro-
ducer-consumer, or fork-join. Developers start with atomic
software components that contain executable code. The
operators are used to compose a parallel program out of
atomic software components. By default, all patterns have
an associated set of performance parameters (e.g., number
of producers for the producer-consumer pattern), and an
auto-tuner is supposed to choose appropriate values out of
a user-defined value range. The language also allows speci-
fying one or more architecture variants that compose a pa-
rallel program in different ways; these are the variants that
are tested by an auto-tuner.

Tunable Architectures advance earlier work [22, 4, 24, 11,
13, 10] in two important ways: they provide the techni-
cal means to express performance-relevant architecture vari-
ations needed specifically for parallel programs, and they
automate the architecture optimization process for parallel
programs on contemporary shared-memory multicore ma-
chines. Our case studies with realistic C# programs show

tichy
Callout
Proc. Int'l. Conf. on Software Engineering 2010, Vol 1, 405-414.

that the approach works and that the language is expressive
enough to implement a wide range of parallel programs. We
also achieved significant performance improvements while
keeping code portable. At the same time, developers had
less exposure to the complexity of parallel programming and
performance tuning, which makes the approach attractive
not only for experts, but also for less experienced parallel
programmers.

The paper is organized as follows: Section 2 motivates
why we need tunable architectures for multicore parallel
programs. Section 3 introduces our Tunable Architecture
Description Language (TADL); an application of the lan-
guage is illustrated by examples in Section 4. In Section
5, we describe the implementation concepts for configurable
parallel programs and present a full-fledged TADL compiler
that creates executable multicore applications. In Section 6,
four case studies, including an industrial application, evalu-
ate our approach in different contexts. Section 7 discusses
related work, and we present our conclusions in Section 8.

2. WHY WE NEED TUNABLE
ARCHITECTURES

Developing parallel applications is difficult when software
engineers need to pay attention to low-level concurrency de-
tails, such as explicit thread management or synchroniza-
tion. It is well-known that this way of parallel program-
ming is error-prone. Although it might appear that pro-
grammers are able to achieve better performance through
a fine-grained control of parallelization, programmers are
overwhelmed in large programs by the amount of perfor-
mance data and by the details of thread interleaving or lock-
ing protocols. Complex parallel programs are difficult to
tune because code changes may have unforeseen non-local
effects on correctness and performance. In addition, pre-
dicting overheads for parallel computations is difficult, which
forces many programmers to manually experiment with code
changes and observe their performance impact.

Many parallel programs not only have parallelization po-
tential on low abstraction levels (e.g., at instruction level),
but also at an architectural level. Such an architecture typ-
ically contains several layers of nested parallelism [14]. For
illustration, let’s think in a top-down fashion of a data anal-
ysis application processing data packets in a pipeline with
several stages. Inside a stage, input packets of a particular
stage could be processed in a master-worker fashion. Work-
ers, in turn, could be replicated if they are stateless, and
they could work on a disjoint partition of a packet. This
example shows that we can have different types of paral-
lelism, such as pipeline parallelism, task parallelism, and
data parallelism in one single application. The example also
shows that there are many opportunities to configure the
program architecture in different ways to influence perfor-
mance: How many pipeline stages are needed on the highest
abstraction level? How many workers should be created?
Which load-balancing strategy works best? How many dis-
joint data partitions lead to best performance?

Earlier studies [14, 15, 17] have shown that parallel pro-
gram architecture can have a major impact on performance,
and that the software architecture adaptation to a target
platform can have a higher performance leverage than pure
instruction-level optimizations. These adaptations, however,
are rarely done because they require invasive code changes.

Programmers are also hesitant to modify complex parallel
code being afraid of introducing bugs.

Motivated by these observations, our Tunable Architec-
tures approach makes parallel application architecture easily
configurable, and exploits architecture-inherent parallelism.
The developer implements the program’s work items (that
is, what to parallelize), and specifies in our architecture de-
scription language how these items are processed in parallel.
Thread management and synchronization are done implic-
itly based on the operators used to compose a parallel pro-
gram out of work items. We describe next the language
constructs for Tunable Architectures in greater detail.

3. THE TUNABLE ARCHITECTURE
DESCRIPTION LANGUAGE

The Tunable Architecture Description Language (TADL)
specifies all architecture variants for a parallel program that
should be tested by an auto-tuner. We developed a for-
mal grammar specification and an ANTLR parser imple-
mentation [2], however, we omit the full presentation of the
grammar because of its length. We use examples instead
to explain the available constructs, syntax, and semantics.
We also show how the architecture constructs are related to
program code. We start with the key language constructs
used to specify atomic components and connectors.

3.1 Atomic Components
An atomic component represents a piece of elementary

sequential work (i.e., the component has no internal paral-
lelism). Developers need to think of pieces of work in terms
of atomic components rather than threads. An atomic com-
ponent is implemented by a method. Although we used C#
in our case studies, our concepts are also realizable with
other languages (e.g, Java).

The method code associated to an atomic component ma-
nipulates individual data items; this eases the exploitation of
potential data parallelism. If methods do not share states, it
is easy for a run-time system to replicate their functionality
and create copies working in parallel. Our language provides
a keyword to mark such atomic components as replicable.

An atomic component in the architecture description lan-
guage has an identifying name that also establishes a relation
to a C# method providing the implementation. The defini-
tion of an atomic component has the prefix AC_ , followed
by the respective method name, and an optional replicable
attribute:

AC_MyMethodName [replicable]

The method associated to an atomic component can con-
tain arbitrary code. However, atomic components are in-
tended to run concurrently. Therefore, it is the developer’s
responsibility to write correct code. In particular, the devel-
oper has to take care of potential side-effects. Shared data
structures used by two or more atomic components should
be synchronized to ensure the expected behavior. Our pro-
totype implementation currently does not check code cor-
rectness or the proper use of data structures that are not
part of the Tunable Architecture.

When an application is written from scratch, developers
need to create all necessary atomic components first. We
describe next how to glue them together using patterns.

3.2 Connectors
A Tunable Architecture has a tree structure with nodes

of connectors and leaves of atomic components. In contrast
to the definition of connectors in architecture description
languages [13], where a connector handles the communica-
tion between two components, a TADL connector defines
an entire processing strategy as well as the corresponding
interactions for its child items.

The TADL keyword of a connector encloses a block of
child items that can be either atomic components or con-
nectors. There are five connector types:

Sequential Composition. The Sequential Composition
connector provides sequential processing semantics for com-
ponents. The language construct encloses one or more child
items to be executed one after the other. The sequential
composition describes parts of the program that are not
executed concurrently. Sequential Composition requires all
child items to have compatible input types and output types.

Tunable Alternative. The Tunable Alternative connec-
tor expresses an exclusive choice between two or more en-
closed child items; the auto-tuner may pick any of them for
a particular program execution. All child items have indi-
vidual means for input and output.

Tunable Fork-Join. The Tunable Fork-Join connector
introduces task parallelism; the sequential control flow is
forked to execute all enclosed child items in parallel, and
joined back to sequential after all child items are finished.
The child items are not supposed to interact with each other,
so there are no restrictions on input types and output types.
Every child item is assumed to have individual means for
input and output.

Tunable Producer-Consumer. The Tunable Producer-
Consumer connector has exactly two child items: the pro-
ducer and the consumer. It is used for synchronization, and
the developer does not have to care about details (e.g., buffer
creation, synchronized access, signalling), because they are
handled by our prototype implementation. This connector
has streaming semantics: the producer is designed to accept
data from an enumerable data source. After processing a
data element, the producer passes it on to the consumer.
The semantics require that the consumer’s input type must
match the producer’s output type.

Tunable Pipeline. The Tunable Pipeline connector in-
troduces pipeline parallelism. It has two or more child items
representing chained stages.

The connector also has streaming semantics: the first
stage accepts data from a source with enumerable data ele-
ments, and the last stage passes all data elements to a sink.
A stage that finished its work on a particular data element
passes it on to the next stage.

We have carefully selected the aforementioned connector
types to cover widely used parallelization strategies and pro-
gram structures. With the Sequential Composition and Tun-
able Alternative connector, TADL supports the description
of component sequences and exclusive component choices,
respectively. The connectors for parallelization (Tunable
Fork-Join, Tunable Producer-Consumer, Tunable Pipeline)
and the replicable atomic components express data, task,
and pipeline parallelism.

All connectors have a similar syntax, which we exemplify
for a Tunable Pipeline connector with two stages. The first
stage consists of an alternative, which means that an auto-
tuner can try out a program with a pipeline with AC_My-

Method1 in the first stage and AC_MyMethod3 in the second
stage, or with AC_MyMethod2 in the first stage and AC_My-

Method3 in the second stage:

TunablePipeline MyTunablePipeline {

[source:AC_Source;sink:AC_Sink]

TunableAlternative {

AC_MyMethod1,

AC_MyMethod2

},

AC_MyMethod3

}

3.2.1 Handling Input and Output
Every atomic component can be associated to an input

component and an output component. An input component
provides input data (e.g., from a data source or the com-
mand line); an output component takes data to process (e.g.,
stores it on disk, prints the results on screen, or modifies a
data structure). Similar to atomic components, input and
output components have an associated method with code to
handle input or output, respectively.

Input and output components are defined and matched
recursively for child items of a connector. For Sequential
Composition, Tunable Alternative, and Tunable Fork-Join
connectors, input and output components need to be defined
for every child item. By contrast, the Tunable Producer-
Consumer and the Tunable Pipeline connector have only
one source and one sink.

Input and output components are defined for child items
that are enclosed by one of the aforementioned connectors,
and the relation between input and output components and
corresponding method code is similar to atomic components.
In addition, all method names of input and output compo-
nents are listed in an array; the first method in this array
is supposed to handle the input of the first child item, the
second method for the second child item, and so on. If child
item doesn’t need inputs, its corresponding array position
contains the null keyword.

As an example, consider a Tunable Fork-Join connector
with two child items (AC_MyMethod1 and AC_MyMethod2) that
are executed in parallel. AC_MyMethod1 has a component for
both input and output, and AC_MyMethod2 has a component
to produce output, but needs no input.

TunableForkJoin

[input:AC_InputMethodFor1,null;

output:AC_OutMethodFor1,AC_OutMethodFor2] {

AC_MyMethod1,

AC_MyMethod2

}

For Tunable Producer-Consumer and Tunable Pipelines,
I/O routines are not specified for every stage, but only once
for the entire pattern, as shown in the previous example with
the Tunable Pipeline.

4. EXAMPLES FOR TUNABLE
ARCHITECTURES

As a proof of concept, we fully implemented several par-
allel C# applications that are all running on multicore com-
puters. We discuss in greater detail the Tunable Architec-
ture of two of these applications and sketch other applica-
tions in Section 6.

4.1 Parallel Video Processing
In a bottom-up approach, we implement a parallel video

processing application that applies a sequence of filters on
each bitmap image of a video stream. The implementation
starts with methods for atomic components and input and
output; i.e., one method for every filter, one method for
loading the original video, and one method for processing
a manipulated image. Listing 1 outlines the method signa-
tures.

public IEnumerable<Bitmap> LoadVideo () { . . . }
public Bitmap Crop (Bitmap bmp) { . . . }
public Bitmap Oi lPaint (Bitmap bmp) { . . . }
public Bitmap Res ize (Bitmap bmp) { . . . }
public Bitmap Sharpen (Bitmap bmp) { . . . }
public void ConsumeVideo (Bitmap bmp) { . . . }

Listing 1: Atomic component methods of the video
processing application.

The four filter methods (i.e., Crop(), OilPaint(), Re-

size(), and Sharpen()) represent the associated implemen-
tation for all our atomic components, whereas GetVideo()

and Consume() represent the associated implementation of
an input and and output component (i.e., a source and a
sink for a pipeline).

The components are assembled to a parallel program using
the Tunable Architecture description shown in Listing 2. To
process the algorithms in a pipelined fashion, we introduce
a Tunable Pipeline connector with source and sink compo-
nents handling input and output. The stages reference the
respective filter method implementations. As all filters are
stateless (that is, the processing of a particular bitmap does
not depend on any previously processed bitmaps), we mark
the child items of the Tunable Pipeline connector with the
replicable keyword to potentially exploit data parallelism.

TunablePipeline MyVideoProcessing
[source : AC LoadVideo ;
sink : AC ConsumeVideo] {
AC Crop [r e p l i c a b l e] ,
AC OilPaint [r e p l i c a b l e] ,
AC Resize [r e p l i c a b l e] ,
AC Sharpen [r e p l i c a b l e]

}

Listing 2: Architecture description of the parallel
video processing application.

This example exploits data parallelism and pipeline par-
allelism. We discuss the performance results in Section 6.

4.2 Parallel Desktop Search
We implement a parallel desktop search engine in C# that

crawls files on a local hard disk, creates an inverted index

data structure that relates all document words to files on
disk, and which allows user input to query all files contain-
ing specified words. The implementation starts with the
methods shown in Listing 3:

public List<string> Crawl () { . . . }
public SearchResult St r ingSearch1

(string path) { . . . }
public SearchResult St r ingSearch2

(string path) { . . . }
public void UpdateIndex (SearchResult r) { . . . }
public void Create IndexFi l e (Index i) { . . . }
public List<string> Query (string [] keywords) { . . . }
public string [] GetKeywords () { . . . }
public void ShowResults (List<string> r e s u l t s) { . . . }

Listing 3: Atomic Component methods of the par-
allel video processing application.

The methods implement the following component func-
tionality:

• AC_Crawl: Crawls the folders and retrieves all file paths.

• AC_StringSearch1: Splits a text into words using a
delimiter character.

• AC_StringSearch2: Implementation of the Knuth Mor-
ris Pratt (KMP) string search algorithm [5]. While the
first string search algorithm performs a naive search
with moderate overhead, the KMP algorithm employs
a smarter search, but with slightly more overhead (e.g.,
storing word indices). As we don’t know in advance
which of the algorithms performs better on certain
platforms, we let the auto-tuner decide.

• AC_UpdateIndex: Updates the file index data structure
in memory.

• AC_CreateIndexFile: Stores index on disk.

• AC_Query: Performs a query to find all files that con-
tain all keywords specified by the user.

• AC_GetKeywords: Retrieves a list of keywords from
command line.

• AC_ShowResults: Prints the results of a query to the
command window.

The Tunable Architecture shown in Listing 4 illustrates
how to define two architecture variants for this application
(DesktopSearch1 and DesktopSearch2):

TunableAlternative DesktopSearchAlternat ives {
SequentialComposition DesktopSearch1

[input : null , AC GetKeywords ;
output : null , AC ShowResults] {
TunablePipeline

[source : AC Crawl ;
sink : AC CreateIndexFile] {
TunableAlternative {

AC StringSearch1 [r e p l i c a b l e] ,
AC StringSearch2 [r e p l i c a b l e]

} ,
AC UpdateIndex [r e p l i c a b l e]

} ,
AC Query

} ,

SequentialComposition DesktopSearch2
[input : null , AC GetKeywords ;
output : null , AC ShowResults] {
TunableProducerConsumer

[source : AC Crawl ;
sink : AC CreateIndexFile] {

TunableAlternative {
AC StringSearch1 [r e p l i c a b l e] ,
AC StringSearch2 [r e p l i c a b l e]

} ,
AC UpdateIndex [r e p l i c a b l e]

} ,
AC Query

}
}

Listing 4: Architecture description of the parallel
desktop search application.

To realize a parallel indexing process consisting of a string
search algorithm and the index update method, we can ei-
ther use a Tunable Pipeline or a Tunable Producer-Con-
sumer connector. However, we do not know which strategy
performs better on a particular hardware platform. Accord-
ing to the parallel pattern definitions in [12], the pipeline
processes the data elements one by one (that is, each stage
processes one item and then gets the next), whereas the pro-
ducer-consumer strategy allows the consumer to fetch more
than one item at a time. Consequently, a pipeline stage has
less waiting time after processing a data element; however,
the consumer can process a batch of data elements without
synchronizing after each element.

Using a Tunable Alternative connector, we define two ar-
chitectural variants and let the auto-tuner decide which one
performs better. In both alternatives, we start with a Se-
quential Composition connector to ensure the indexing pro-
cess is finished before the program accepts search queries.

The indexing process in the first alternative employs a
Tunable Pipeline connector calling the AC_Crawl source to
obtain files to be parsed, and the AC_CreateIndexFile sink
to store processed words. There are two stages, one for
searching and one for index updating with AC_UpdateIndex).
The searching stage can have one of the two specified string
search algorithms (i.e., AC_StringSearch1 and AC_String-

Search2). We add AC_Query as the second child item to the
Sequential Composition connector.

The second architecture alternative is similar to the first
one, except that we define a Tunable Producer-Consumer
connector. We use the same source and sink methods (i.e.,
AC_GetKeywords and AC_ShowResults).

This example illustrates data parallelism, pipeline par-
allelism, and the definition of performance-relevant archi-
tecture variants. The performance results are presented in
Section 6. We remark that other architecture variants can
be defined to do parallel indexing at different granularity
levels (e.g., files, or chunks of words). This is important
for parallel programs as a varying granularity of processing
influences the program overheads and the performance on
different machines.

Apart from the architecture declared above, we can think
of other scenarios that provide even more flexibility when
using the application. For example, we can use a Tunable
Fork-Join connector instead of a Sequential Composition
connector to allow queries to be performed while indexing is
in progress. This can be useful if indexing takes a long time,

but the user wants to perform searches as soon as possible
on preliminary versions of the index. However, if querying
and indexing run concurrently, additional synchronization
is required that could lead to a slowdown of the indexing
process. To instruct the auto-tuner to find the best variant,
we would replace one of the Sequential Composition con-
nectors with a Tunable Fork-Join connector. If the index
data structure is synchronized, we could even use the same
method implementation for AC_Query.

5. IMPLEMENTATION TECHNIQUES
The implementation of a parallel program with Tunable

Architectures needs library and tool support. We present
next the Tunable Architecture Library, the TADL compiler,
and the Automatic Architecture Tuner. We also illustrate
their usage in the software development process.

5.1 The Tunable Architecture Library
The Tunable Architecture Library (TALib) contains mod-

ules with implementations for every TADL connector; for
example, the TALib contains the code to implement the
Tunable Pipeline connector. In addition, each such mod-
ule implements a set of predefined tuning parameters that
influence performance. Table 1 shows all tuning parameters.
The values of these parameters are chosen by an auto-tuner
out of an associated set of values.

The TALib modules also handle exceptions that might
have been thrown by atomic components. This means that a
parallel pattern handles the exceptions of its enclosed child
items. Each TALib module collects all exceptions thrown
by its child items and re-throws them as one aggregated
exception.

5.2 The TADL Compiler
The TADL compiler processes scripts written in the Tun-

able Architecture Description Language to generate source
code. Compilation consists of two steps:

1. A preprocessor extracts all atomic component declara-
tions from the TADL script. It uses reflection to establish
the bindings between methods and their atomic component
declarations.

2. The compiler analyzes the architecture description,
translates it to an internal representation, checks type con-
sistency for connectors, generates the source code, and inte-
grates the code into a final executable program.

5.2.1 Tuning Wrappers
The TADL compiler generates code organized in tuning

wrappers. A tuning wrapper is implemented as a class that
initializes a particular TALib module and implements access
methods to that module. The TADL compiler generates
a tuning wrapper for each connector in the TADL script.
For example, the compiler translates a construct defining
a Tunable Pipeline connector into a tuning wrapper that
handles the access to the TALib’s Tunable Pipeline module.

A tuning wrapper also contains code to create an instance
of the corresponding TALib module (e.g., an instance of a
Tunable Pipeline connector). The wrapper has fields for the
module’s tuning parameters (e.g., a fork-join’s number of
worker threads) and methods to connect child items of a con-
nector to its TALib module implementation. The wrapper
also implements the methods for input and output data han-
dling, and exposes a Run() method executing the wrapped

Connector TuningParameters

Tunable Alternative Choice of Alternative (defines which alternative is executed)

Tunable Fork/Join Num Worker Threads (number of threads the component can use)

Tunable Producer/Consumer Buffer Size (size of the central buffer between producer and consumer)
Batch Size (number of data elements the consumer grabs at once)

Tunable Pipeline Stage Fusion (for each supporting stage: enables or disables stage fusion)

Replication Num Instances (number of replicated instances of the Atomic Component)
Load Balancing (defines how the data elements are assigned to the instances)
Batch Size (number of data elements an instance grabs at once)

Table 1: Predefined tuning parameters of TADL connectors.

TALib module (e.g., the Tunable Pipeline). The entry point
for the execution of the Tunable Architecture is the Run()

method of the tuning wrapper that implements the archi-
tecture’s root component.

5.2.2 Tuning Instructions
Tuning wrappers just provide interfaces to the variables to

tune. The auto-tuner, however, needs to be able to change
variable values and get performance feedback. To achieve
this we instrument the source code with Atune-IL, which is
a pragma-based tuning language. We refer to our previously
published work for details [18].

Atune-IL provides constructs to declare program variables
as tuning parameters and to define measuring points within
the program to return execution time feedback to the auto-
tuner. In addition, Atune-IL offers block constructs to define
the scope of tuning parameters; this is important for search
space reduction.

Atune-IL provides a compact representation of several pro-
gram variants. Before the auto-tuner starts, the Atune-IL
statements are replaced by appropriate code fragments, such
as variable assignments and calls to performance libraries.
In a tuning wrapper, the TADL compiler instruments the
variables declaring tuning parameters, sets measuring points
at predefined positions to determine the wrapper’s execution
time, and encloses the wrapper class with a block statement.

5.3 The Automatic Architecture Tuner
The Automatic Architecture Tuner (auto-tuner) performs

an automatic search-based optimization and uses Atune-IL
instrumentations to steer the process. We adapted our auto-
tuner from previously published work [17, 18] to support
Tunable Architectures. Auto-tuning is a cyclical, feedback-
directed process:

1. The tuner extracts the Atune-IL instrumentations from
all tuning wrappers in the program and builds a data struc-
ture containing the required tuning information. In addi-
tion, the tuner builds up a tuple-based, multi-dimensional
search space based on all parameters’ value ranges. Each
tuple represent a particular parameter configuration.

2. Starting from the current parameter configuration, we
use empirical search algorithms to traverse the search space
and find a new parameter configuration. The selection of
parameter configurations is based on exchangeable search al-
gorithms. Depending on the complexity of the search space,
we employ adapted versions of hillclimbing, swarm optimiza-
tion, and random sampling.

3. A new executable program is generated in which instru-
mentations are removed. Atune-IL placeholders are replaced
by concrete values. Time measuring points are replaced by
calls to an instrumentation run-time.

4. The tuner executes the new program variant and mon-
itors it. The instrumentation run-time records, aggregates,
and stores data from all measuring points.

5. The recorded monitoring results are gathered and pre-
pared for further processing.

The tuning cycle (steps 2-5) is repeated until some pre-
defined termination condition holds; this depends on the
chosen search algorithm.

5.3.1 Search Space Reduction
One of the main problems of search-based auto-tuning is

the explosion of the search space. In the worst case, an auto-
tuner might try out the Cartesian product of all parameter
domains, which grows exponentially in the number of pa-
rameters. If the search space is very large, even a smart
search algorithm would require a long time to find a good
parameter configuration.

To tackle this problem, the automatic architecture tuner
takes advantage of the semantics of the TADL connectors.
For search space partitioning, it uses the knowledge about
Sequential Composition and Tunable Alternative connec-
tors. Both ensure that their child items will never run con-
currently. Thus, tuning parameters exposed in a particular
child item or in its sub-tree will never interfere with param-
eters of other child items. From a tuning perspective, the
sub trees of Sequential Composition and Tunable Architec-
ture are independent. We call independent sub trees tuning
entities, as the auto-tuner can optimize these sub trees sep-
arately.

Considering the tree structure of Tunable Architectures,
the search space can be split into smaller parts. Figure 1
conceptually illustrates such a situation. If an architecture
tree contains a Sequential Composition connector in a par-
ticular place, we can assign each of its sub-trees to a sepa-
rate tuning entity. We thus obtain two significantly smaller
parts of the search space. Instead of tuning the parameters
of all components below the Sequential Composition connec-
tor together, the auto-tuner can optimize each tuning entity
separately. This applies in a similar way for the Tunable
Alternative connector.

For each of the remaining connectors, the auto-tuner ap-
plies a particular tuning heuristic that defines an optimiza-
tion process for a connector. Using tuning heuristics, the

...

sub tree 1 sub tree n

tuning entity 1 tuning entity n

child connector 1 child connector n

Sequential Composition

Figure 1: Exploiting tree structure of Tunable Ar-
chitectures to create tuning entities.

auto-tuner exploits context knowledge about the connectors’
parallelization strategies and performs a guided search. For
example, let’s think of a Tunable Pipeline connector with
replicable child items. Instead of simply testing a subset
of all parameter configurations, the auto-tuner tries to bal-
ance pipeline stages by increasing the number of threads for
replicable child items with long executions times or by de-
creasing the number of threads for short-running child items.
We refer to our earlier work for details [17].

5.4 How To Create An Auto-Tuned
Parallel Application

The implementation process using Tunable Architecture
is illustrated in Figure 2, along with the sequence of steps a
developer has to do.

Figure 2: Entire process of creating a parallel auto-
tuned application.

1. A developer programs the methods associated to atomic
components (AC).

2. A Tunable Architecture is defined in a TADL script
that specifies the composition of atomic components to a
complete program.

3. The TADL compiler is invoked with 1 and 2 as inputs.

4. The TADL compiler produces code files containing tun-
ing wrappers; the wrappers are instrumented with Atune-IL
statements. Each wrapper handles the access to the corre-
sponding TALib module.

5. The developer inserts in his or her program a call to
the tuning wrapper that implements the architecture’s root
component. This call is typically inserted in the program’s
main method.

6. The completion of step 5 produces an executable, but
not yet optimized parallel program. This program version
represents an intermediate portable tuning template.

7. The automatic architecture tuner optimizes the paral-
lel program for performance. It hooks on to the Atune-IL
instrumentations that are interfaced in the tuning wrappers.

8. The completion of the previous step produces a parallel
program optimized on a target platform. If the program
is migrated to another platform, the developer repeats the
process starting at step 6.

6. CASE STUDIES
To evaluate Tunable Architectures we conducted four case

studies with parallel applications written in C#, one of which
is a re-engineered industrial application. We discuss the con-
text and experimental results next.

6.1 Parallel Applications

6.1.1 Video Processing
This application applies four different filters on each frame

of an AVI (Audio Video Interleave format) video. It uses the
Tunable Architecture described earlier by the TADL script
in Listing 2. The TADL compiler generates the standard
tuning parameters for the pipeline as well as for each of the
replicable atomic components. In the script, just six lines
define the entire architecture. The TADL compiler produces
a configurable parallel program that is ready to execute.

As a performance benchmark, we used an AVI video con-
sisting of 180 frames with a resolution of 800x600 pixels.

6.1.2 Desktop Search
This application indexes the words contained in a set of

text files and allows queries on the index to return all files
that contain all words in given list. The indexing performs
most work and is the most relevant part for parallelization.
The desktop search engine’s Tunable Architecture is the one
shown earlier in Listing 4.2; it also illustrates the use of alter-
natives. We defined two Tunable Alternative connectors to
instruct the auto-tuner to test different variants of the archi-
tecture as well as of particular algorithms. This application
context demonstrates the exchangeability of the connectors,
and the definition of variants on each architecture level.

The performance benchmark for this case study consisted
of 10,700 ASCII text files with file sizes ranging between
9KB and 613 KB.

6.1.3 Biological Data Analysis
Agilent’s MetaboliteID (MID) [1], is a large commercial

application (with more than 100.000 lines of code) for bio-
logical data analysis; we parallelized this sequential appli-
cation using Tunable Architectures. MetaboliteID identifies
metabolites in mass spectrograms, which is a key method
for drug testing. Metabolism is the set of chemical reactions

taking place within cells of a living organism, and Metabo-
liteID compares mass spectrograms to identify the metabo-
lites caused by a particular drug. The MetaboliteID appli-
cation executes several algorithms in sequence (abbreviated
SC, EIC, ADC, UV, BTL, IPM, PCS, FMSC, FPM, and
MFA) that identify and extract the metabolite candidates.

Compared to the previous case studies, MID already ex-
isted in a sequential version. We show in this case study that
Tunable Architectures can be used to re-engineer sequential
programs to parallel programs, and tune the performance of
the parallel program more easily.

Listing 5 illustrates the Tunable Architecture for Metabo-
liteID. We declared the methods implementing the afore-
mentioned algorithms as atomic components. We then de-
fined the parallel processing architecture that includes three
Tunable Fork-Join connectors, two of which are nested, and
the innermost fork-join executes two replicable atomic com-
ponents in parallel. We had access to documentation and
communicated with MetaboliteID’s developers to ensure that
the new order of algorithms still produces valid results.

In the compact description of our program architecture,
we defined five parallel sections and exploited parallelism
on three different application layers. Each of the tuning
wrappers generated by the TADL compiler for the connec-
tors were already instrumented with predefined tuning pa-
rameters; they were used by an auto-tuner to reduce the
search space based on additional information about the nest-
ing structure of the program (see Section 5.3.1) For exam-
ple, the two Tunable Fork-Join connectors within the outer
Sequential Composition connector are tuned separately be-
cause they don’t influence each other.

SequentialComposition MID {
AC RunPreProcessing ,
TunableForkJoin {

AC RunSC,
AC RunEIC

} ,
TunableForkJoin {

AC RunADC,
AC RunUV,
AC RunMDF,
AC RunBTL IPM,
SequentialComposition {

AC RunPCS FMSC,
TunableForkJoin

[input : AC FPMInput ,AC MFAInput ;
output :AC FPMOutput ,AC MFAOutput] {
AC RunFPM [r e p l i c a b l e] ,
AC RunMFA [r e p l i c a b l e]

}
}

} ,
AC RunPostProcessing

}

Listing 5: Architecture description of the parallel
version of MID.

A manual implementation of a parallel program with the
same functionality as ours would have required more ef-
fort, in particular because nested parallel components re-
quire careful attention to thread management, synchroniza-
tion, and locking protocols.

The input files for the performance benchmark were 1 GB
in size and contained the data representing the mass spec-
trograms to compare.

6.1.4 Graph Rewriting
GrGen is the currently fastest sequential graph rewriting

system [9]. In this case study, we simulated the biological
gene expression process on the E.coli bacteria DNA [19].
The model of the DNA is represented as an input graph
with more than 9 million nodes. This is the second study
to re-engineer a sequential application for parallelism using
Tunable Architectures.

GrGen has two performance bottlenecks that both pro-
vide potential for massive data parallelism. We declared
the respective methods (PromoterSeacrch and RnaPoly) as
replicable atomic components in our Tunable Architecture.
Listing 6 shows the parallel GrGen’s TADL script. The two
atomic components must be executed one after another, so
they are enclosed by a Sequential Composition connector.
We also declared methods to handle input and output.

SequentialComposition GrGen
[input : AC PromoterInput , AC RnaPolyInput ;
output : AC PromoterOutput , AC RnaPolyOutput] {
AC PromoterSearch [r e p l i c a b l e] ,
AC RnaPoly [r e p l i c a b l e]

}

Listing 6: Architecture description of the parallel
version of GrGen.

The tunable parallel version of GrGen could be defined
with just a few architecture script lines. The TADL compiler
automatically generated tuning wrappers for the replicable
atomic components; the compiler also generated predefined
tuning parameters for the patterns as well as code instru-
mentations for feedback to the auto-tuner.

6.2 Experimental Results
We present performance results for each case study ap-

plication that were obtained by our automatic architecture
tuner. We then explain how programming effort was reduced
and how Tunable Architectures helped reduce the potential
of parallel programming errors.

6.2.1 Performance
For performance evaluation, we are interested in two per-

formance metrics:

• Best obtained speedup. This is the ratio between
the execution time of the program’s optimized parallel
version and the execution time of the sequential ver-
sion. It expresses how much faster the parallel program
is compared to the sequential one.

• Tuning Performance Gain (TPG). This is the dif-
ference between the worst and the best speedup ob-
tained by our auto-tuner. This metric indicates the
impact of tuning the parallel program, that is, how
much more the performance of the parallel program
could be improved by tunable architectures and auto-
tuning.

All experiments were done on an eight core machine, with
two Intel Xeon E5320 QuadCore CPUs, clocked at 1.86 GHz,
with 8 GB RAM, and running Windows Server 2003 32bit.
Figure 3 shows the performance results for the worst and
the best speedup (Best Spd. and Worst Spd., resp.) and

summarizes the resulting TPG. The execution times of the
sequential versions were 19 seconds for the video application,
14 hours and 35 minutes for the desktop search application,
85 seconds for MetaboliteID, and 45 seconds for GrGen.

Video DS MID GrGen

Worst Spd. 2,6 1,7 1,6 1,8

Best Spd. 5,6 6,9 3,1 7,7

TPG 215% 406% 194% 428%

0,0

2,0

4,0

6,0

8,0

S
p
e
e
d
u
p

Figure 3: Performance results of all case studies.

The results show that significant speedups could be in-
deed be achieved by architecture-level performance tuning,
so it pays off for performance to use Tunable Architectures.
For the desktop search application, the auto-tuner has finally
chosen the best architecture based on the Tunable Producer-
Consumer connector and the KMP algorithm. The tuning
performance gain results show that auto-tuning is worth-
while. Based on our experience, a manual performance op-
timization leads to results somewhere within the range of the
TPG, but rarely close to the maximum; this is because it
is difficult to figure out intuitively what the best parameter
configuration is.

6.2.2 Programming Effort
We compare the approach with Tunable Architectures with

a manual approach without Tunable Architectures imple-
menting the same functionality. We compare the program-
ming effort and analyze the potential for parallel program-
ming errors. In particular, we look at the following metrics:

• Lines of code (LOC). We use the LOC metric as
a measure correlated to the implementation effort re-
quired to manually re-build the functionality we pro-
vide in our language, compiler, and library.

• Number of synchronization primitives (syncs).
Thread synchronization is one of the most difficult
tasks in parallel programming. We interpret the num-
ber of saved synchronization primitives as an indica-
tion for reduced error potential.

• Number of tuning instrumentations. Instrumen-
tations are necessary for automatic performance tun-
ing. The saved instrumentation statements in our ap-
proach indicate how much easier tuning becomes with
Tunable Architectures.

To estimate the average number of LOC and synchroniza-
tion primitives required for the manual implementation, we

assume average values based on our experience from previ-
ous experiments: the implementation of a Tunable Pipeline
connector requires 180 LOC / 10 syncs, a replicable compo-
nent 120 LOC / 8 syncs, a Tunable Fork-Join connector 170
LOC / 10 syncs, a Tunable Producer-Consumer connector
150 LOC / 9 syncs, and a Tunable Alternative connector 15
LOC. We do not consider Sequential Composition connec-
tors, as they contain neither parallelism nor tuning options.

Figure 4 lists the particular numbers for each of our case
study applications.

Video

Processing

Desktop

Search
MID GrGen

Man. Impl. 300 495 290 120

TA-based 3 3 3 3

Reduction 297 (99%) 492 (99%) 287 (99%) 117 (98%)

Man. Impl. 18 27 18 8

TA-based 0 1 2 0

Reduction 18 (100%) 26 (96%) 16 (89%) 8 (100%)

Man. Impl. 28 43 51 34

TA-based 0 0 0 0

Reduction 28 (100%) 43 (100%) 51 (100%) 34 (100%)

LOC

Synchronizations1)

Tuning

Instrumentation

Statements

1)
 includes all synchronization primitives, such as lock, notify, wait, join, etc.

Figure 4: Reduction of LOC, synchronization, and
instrumentation.

The comparison shows that our approach saves a large
number of LOC; this helps reducing the overall application
development effort. In addition, almost no manual thread
synchronization and tuning instrumentations are necessary
with Tunable Architectures; this reduces the potential for
parallel programming errors.

Tunable Architectures do not overly inflate program code
and introduce modest complexity in exchange for automa-
tion. This is supported by the class coupling metric [25]
and the total LOC of the final application. With Tunable
Architectures, the average number of class couplings for all
our case study applications increases by 18%, the number of
classes by 13%, and the total LOC by just 3%, compared to
the original program version.

7. RELATED WORK
Architecture description languages (ADLs) have been ex-

plored for sequential programs [23, 3], and the recommen-
dations of [22, 21] are also useful in our context. The ADLs
discussed in [13], such as C2 or Darwin, support the de-
scription of distributed systems, but do not offer means to
describe adaptable parallelism within shared-memory pro-
grams.

Most related work addresses parallel programming for di-
stributed-memory environments (e.g., the Web) [4] and pays
little attention to parallel programming patterns or perfor-
mance tuning for shared-memory computers; recently avail-
able multicore computers are different because they have
a shared-memory architecture and a different programming
model. This is similar for work in autonomous computing
[6, 10], architecture adaptation [7, 8], self-management, and
self-organization [28, 20], and self-optimization [6].

In the parallel programming domain, generative approaches
such as CO2P 3S [11, 26] are used to create program skele-
tons for distributed memory programs, which require man-

ual extensions by developers. There is no comparable sup-
port for auto-tuning on an architectural level.

8. CONCLUSION
As multicore computers have arrived on every desktop,

many software engineers now have to switch from sequen-
tial application development to the more complex parallel
application development. The design and performance op-
timization of parallel programs is more difficult than for se-
quential programs. Even experts have problems predicting
the performance of complex parallel programs; as a result,
experimentation is unavoidable in practice.

The tunable architectures approach proposed in this pa-
per relieves developers from the burden of manual program
adaptation and tuning. It provides a systematic approach
that helps avoid common design and implementation pit-
falls. Tunable architectures also simplify the exploitation of
parallelism on an architecture level, rather than just on an
instruction-level, which is a key leverage for performance.
In addition, the quality of parallel code is improved: hard-
coded optimizations are replaced by generic constructs, thus
making multicore applications easier to port and re-tune on
new platforms. Multicore processors are definitely here to
stay, and we need approaches like this one to make multicore
software development more accessible, for experts as well as
for less experienced parallel programmers.

Acknowledgments. We thank Agilent Technologies Inc. for
providing the source code of MID as well as Agilent Technologies
Foundation for financial support. We also appreciate the support
of the excellence initiative at the Karlsruhe Institute of Technol-
ogy.

9. REFERENCES
[1] Agilent Technologies. MassHunter MetaboliteID Software,

2008. http://www.chem.agilent.com.
[2] antlr.org. ANTLR Parser Generator, 2009.

http://www.antlr.org.
[3] P. Clements et al. Documenting Software Architectures:

Views and Beyond. Addison-Wesley, 2002.
[4] P. C. Clements. A Survey of Architecture Description

Languages. In IWSSD ’96: Proceedings of the 8th
International Workshop on Software Specification and
Design, page 16, Washington, DC, USA, 1996. IEEE
Computer Society.

[5] T. H. Cormen et al. Introduction to Algorithms. MIT Press,
2001.

[6] A. G. Ganek and T. A. Corbi. The Dawning of the
Autonomic Computing Era. IBM Systems Journal,
42(1):5–18, 2003.

[7] D. Garlan et al. Rainbow: Architecture-Based
Self-Adaptation with Reusable Infrastructure. Computer,
37(10):46–54, Oct. 2004.

[8] D. Garlan et al. Software Architecture-Based
Self-Adaptation. Number ISBN 978-0-387-89827-8.
Springer, 2009.

[9] R. Geißand J. Blomer. GrGen.NET. University of
Karlsruhe, IPD Prof. Goos, 2008.
http://www.info.uni-karlsruhe.de/software/grgen/.

[10] M. C. Huebscher and J. A. McCann. A Survey of
Autonomic Computing–Degrees, Models, and Applications.
ACM Comput. Surv., 40(3):1–28, 2008.

[11] S. MacDonald et al. Generative Design Patterns. In
Proceedings of the 17th International Conference on
Automated Software Engineering, pages 23–34, 2002.

[12] T. G. Mattson et al. Patterns for Parallel Programming.
Addison-Wesley, 2004.

[13] N. Medvidovic and R. N. Taylor. A Classification and
Comparison Framework for Software Architecture
Description Languages. IEEE Transactions on Software
Engineering, 26(1):70–93, 2000.

[14] V. Pankratius et al. Software Engineering For Multicore
Systems: An Experience Report. In Proceedings of the 1st
ICSE Workshop on Multicore Software Engineering, pages
53–60, New York, NY, USA, 2008. ACM.

[15] V. Pankratius et al. Parallelizing BZip2. A Case Study in
Multicore Software Engineering. IEEE Software,
26(6):70–77, 2009.

[16] A. Qasem, K. Kennedy, and J. Mellor-Crummey.
Automatic Tuning of Whole Applications using Direct
Search and a Performance-based Transformation System.
The Journal of Supercomputing, 36(2):183–196, 2006.

[17] C. A. Schaefer. Reducing Search Space of Auto-Tuners
Using Parallel Patterns. In Proceedings of the 2nd ICSE
Workshop on Multicore Software Engineering, pages 17–24,
Washington, DC, USA, 2009. IEEE Computer Society.

[18] C. A. Schaefer et al. Atune-IL: An Instrumentation
Language for Auto-Tuning Parallel Applications. In
Proceedings of the 15th International Euro-Par Conference
on Parallel Processing, volume 5704/2009 of LNCS, pages
9–20. Springer Berlin / Heidelberg, Jan. 2009.

[19] J. Schimmel et al. Gene Expression with General Purpose
Graph Rewriting Systems. In Proceedings of the 8th
International Workshop on Graph Transformation and
Visual Modeling Techniques, 2009.

[20] T. Seceleanu and D. Garlan. Developing Adaptive Systems
with Synchronized Architectures. Journal of Systems and
Software, 79(11):1514 – 1526, 2006. Software Cybernetics.

[21] M. Shaw and P. Clements. How Should Patterns Influence
Architecture Description Languages? In Working paper for
DARPA EDCS community, 1996.

[22] M. Shaw and D. Garlan. Characteristics of higher-level
languages for software architectures. Technical report,
Technical Report, CMU-CS-94-210, Carnegie Mellon
University, Department of Computer Science, 1994.

[23] M. Shaw and D. Garlan. Software Architecture:
Perspectives on an Emerging Discipline. Prentice Hall,
1996.

[24] S. Siu et al. Design Patterns for Parallel Programming.
Proceedings of the International Conference on Parallel
and Distributed Processing Techniques and Applications,
page 230244, 1996.

[25] W. Stevens et al. Structured Design. Classics in Software
Engineering, pages 205–232, 1979.

[26] K. Tan et al. Using Generative Design Patterns to Generate
Parallel Code for a Distributed Memory Environment. In
Proceedings of the SIGPLAN Symposium on Principles
and Practice of Parallel Programming, volume 38, pages
203–215, New York, NY, USA, 2003. ACM Press.

[27] C. Tapus et al. Active Harmony: Towards Automated
Performance Tuning. In Proceedings of the ACM/IEEE
Supercomputing Conference, Nov. 2002.

[28] M. Wermelinger. Towards a Chemical Model for Software
Architecture Reconfiguration. IEEE Proceedings Software,
145(5):130–136, Oct 1998.

[29] O. Werner-Kytola and W. F. Tichy. Self-Tuning
Parallelism. In Proceedings of the 8th International
Conference on High-Performance Computing and
Networking, pages 300–312, London, UK, 2000.
Springer-Verlag.

[30] R. C. Whaley et al. Automated Empirical Optimizations of
Software and the ATLAS Project. Journal of Parallel
Computing, 27:3–35, Jan. 2001.

